
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Algorithms for measuring and enhancing distributed systems

Permalink
https://escholarship.org/uc/item/6mm2k726

Author
Uyeda, Frank C.

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6mm2k726
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Algorithms for Measuring and Enhancing Distributed Systems

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Frank C. Uyeda

Committee in charge:

Professor George Varghese, Chair

Professor Gert Lanckriet

Professor Lev Manovich

Professor Yannis Papakonstantinou

Professor Amin Vahdat

2011

Copyright

Frank C. Uyeda, 2011

All rights reserved.

The dissertation of Frank C. Uyeda is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2011

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . viii

Acknowledgements . ix

Vita . xii

Abstract of the Dissertation . xiii

Chapter 1 Introduction . 1

1.1 Contributions . 3

Chapter 2 Set Synchronization with Prior Context using Difference Digests . 6

2.1 Model and Related Work 9

2.2 Algorithms . 11

2.2.1 Invertible Bloom Filter 11

2.2.2 Strata Estimator . 16

2.3 Analysis . 20

2.4 The KeyDiff System . 23

2.5 Evaluation . 25

2.5.1 Tuning the IBF . 26

2.5.2 Tuning the Strata Estimator 28

2.5.3 Difference Digest vs. ARTree 34

2.5.4 KeyDiff Performance 35

2.6 Conclusions . 41

Chapter 3 Efficiently Measuring Bandwidth at All Time Scales 42

3.1 Related Work . 47

3.2 Algorithms . 48

3.2.1 Dynamic Bucket Merge 49

3.2.2 Exponential Bucketing 56

3.2.3 Culprit Identification 59

3.3 Evaluation . 60

3.3.1 Measurement Accuracy 60

3.3.2 Performance Overhead 68

3.3.3 Evaluation Summary 69

3.4 System Implications . 70

iv

3.5 Conclusions . 71

Chapter 4 Evaluating the Efficacy of Software-Based Traffic Pacing 76

4.1 Software Token Buckets and their Problems 78

4.2 Tools for Measuring the Effectiveness of Pacing in Software 82

4.2.1 BandwidthTracker 84

4.2.2 BufferSim . 86

4.2.3 Linux Kernel Implementation of Tools 88

4.3 Evaluating Linux Token Bucket Filter 89

4.3.1 Bandwidth Problems with TBF 90

4.3.2 Average Bandwidth after Fixing tc 92

4.3.3 Balancing Bandwidth and Buffering 94

4.3.4 Dissecting Timer Settings in TBF 97

4.4 Improving the TBF code 101

4.4.1 Avoid Timer Readjustment 101

4.4.2 Send Early . 102

4.5 Related Work . 104

4.6 Conclusion . 108

Chapter 5 Conclusions . 110

Bibliography . 113

v

LIST OF FIGURES

Figure 2.1: IBF Encode . 14

Figure 2.2: IBF Subtract . 15

Figure 2.3: IBF Decode . 18

Figure 2.4: Partitioning Elements for the Strata Estimator 19

Figure 2.5: Estimating the Size of the Set Difference with a Strata Estimator . . 21

Figure 2.6: KeyDiff Service . 24

Figure 2.7: Rate of successful IBF decode . 26

Figure 2.8: Probability of successful decoding for IBF with varying hash counts 27

Figure 2.9: IBF cells required for decoding with 99% certainty 28

Figure 2.10: Overhead required for IBF decoding with 99% certainty 29

Figure 2.11: Strata Estimator performance versus strata size 30

Figure 2.12: Comparison of Estimators . 33

Figure 2.13: Data transmission required by ART and Difference Digests to re-

cover 95% and 100% of the set difference, respectively, with 99%

reliability. 34

Figure 2.14: Time to run KeyDiff . 40

Figure 3.1: Example Monitoring Deployment 47

Figure 3.2: Dynamic Bucket Merge with 4 buckets 52

Figure 3.3: Exponential Bucketing Example 58

Figure 3.4: Relative error for DBM-mr algorithm shown for the 400 µs time

scale with a varying number of buckets 64

Figure 3.5: Visualization of events from a 2 second aggregation period overlaid

with the output of DBM-mr using 9 buckets and a 4 msec measure-

ment time scale. 66

Figure 3.6: DBM Visualization Example . 67

Figure 3.7: Average relative error for DBM and EXPB on the TritonSort trace . . 68

Figure 4.1: Pseudocode for the Linux Token Bucket algorithm 80

Figure 4.2: Bandwidth loss caused by inaccurate timers. 81

Figure 4.3: A probabilistic model for bandwidth degradation in the presence of

inaccurate timers in software pacing. 82

Figure 4.4: Illustrating Recalibration . 83

Figure 4.5: Recalibration Pseudocode for the BandwidthTracker algorithm. . . 85

Figure 4.6: Pseudocode for the Ideal Buffer Simulation. 87

Figure 4.7: Recalibration Pseudocode for the BufferSim algorithm. 88

Figure 4.8: Software organization . 89

Figure 4.9: Observed bandwidth deviates from the specified rate 90

Figure 4.10: TBF results at 5 Gbps with different packet sizes 91

Figure 4.11: Specified versus observed bandwidth after fixing precision bug . . . 93

vi

Figure 4.12: Average bandwidth versus packet sizes after correcting the preci-

sion bug for a fixed target rate of 5Gbps. 94

Figure 4.13: The average bandwidth and maximum buffer occupancy with a tar-

get rate of 5Gbps for various bucket sizes. 95

Figure 4.14: Variability of observed bandwidth for various bucket sizes in the

face of interference from high volume of UDP receive traffic. . . . 96

Figure 4.15: Performance of chained token buckets 97

Figure 4.16: Percentage of time lost due to overflowing token bucket versus the

size of the token bucket . 98

Figure 4.17: Distribution of timer expirations with and without interfering UDP

receive load . 99

Figure 4.18: Distribution of timer error . 100

Figure 4.19: Distribution of timer error for long and short timer expirations . . . 101

Figure 4.20: Updated pseudocode for serviceQueue from Figure 4.1 to avoid

timer readjustment. 103

Figure 4.21: Updated pseudocode for serviceQueue from Figure 4.1 for send-

ing early to avoid setting short timers. 105

Figure 4.22: Bandwidth vs. bucket size for our two improvements - sending early

(1024nsec delta) and eliminating timer resets. 107

vii

LIST OF TABLES

Table 2.1: Latency of KeyDiff operations . 37

Table 3.1: Evaluation of memory vs. accuracy for TritonSort trace 73

Table 3.2: Evaluation of memory vs. accuracy for rsync trace 74

Table 3.3: Network performance overhead . 74

Table 3.4: Time to transfer 1GB file using scp 75

Table 4.1: Measurement of TBF improvements 106

viii

ACKNOWLEDGEMENTS

I would first like to offer my heart-felt thanks to my advisor, George Varghese,

for his direction and insights in guiding my development as a researcher. Thank you for

your support as I considered entering the Ph.D. program at UCSD, for your energy and

enthusiasm in our discussions, for your patience when I struggled to make progress, for

allowing me to change directions with my research, and for praying for me. I certainly

could not have done this without your support.

I would also like to thank my Masters advisors, Amin Vahdat and Andrew Chien.

To Andrew, thank you for first giving me the opportunity to do research as an undergrad.

To Amin, thank you for always making time to talk, for being genuinely interested in

how I was doing, for giving your honest opinion, and for encouraging me along the way.

Thank you to my all my collaborators, without whose help and insights I cer-

tainly would not have made it so far: Mike Goodrich & David Eppstein from UC Irvine,

Subhash Suri & Luca Foschini from UC Santa Barbara, Ant Rowstron from MSR Cam-

bridge, Dejan Kostic & Simon Schubert from EPFL, John Douceur & Jay Lorch from

MSR Redmond, Jeff Pang from CMU, and Diwaker Gupta, Ryan Braud, Justin Burke,

Nut Taesombut & Huaxia Xia from UCSD.

Thank you to my officemates in CSE 3142: Dejan Kostic, Justin Burke, Ming

Kawaguchi, Gjergji Zyba, Terry Lam, Ryan Roemer, Kevin Bauer, Siva Radhakrishnan,

Erik Buchanan, Bhanu Vattikonda, Malveeka Tewari, and Michael Lee. Thank you for

sanity checking my crazy ideas, proof reading my papers, introducing me to backgam-

mon, taking breaks each day to play foosball, and just chatting about life.

Thank you also to my officemates from the Concurrent Systems and Architecture

Group: Huaxia Xia, Nut Taesombut, Yang-suk Kee, and Justin Burke. Thank you for

making me feel welcome when I first joined you as a clueless undergrad and for helping

me learn the ropes.

Thank you to the other graduate students and post-docs who have shared in my

time at UCSD: Barry Demchak, Yuvraj Agarwal, Michael Vrable, Diwaker Gupta, Alvin

AuYoung, Patrick Verkaik, Marti Motoyama, Chris Kanich, Meg Walraed-Sullivan,

Nathan Farrington, John McCullough, Alex Rasmussen, Kevin Webb, George Porter,

Kirill Levchenko, and Ken Yocum.

ix

In addition, the Systems and Networking faculty deserve recognition for foster-

ing an environment of where we could all collaborate and learn together. Thanks to Alex

Snoeren, Geoff Voelker, Amin Vahdat, Stefan Savage, George Varghese, Joe Pasquale

& Keith Marzullo for making that possible.

I would also like to thank my mentors from my two summers at Microsoft Re-

search, John Douceur and Ant Rowstron. Thank you for your guidance and the fantastic

experience of working at one of the world’s premier research labs.

Thank you to the support staff and systems administrators in the Systems and

Networking Group and the Center for Networked Systems: Marvin McNett, Chris Ed-

wards, Brian Kantor, Cindy Moore, and Kathy Krane. Also, thank you to the department

staff who have been very helpful throughout the years: Julie Conner, Viera Kair, Dave

Wargo, Bill Young, Kim Graves, Cheryl Hile and Michelle Panik.

I would also like to express my gratitude to all my teammates and coaches, both

past and present, from the UCSD Triathlon Team. It has truly been a joy and pleasure

to train and race with all of you. I’m very thankful for all the conversations during long

runs and rides, for all the things that you’ve taught me and inspired me to do, and for

the friendship and camaraderie we’ve shared.

Thank you to my family for all of your love, support, and prayers over the years.

To Mom and Dad, thank you for all the council you’ve given as I’ve figured out my

course in life. To my wife, Kellie, thank you for loving me and encouraging me through

my ups and downs. Thank you for affirming me when I get discouraged, for jump-

starting my progress when procrastination gets the better of me, and for joining me as

we share all the blessings and goodness of life together.

Finally, I must recognize and thank God for His abundant provision and blessing

over the years. His goodness and love continue to amaze me and His presence in my

life has been my source of peace and strength.

Chapter 2, in part, is a reprint of the material as it will appear in the article “Set

Synchronization without Prior Context using Difference Digests” in the Proceedings

of the Special Interest Group on Data Communications (SIGCOMM), Toronto, ON,

Canada, August 2011. David Eppstein, Michael T. Goodrich, Frank Uyeda, George

Varghese.

x

Chapter 3, in part, is a reprint of the material as it appears in the article “Effi-

ciently Measuring Bandwidth at All Time Scales” in the Proceedings of the 8th Sympo-

sium on Networked Systems Design and Implementation (NSDI), Boston, MA, March

2011. Frank Uyeda, Luca Foschini, Subhash Suri, George Varghese.

Chapter 4, in part, is a reprint of the material being prepared for submission for

publication. “How Effective is Software Pacing?”. Frank Uyeda, Amin Vahdat, George

Varghese.

xi

VITA

2004 Bachelor of Science, Computer Engineering, summa cum laude,

University of California, San Diego

2006 Master of Science, Computer Science,

University of California, San Diego

2009-2010 Teaching Assistant, University of California, San Diego

2009 Instructor, University of California, San Diego

2011 Doctor of Philosophy, Computer Science,

University of California, San Diego

PUBLICATIONS

David Eppstein, Michael T. Goodrich, Frank Uyeda, George Varghese. “Set Synchro-

nization without Prior Context using Difference Digests”, To appear at the Special Inter-

est Group on Data Communications (SIGCOMM), Toronto, ON, Canada, August 2011.

Frank Uyeda, Luca Foschini, Subhash Suri, George Varghese. “Efficiently Measuring

Bandwidth at All Time Scales”, In Proceedings of the 8th Symposium on Networked

Systems Design and Implementation (NSDI), Boston, MA, March 2011.

Simon Schubert, Frank Uyeda, Nedeljko Vasic, Dejan Kostic. “Bandwidth Adaptation

in Streaming Overlays”, In Proceedings of the 2nd International Conference on COM-

munication Systems and NETworkS (COMSNETS), Bangalora, India, 2010.

Frank Uyeda, Diwaker Gupta, Amin Vahdat, George Varghese, “GrassRoots: Socially-

Driven Web Sites for the Masses”, Workshop on Online Social Networks (WOSN),

Barcelona, Spain, August 2009.

John Douceur, Jacob Lorch, Frank Uyeda, Randall Wood, “Enhancing Game-Server AI

with Distributed Client Computation”, In Proceedings of the 17th International Work-

shop on Network and Operating Systems Support for Digital Audio and Video (NOSS-

DAV), pages 31-36, Urbana, IL, June 2007

Jeffrey Pang, Frank Uyeda, Jacob Lorch, “Scaling Peer-to-Peer Games in Low Band-

width Environments”, In Proceedings of the 6th International Workshop on Peer-to-Peer

Systems (IPTPS), Bellevue, WA, February 2007

Nut Taesombut, Frank Uyeda, Andrew Chien, “The OptIPuter: High Performance, QoS-

Guaranteed Network Service for Emerging E-Science Applications”, IEEE Communi-

cations Magazine, Vol 44(5), Pages 38-45, May 2006.

xii

ABSTRACT OF THE DISSERTATION

Algorithms for Measuring and Enhancing Distributed Systems

by

Frank C. Uyeda

Doctor of Philosophy in Computer Science

University of California, San Diego, 2011

Professor George Varghese, Chair

The industry-wide movement toward large data centers and cloud computing

has brought many economic advantages, but also numerous technical challenges. In this

work we describe three software-based contributions towards improving the communi-

cation performance of these large-scale distributed systems.

While advances to commodity Ethernet in the data center have increased through-

put, efficient application design can produce even more significant speedups. We first

describe an efficient, new data structure, called “Difference Digests”, that can serve as

a building block in distributed-application protocols. Difference Digests identify the el-

ements that differ between two sets using communication and computation overheads

proportional to population of the difference. This functionality has many promising ap-

xiii

plications, including recovery from network partitions, data synchronization, and data

de-duplication.

Beyond more efficient protocols, tuning applications can further improve perfor-

mance by reducing network congestion. As link speeds increase, measuring bandwidth

at fine time scales produces valuable debugging and tuning information, but is com-

plicated by the immense number of packets and the short per-packet processing time.

Further, it is unclear in advance which time scales will prove insightful, but storing all

measurements incurs significant storage overhead. Thus, we propose two algorithms to

summarize streams of fine-grain bandwidth samples and identify bursty traffic behav-

ior. Our implementation records bandwidth information at speeds up to 10 Gbps while

decreasing storage costs by orders of magnitude. After the measurement, bandwidth

statistics can be generated for arbitrary time scales down to microseconds, allowing

users to identify short-lived phenomena affecting their application’s performance.

While network capacity has increased, maintaining low latency for time-sensitive

flows remains challenging. One approach is to minimize in-network buffering by con-

trolling flows with software-based pacing at the end host. However, these mechanisms

are unproven at the Gigabit speeds found in data centers. Hence, we demonstrate mea-

surement tools to evaluate the bandwidth and “burstiness” of one such mechanism, the

Linux Token Bucket Filter (TBF). We find that TBF struggles to scale to multi-Gigabit

speeds due to Linux’s inability to reliably service timers with micro-second accuracy. To

address this limitation, we describe two enhancements, which improve software-based

pacing at speeds up to 10 Gbps while minimizing bursts.

xiv

Chapter 1

Introduction

Computing has undergone a fundamental shift in the past decade. While the

1990’s were marked by the rise of personal computers and desktop applications, recent

years have seen a shift toward ubiquitous access to large websites and services provided

“in the cloud”. Companies such as Google, Yahoo!, and Facebook boast hundreds of

millions of users [2] who access a plethora of services through their web browsers, in-

cluding web search, messaging, social networking, maps, and photo sharing. Offered at

minimal to no cost, cloud services have replaced many desktop applications by enabling

new functionality and improving existing features.

In order to support these services, there has been an industry-wide trend to-

ward consolidating computing resources into data centers. The thousands of machines

housed and operated within a data center are connected via a high-speed networking in-

frastructure and run numerous distributed applications, such as web servers, web caches,

database servers, and large-scale data processing jobs. These applications serve as the

foundation, which enables companies to run their large-scale websites and cloud com-

puting services.

In order to exploit economies of scale, many companies now construct massive

data centers. Such data centers might now contain up to one hundred of thousand of

machines. Building facilities at this scale allows operators to cut operating costs in

maintainance, power conversion, cooling, and personel . However, building such large

distributed systems also creates numerous technical challenges.

One of the key bottlenecks in achieving high performance in large data centers

1

2

is the network. While modern deployments utilize high-speed links running at 10 Gbps,

network contention still remains a problem. Several factors contribute to the network

bottleneck. First, data center networks are built in a hierarchical topology with over-

subscribed links in the center of the network. This means that connections between

devices in the network’s core do not have sufficient capacity to allow full bi-section

bandwidth between the racks of machines that they connect. In such a scenario, the pos-

sible bandwidth demand may exceed the capacity of the link by a factor of 10 or more.

Even as 40 and 100 Gbps links begin to appear, this problem is not easily remedied

due to Ethernet’s spanning tree design and to the growing number of machines in the

network.

Second, many applications share the network and all compete for the limited

bandwidth resources. While applications are written to achieve high-performance, de-

velopers can rarely anticipate environment where their applications will be deployed or

which other applications they will be co-located with. Thus, it is up to administrators

to tune application performance to achieve a good trade off between the demands of all

applications in the data center.

Varying application demands constitue the third challenge. While some appli-

cations are primarily constrained by throughput, others require consistent, low-latency

connections. These objectives directly conflict as achieving high throughput typically

involves buffering data in the network so that links can achieve high utilization. How-

ever, in-network buffering incurs extra delay for flows, include those which are latency

sensitive.

Finally, the use of commodity networking equipment hinders application perfor-

mance. For data-center operators who are constructing massive facilities, there are sig-

nificant savings associated with provisioning commodity networking hardware. How-

ever, to control costs, these devices are designed with a minimal quantities of expen-

sive high-speed memory for packet buffering. These shallow buffers make commodity

switches more prone to drop packets, which causes costly retransmissions.

Two main avenues may be pursued to improve the communication performance

of large-scale distributed systems. First, designing more efficient application protocols

alieviates presure on networking resources. Thus, the severity of network congestion

3

can be mitigated by reducing the total load. While sophisticated, new protocols may be

employed, theoretical bounds and the scope of current understanding limit the achiev-

able improvements.

Second, coordinating communication patterns can reduce network congestion.

Toward this end, administrators can tune applications to decrease contention, deploy

new protocols that react to congestion, or police traffic entering the network to avoid

congestion. However, the need for hardware support to achieve good performance at

multi-Gigabit speeds presents a major challenge to these approaches. Specifically, the

cost of designing, fabricating and deploying custom hardware blunts the appeal of many

of these approaches.

In this dissertation we challenge the idea that customized hardware is required to

improve the performance of distributed applications on high-speed networks. We argue

that software-based solutions can improve performance and demonstrate this through

the design, implementation, and evaluation of three software systems.

1.1 Contributions

In this work, we seek to enhance applications’ communication performance by

increasing communication efficiency for certain common operations, providing effective

bandwidth monitoring to tune and debug communication performance, and improving

traffic regulation at the end hosts to decrease latency caused by in-network buffering.

Even as the communication performance in data centers increases due to faster

hardware and better traffic engineering, efficient protocol design can result in even

more significant application speedups. In Chapter 2, we will describe a new data struc-

ture, called “Difference Digests”, which efficiently solves the “set difference” prob-

lem and can be used to improve distributed protocols for data synchronization, data

de-duplication, and recovery from network partitions.

While other solutions for set difference exist [18, 37], Difference Digests are

more efficient — identifying the elements that differ between two data sets with com-

munication and computation overheads proportional to the population of the difference.

We achieve this by extending the Invertible Bloom Filter (IBF) [23, 28] structure with

4

a subtraction operator and applying it to the set difference problem. However, a key

hurdle in using IBF’s is appropriately sizing them to achieve good communication effi-

ciency. We address this problem through a second crucial component of the Difference

Digest called a Strata Estimator, which estimates the size of the difference between two

sets. In our evaluation, we find that this estimator is much more accurate for small

set differences than approaches like Min-Wise Sketches [15, 16]. Finally, we describe

the implementation and evaluation of a generic KeyDiff service, which uses Difference

Digest to allow applications to synchronize objects of any kind.

Next, we address the problem of detecting bursty traffic patterns in deployed sys-

tems so that administrators can take corrective measures. Increases in network capacity,

which dramatically increase the volume of packets and decrease per-packet processing

time, complicate this task. In the data-center environment, existing measurement tech-

niques either incur high storage costs [10, 1], or are not well suited for short-lived burst

detection [9, 35]. While summarization techniques exist for a small number of preset

sampling resolutions [40], it is often not clear in advance which time scales will exhibit

anomalous behavior or that those time scales will remain relevant over time. The algo-

rithmic challenge is to support a posteriori queries without retaining the entire trace or

keeping state for all time scales.

To address these problems, we propose a generalized solution that can generate

bandwidth statistics and can detect bursts at all time scales. In Chapter 3, we introduce

two aggregation algorithms, Dynamic Bucket Merge (DBM) and Exponential Bucketing

(EXPB), that compactly summarize streams of fine-grain bandwidth measurements to

identify bursty traffic behavior. Our solution records bandwidth information at line rate

on links up to 10 Gbps while decreasing storage costs by orders of magnitude. Users

can then query for bandwidth statistics at arbitrary time scales down to microseconds,

as well as visualize bandwidth behavior over time. Further, we suggest a technique for

attributing bursts to individual flows, allow administrators to identify the applications

responsible for the bursty behavior.

Finally, in Chapter 4, we explore the performance of software-based traffic pac-

ing at end hosts, a technique that seeks to maintain high throughput while improving

worst-case latency by smoothing bandwidth variability and avoiding network conges-

5

tion. We construct two measurement tools to evaluate the bandwidth and “burstiness”

of the Linux Token Bucket Filter (TBF), a commonly used traffic pacer. Building our

tools with a simple recalibration paradigm, we are able to accurately measure TBF when

run at the multi-Gigabit speeds and under high system load. Based on our experiments,

we find that TBF struggles to achieve both high bandwidth and low burstiness at high

speeds due to Linux’s inability to reliably service timers with microsecond accuracy. To

address this limitation, we describe two enhancements, which improve software-based

pacing at speeds up to 10 Gbps while minimizing bursts.

Chapter 2

Set Synchronization with Prior Context

using Difference Digests

Suppose you met a friend after many years and wanted to share the vast, but

similar, music libraries on each of your computers. How could you efficiently determine

the size of the difference and communicate the few unique songs?

Such reconciliation between two hosts on a network can be abstracted as a set

synchronization problem, where the goal is to efficiently synchronize the sets of keys

between two hosts so that each host obtains the union of these sets. This problem is

often encountered by storage and compute nodes within and across data centers where

efficient solutions are measured by the latency required for synchronization, as well as

by the bandwidth, memory, and computation consumed.

A simple solution to the set synchronization problem is to exchange and compare

complete lists of each host’s data objects; however, this would transfer an amount of

information proportional to the total number of objects rather just the unique elements

in the two sets. An often-used, alternative approach is to maintain a time-stamped log

of updates, together with a record of the time that the users last communicated. When

they communicate again, host A can send host B all of the updates since their previous

communication, and vice versa. However, this requires stable storage for the logs, and

it requires the logging system to be integrated with any system that can change either

user’s data. Additionally, unless A and B communicate only with each other, they may

both have received the same updates from a third user since they last communicated,

6

7

leading to redundant communication.

By contrast, in this chapter, we are interested in solutions to the set synchro-

nization problem that do not have these weaknesses. We wish to handle the case when

A and B have no (or stale) prior context and can independently receive updates from

other nodes. We also wish our algorithm to work on networking devices such as routers

without synchronized time stamps or stable storage. To solve these problems, we de-

vise a data structure, called a Difference Digest, that allows two nodes to compute the

approximate size of, and the elements belonging to, the difference between two sets in

a single round with communication overhead proportional to the size of the difference

times the logarithm of the keyspace. Once the elements in the set difference have been

identified they can be transmitted between the hosts to synchronize the sets.

We implement and evaluate Difference Digests and show that, for large sets and

small set differences, Difference Digests are more efficient than prior approaches, such

as Approximate Reconciliation Trees [18]. For example, in sets containing 1 million

keys but differing in only 100 elements, Difference Digests require 20KB to reconcile

the difference—almost two orders of magnitude less than Approximate Reconciliation

Trees. Further, we use Difference Digests to implement a generic KeyDiff service in

Linux that runs over TCP and computes the sets of keys that differ between machines.

Settings in which this functionality may be applied include:

• Peer-to-peer: Peer A and B may receive blocks of a file from other peers and may

wish to receive only missing blocks from each other.

• Partition healing: When a link-state network partitions, routers in each partition

may each obtain some new link-state packets. When the partition heals by a link

joining router A and B, both A and B only want to exchange new or changed

link-state packets.

• Synchronizing output: A search engine may use two independent crawlers with

different techniques to harvest URLs but they may have very few URLs that are

different. In general, this situation arises when multiple actors in a distributed

system are performing the same function for redundancy or coverage but may

obtain slightly different results. A second example is when multiple log servers

8

are used but each may lose different parts of the log.

• Opportunistic ad hoc networks: These are often characterized by low bandwidth

and intermittent connectivity to other peers. Examples include rescue situations

and military vehicles that wish to synchronize data when they are in range.

The main contributions of the chapter are as follows:

• IBF Subtraction: The first component of the Difference Digest is an Invertible

Bloom Filter or IBF [23, 28]. IBF’s were previously used [23] for straggler de-

tection at a single node, to identify items that were inserted and not removed in a

stream. We adapt invertible Bloom filters for set reconciliation by defining a new

subtraction operator on whole IBF’s (as opposed to individual item removal).

• Strata Estimator: To compute set differences efficiently, Invertible Bloom filters

must be appropriately sized. Thus, a second crucial component of the difference

digest is a new Strata Estimator method for estimating the size of the difference.

We show that this estimator is much more accurate for small set differences (as

is common in the final stages of a file dissemination in a P2P network) than Min-

Wise Sketches [15, 16] or random projections [31]. Besides being an integral part

of the Difference Digest, our Strata Estimator can be used independently to find,

for example, which of many peers is most likely to have a missing block.

• KeyDiff Prototype: We describe an initial Linux prototype of a generic KeyD-

iff service based on Difference Digests that applications can use to synchronize

objects of any kind.

• Performance Characterization: Not surprisingly, the overall system performance

of Difference Digests is sensitive to many parameters, such as the size of the dif-

ference, the bandwidth available compared to the computation, and the ability to

do pre-computation. We characterize the parameter regimes in which Difference

Digests outperform other algorithms based on earlier approaches such as Min-

Wise hashes and Approximate Reconciliation Trees [18], and show that the best

system approach is a combination of Difference Digests with earlier algorithms.

9

Going forward, we discuss related work in Section 2.1 and present our algo-

rithms for the Invertible Bloom Filter and Strata Estimator components of a Difference

Digest in Section 2.2. We evaluate each of these structures in Section 2.5 and conclude

in Section 2.6.

2.1 Model and Related Work

We start with a simple model of set synchronization. For two sets SA, SB each

containing elements from a universe, U = [0, u), we want to compute the set difference,

DA−B and DB−A, where DA−B = SA − SB such that for all s ∈ DA−B, s ∈ SA and

s /∈ SB . Likewise, DB−A = SB − SA. We say that D = DA−B ∪ DB−A and d = |D|.
Note that since DA−B ∩DB−A = ∅, d = |DA−B|+ |DB−A|. We assume that SA and SB

are stored at two distinct hosts and attempt to compute the set difference with minimal

computation, storage, and communication.

In the prior work on identifying elements in a set difference, several algorithms

have been proposed. The simplest approach requires hosts to exchange a list of identi-

fiers for all elements in their sets and then iteratively scan the local and remote lists to

remove common elements. This method requires O(|SA| + |SB|) communication and

O(|SA| × |SB|) time. This run time can be improved to O(|SA|+ |SB|) by inserting one

list into a hash table, then querying the table with the elements of the second list. The

communication overhead can be reduced by exchanging Bloom filters [14] containing

the elements of each list. Once in possession of the remote Bloom Filter, each host can

query the filter to identify which elements of its set are common between the hosts. One

drawback to this method is the risk of false positives when querying if the table has

insufficient size. The time cost for this procedure is O(|SA| + |SB|). Incidentally, the

Bloom filter approach has been extended with Approximate Reconciliation Trees [18],

which requires O(|SA| + d log(|SB|)) time, and O(|SB|) space. However, given SA and

an Approximate Reconciliation Tree for SB , a host can only compute DA−B, i.e., the

elements unique to SA.

An exact approach to the set-difference problem was proposed by [37]. In this

approach, each set is encoded using a linear transformation similar to Reed-Solomon

10

coding. This approach has the advantage of O(d) communication overhead, but requires

O(d3) time. The time complexity can be improved to O(d) expected time, but requires an

interactive decoding process that uses several rounds of communication. Therefore this

method is less desirable when the size of the difference can be large or in environments

with long communication latencies.

Estimating Set-Difference Size A critical sub-problem related to many of these algo-

rithms (including ours) is an initial estimation of the size of the set difference. The size

of the set difference can be estimated by comparing a random sample [31] from each

set. This can be done with constant overhead, but accuracy quickly deteriorates when

the d is small relative to the size of the sets.

Min-wise sketches [15, 16] can be used to estimate the set-similarity (r =
|SA∩SB|
|SA∪SB|

). Min-wise sketches work by selecting k random hash functions π1, . . . , πk

that permute elements within U. Let min(πi(S)) be the smallest value produced by

πi when run on the elements of S. Then, a Min-wise sketch consists of the k values

min(π1(S)), . . . , min(πk(S)). If min(πi(SA)) = min(πi(SB)) then there exists an ele-

ment s in both SA and SB such that πi(s) = min(πi(SA)) = min(πi(SB)). Hence, we

know that s ∈ SA ∪ SB and s ∈ SA ∩ SB .

Given that all πi are random permutations, an element s ∈ SA ∪ SB will pro-

duce πi(s) = min(πi(SA ∪ SB)) with probability 1
|SA∪SB |

. Therefore, if SA and SB

have a set-similarity r, then we expect that the number of matching cells in MA and

MB will be m = rk. Inversely, given that m cells of MA and MB do match, we

can estimate that r = m
k

. Given the set-similarity, we can estimate the difference as

d = 1−r
1+r

(|SA| + |SB|). As with random sampling, the accuracy of the Min-wise estima-

tor diminishes for smaller values of k and for relatively small set differences. Similarly,

Cormode et al. [21] provide a method for dynamic sampling from a data stream to es-

timate set sizes using a hierarchy of samples, which include summations, counts, and

collision detection components. (See also Muthukrishnan [40] for a discussion of these

and related approaches.)

While efficiency of set-difference estimation for small differences may seem like

a minor theoretical detail, it can be important in many contexts. Consider, for instance

11

the endgame of a P2P file transfer. Imagine that a BitTorrent node has 100 peers, and is

missing only the last block of a file. Min-wise or random samples from the 100 peers

will not identify the right peer if all peers also have nearly finished downloading (small

set difference). On the other hand, sending a Bloom Filter or Approximate Reconcili-

ation Tree takes bandwidth proportional to the number of blocks in file, which can be

large. In Section 2.2.2, we will describe a new Strata Estimator that outperforms earlier

approaches for small set differences.

2.2 Algorithms

In this section, we describe the two components of the Difference Digest: an

Invertible Bloom Filter (IBF) and Strata Estimator. Our first innovation is taking the

existing IBF [23, 28] and introducing a subtraction operator in Section 2.2.1 to compute

DA−B and DB−A using a single round of communication of size O(d). Encoding a set S

into an IBF requires O(|S|) time, but decoding to recover DA−B and DB−A requires only

O(d) time. Our second key innovation is a way of composing several sampled IBF’s of

fixed size into a new Strata Estimator, which can effectively estimate the size of the set

difference using O(log(|U|)) space.

2.2.1 Invertible Bloom Filter

We now describe the Invertible Bloom Filter (IBF), which can simultaneously

calculate DA−B and DB−A using O(d) space. We start with some intuition. An IBF is

named because it is similar to a standard Bloom Filter—except that it can, with the right

settings, be inverted to yield some of the elements that were inserted.

Recall that in a counting Bloom Filter [25], when a key K is inserted, K is

hashed into several locations of an array and a count, count, is incremented in each

hashed location. Deletion of K is similar except that count is decremented. A check

for whether K exists in the Filter returns yes (with high probability) if all locations that

K hashes to have non-zero count values.

An IBF has another crucial field in each array location (cell) besides the count.

This is the idSum: the sum of all key IDs that hash into that cell. Now imagine that

12

two peers, Peer 1 and Peer 2, doing set reconciliation on a large file of a million blocks

independently compute an IBF B1 and B2 of size 100 for each block they contain. Note

that if each block is hashed to 3 cells, an average of 30,000 block keys hash onto the

same cell. Thus, each count will be large and the idSum in each cell will be the sum

of a large number of IDs. Assume that Peer 1 sends B1 to Peer 2 using a small amount

of bandwidth to send around 200 counters. Peer 2 then proceeds to “subtract” its IBF

B2 from B1. It does this cell by cell, by subtracting the count and the idSum in the

corresponding cells of the two IBF’s.

Intuitively, if Peer 1 and Peer 2 have almost the same blocks, except for say 25

different blocks among the total of 1 million blocks, all the common IDs that hash onto

the same cell will be subtracted from idSum, leaving only the sum of the unique IDs

(that belong to one peer and not the other) in the idSum of each cells. Further, if the set

difference is small, we are throwing 25 balls randomly into say 3 out of 100 cell. We

will prove that there is a high probability that at least one cell is “pure” in that it has at

one unique element by itself.

A “pure” cell signals its “purity” by having its count field equal to 1, and, in

that case, the idSum field yields the ID of one element in the set difference. We delete

this element from all cells it has hashed to in the difference IBF by the appropriate

subtractions; this, in turn, may free up more pure elements that it can in turn be decoded,

to ultimately yield all the elements in the set difference.

The reader will quickly see subtleties. First, what if four IDs W, X, Y, Z satisfy

W + X = Y + Z? To reduce the likelihood of decoding errors, IBF’s use a third field

in each cell as a checksum: the sum of the hashes of all IDs that hash into a cell, but

using a different hash function than that used to determine the cell. Second, if Peer 2 has

an element that Peer 1 does not, could the subtraction B1 − B2 produce negative values

for idSum and count? Indeed, it can and the algorithm deals with this: for example,

in idSum by using XOR instead of addition and subtraction, and in recognizing purity

by count values of 1 or -1. While IBF’s were introduced earlier [23, 28], whole IBF

subtraction is new to this work; hence, negative counts did not arise in [23, 28].

Figure 2.1 summarizes the encoding of a set S and Figure 2.2 gives a small

example of synchronizing the sets at Peer 1 (who has keys V, W, X and Y and Peer 2

13

(who has keys W, Y and Z. Each element is hashed into 3 locations: for example, X

is hashed into buckets 1, 2 and 3. While X is by itself in bucket 3, after subtraction Z

also enters, causing the count field to (wrongly) be zero. Fortunately, after subtraction,

bucket 4 becomes pure as V is by itself. Note that bucket 5 is also pure with Z by itself,

and is signaled by a count of -1. Decoding proceeds by first deleting either V or Z, and

then iterating till no pure cells remain.

Encode First, assume that we have an oracle which, given SA and SB, returns the

size of the set difference, d. We will describe the construction of such an oracle in

Section 2.2.2. We allocate an IBF, which consists of a table B with n = αd cells, where

α ≥ 1. Each cell of the table contains three fields (idSum, hashSum and count) all

initialized to zero.

Additionally, hosts agree on two hash functions, Hc and Hk, that map elements

in U uniformly into the space [0, h), where h ≤ u. Additionally, they agree on a value,

k, called the hash count. The algorithm for encoding a set S into an IBF is given in

Algorithm 1 and illustrated in Figure 2.1. For each element in S, we generate k distinct

random indices into B. To do this we recursively call Hk() with an initial input of si

and take the modulus by n until k distinct indices have been generated. Then for each

index j returned, we XOR si into B[j].idSum, XOR Hc(si) into B[j].hashSum, and

increment B[j].count.

Algorithm 1: IBF Encode

for si ∈ S do

for j in HashToDistinctIndices(si, k, n) do

B[j].idSum = B[j].idSum ⊕si

B[j].hashSum = B[j].hashSum ⊕Hc(si)

B[j].count = B[j].count + 1

Subtract For each index i in two IBF’s, B1 and B2, we subtract B2[i] from B1[i].

Subtraction can be done in place by writing the resulting values back to B1, or non-

destructively by writing values to a new IBF of the same size. We present a non-

destructive version of this algorithm in 2. Intuitively, this operation eliminates common

14

S = <s1, s2, s3, ... >

...Hk
1 Hk

kHk
2

B:

idSum += s1

hashSum += Hc(s1)

count++
B[j]:

Figure 2.1: IBF Encode. Each element in set, S, is deterministically mapped to multiple

cells of the IBF table, B. For each B[j] an element is mapped to, the idSum, hashSum,

and count of that cell are updated.

elements from the resulting IBF as they cancel from the idSum and hashSum fields as

shown in Figure 2.2.

Algorithm 2: IBF Subtract (B3 = B1 − B2)

for i in 0, . . . , n − 1 do

B3[i].idSum = B1[i].idSum ⊕B2[i].idSum

B3[i].hashSum = B1[i].hashSum⊕B2[i].hashSum

B3[i].count = B1[i].count- B2[i].count

Decode We have seen that to decode an IBF, we must recover “pure” cells from the

IBF’s table. Pure cells are those whose idSum matches the value of an element s in the

set difference. In order to verify that a cell is pure, it must satisfy two conditions: the

count field must be either 1 or -1, and the hashSum field must equal Hc(idSum). For

example, if a cell is pure, then the sign of the count field is used to determine which

set s is unique to. If the IBF is the result of subtracting the IBF for SB from the IBF

for SA, then a positive count indicates s ∈ DA−B, while a negative count indicates

s ∈ DB−A.

15

idSum:

hashSum:

count:

Y

H(Y)

1

W + Z

H(W) + H(Z)

2

Z

H(Z)

1

W + Y

H(W) + H(Y)

2

W + Y + Z

H(W)+H(Y)+H(Z)

3

Y

W

Z Z

W

Y

W

Y

Z

B2=<W,Y,Z>

V + X + Y

H(V)+H(X)+H(Y)

3

V + W + X

H(V)+H(W)+H(X)

3

X

H(X)

1

V + W + Y

H(V)+H(W)+H(Y)

3

W + Y

H(W) + H(Y)

2

idSum:

hashSum:

count:

V

X

Y

V

W

X X

V

W

Y

W

Y

B1=<V,W,X,Y>

idSum:

hashSum:

count:

V + X

H(V) + H(X)

2

V + X + Z

H(V)+H(X)+H(Z)

1

X + Z

H(X) + H(Z)

0

V

H(V)

1

Z

H(Z)

-1

W

Y

ZZZ

V

X

Y V

W

X X

V

W

Y

B3= B1 - B2

Figure 2.2: IBF Subtract. IBF B3 is the result of subtracting IBF B2 from IBF B1. Each

cell in B3 is produced by subtracting the corresponding cells in B1 and B2. To subtract

cells, the idSum and hashSum fields are XOR’ed, and count fields are subtracted.

The elements common to B1 and B2 (shown shaded) are cancelled during the XOR

operation.

16

Decoding begins by scanning the table and creating a list of all pure cells. For

each pure cell in the list, we add the value s =idSum to the appropriate output set

(DA−B or DB−A) and remove s from the table. The process of removal is similar to that

of insertion. We compute the list of distinct indices where s is present, then decrement

count and XOR the idSum and hashSum by s and Hc(s), respectively. If any of

these cells becomes pure after s is removed, we add its index to the list of pure cells.

Decoding continues until no indices remain in the list of pure cells. At this

point, if all cells in the table have been cleared (i.e. all fields have value equal to zero),

then the decoding process has successfully recovered all elements in the set difference.

Otherwise, some number of elements remains encoded in the table, but insufficient in-

formation is available to recover them. The pseudocode is given in Algorithm 3 and

illustrated in Figure 2.3.

2.2.2 Strata Estimator

In order to effectively utilize an IBF, we must determine the approximate size of

the set difference, d since approximately 1.5d cells are required to successfully decode.

We now give an algorithm for estimating d using O(log(u)) memory. We start, once

more, with the intuition. If the set difference is large, we know that estimators such as

random samples [31] and Min-wise Hashing [15, 16] will work well. However, we wish

to design an estimator that can accurately estimate very small differences (say 10) even

when the set sizes are large (say million).

Flajolet and Martin (FM) [26] give an elegant way to estimate set sizes (not

differences). The FM estimator uses log u bits, where u is the size of the universe of set

values. Each bit i in the estimator is the result of sampling the set with probability 1/2i;

bit i is set to 1, if at least 1 element is sampled when sampling with this probability.

Intuitively, if there are 24 = 16 distinct values in the set, then when sampling with

probability 1/16, it is likely that bit 4 will be set. Thus the estimator returns 2I as the

set size, where I is the highest stratum (i.e., bit) such that bit I is set.

While FM data structures are useful in estimating the size of two sets, they do

help in estimating the size of the difference as they contain no information that can be

used to approximate which elements are common. However, we can sample the set

17

Algorithm 3: IBF Decode (B → DA−B, DB−A)

for i = 0 to n − 1 do

if B[i] is pure then

Add i to pureList

while pureList 6= ∅ do

i=pureList.dequeue()

if B[i] is not pure then

continue

s=B[i].idSum

c=B[i].count

if B[i].count > 0 then

add s to DA−B

else

add s to DB−A

for j in DistinctIndices(s, k, n) do

B[j].idSum = B[j].idSum ⊕s

B[j].hashSum = B[j].hashSum ⊕Hc(s)

B[j].count = B[j].count- c

for i = 0 to n − 1 do

if B[i].idSum 6= 0 OR B[i].hashSum 6= 0 B[i].count 6= 0 then

return FAIL

return SUCCESS

18

id
S
u
m

:

h
a
sh

S
u
m

:

c
o
u
n
t:

V
 +

 X

H
(V

)
+

 H
(X

)

2

V
 +

 X
 +

 Z

H
(V

)+
H

(X
)+

H
(Z

)

1

X
 +

 Z

H
(X

)
+

 H
(Z

)

0

V

H
(V

)

1

Z

H
(Z

)

-1Z
Z

Z

V X

V X
X

V

P
u
re

:

D
A

-B
:

D
B

-A
:

0
1

2
3

4
In

d
e
x
:

{
3

,
4

}

{
}

{
}

S
te

p
 1

:
In

it
ia

l
S
c
a
n

id
S
u
m

:

h
a
sh

S
u
m

:

c
o
u
n
t:

V
 +

 X

H
(V

)
+

 H
(X

)

2

V
 +

 X
 +

 Z

H
(V

)+
H

(X
)+

H
(Z

)

1

X
 +

 Z

H
(X

)
+

 H
(Z

)

0

V

H
(V

)

1

Z

H
(Z

)

-1Z
Z

Z

V X

V X
X

V

P
u
re

:

D
A

-B
:

D
B

-A
:

0
1

2
3

4
In

d
e
x
:

{
3

,
4

}

{
V

}

{
}

S
te

p
 2

:
R

e
c
o
rd

S
te

p
 3

:
R

e
m

o
v
e

id
S
u
m

:

h
a
sh

S
u
m

:

c
o
u
n
t:

X

H
(X

)

1

X
 +

 Z

H
(X

)
+

 H
(Z

)

0

X
 +

 Z

H
(X

)
+

 H
(Z

)

0

0 0 0

Z

H
(Z

)

-1Z
Z

Z

V X

V X
X

V

P
u
re

:

D
A

-B
:

D
B

-A
:

0
1

2
3

4
In

d
e
x
:

{
4

}

{
V

}

{
}

S
te

p
 4

:
U

p
d
a
te

 P
u
re

 L
is

t

id
S
u
m

:

h
a
sh

S
u
m

:

c
o
u
n
t:

X

H
(X

)

1

X
 +

 Z

H
(X

)
+

 H
(Z

)

0

X
 +

 Z

H
(X

)
+

 H
(Z

)

0

0 0 0

Z

H
(Z

)

-1Z
Z

Z
X

X
X

P
u
re

:

D
A

-B
:

D
B

-A
:

0
1

2
3

4
In

d
e
x
:

{
4

,
0

}

{
V

}

{
}

F
ig

u
re

2
.3

:
IB

F
D

ec
o

d
e.

W
e

in
it

ia
ll

y
sc

an
th

e
IB

F
fo

r
p

u
re

ce
ll

s,
an

d
ad

d
th

es
e

in
d

ic
es

(3
&

4
)

to
th

e
P

u
re

li
st

(S
te

p
1

).
In

S
te

p

2
,

w
e

d
eq

u
eu

e
th

e
fi

rs
t

in
d

ex
fr

o
m

th
e

P
u

re
li

st
,

v
er

if
y

th
at

th
e

ce
ll

is
st

il
l

p
u

re
,

th
en

ad
d

th
e

v
al

u
e

o
f

th
e
i
d
S
u
m

as
an

el
em

en
t

o
f

th
e

ap
p

ro
p

ri
at

e
o

u
tp

u
t

se
t

(V
→

D
A
−

B
).

W
e

th
en

re
m

o
v
e

V
fr

o
m

th
e

IB
F

b
y

co
m

p
u

ti
n

g
th

e
k

d
is

ti
n

ct
in

d
ic

es
w

h
er

e
it

w
as

in
se

rt
ed

d
u

ri
n

g
en

co
d

in
g

,
d

ec
re

m
en

ti
n

g
th

e
c
o
u
n
t

o
f

th
o

se
ce

ll
s,

an
d

X
O

R
in

g
V

an
d

H
c
(V

)
fr

o
m

th
ei

r
i
d
S
u
m

an
d
h
a
s
h
S
u
m

,

re
sp

ec
ti

v
el

y.
F

in
al

ly
,
if

an
y

o
f

th
es

e
ce

ll
s

h
av

e
n

o
w

b
ec

o
m

e
p

u
re

,
w

e
ad

d
th

em
to

th
e

P
u

re
li

st
(S

te
p

4
).

19

Strata Estimator...A

Consistent

Partitioning

B C

~1/2

~1/4

~1/8

~1/16

IBF 1

IBF 2

IBF 3

IBF 4

..
.

Figure 2.4: A set of elements is partitioned such that rough half are encoded in the IBF

constituting the first stratum of the estimator, roughly a quarter in the IBF constituting

the second stratum, and so on.

difference using the same technique as FM. Given that IBF’s can compute set differ-

ences with small space, we use a hierarchy of IBF’s as strata. Thus Peer A computes a

logarithmic number of IBF’s (strata), each of some small fixed size, say 80 cells.

Compared to the FM estimator for set sizes, this is very expensive. Using 32

strata of 80 cells is around 32 Kbytes but is the only estimator we know that is accurate

at very small set differences and yet can handle set-difference sizes up to 232. In practice,

we build a lower overhead composite estimator that eliminates higher strata and replaces

them with a MinWise estimator, which is more accurate for large differences. Note also

that 32 Kbytes is still inexpensive when compared to the overhead of naively sending a

million keys.

Proceeding formally, we stratify U into L =log(u) partitions, P0, . . . , PL, such

that the range of the ith partition covers 1/2i+1 of U. For a set, S, we encode the

elements of S that fall into partition Pi into the ith IBF of the Strata Estimator. We show

this visually in Figure 2.4. Partitioning U can be easily accomplished by assigning

each element to the partition corresponding to the number of trailing zeros in its binary

representation.

Each host then transmits the Strata Estimator for its set to its remote peer. For

each IBF in the Strata Estimator, the host subtracts the corresponding remote IBF from

the local IBF, then attempts to decode. If decoding the ith IBF is successful, then we

estimate that the size of the set difference is the number of elements recovered scaled

the by 2i+1. We give the pseudocode in Algorithms 4 and 5, and illustrate the estimation

20

process in Figure 2.5.

In this description, we assumed that the elements in SA and SB were uniformly

distributed throughout U. If this condition does not hold, the partitions formed by count-

ing the number of low-order zero bits may skew the size of our partitions such that stra-

tum i does not hold roughly |S|/2i+1. This can be easily solved by choosing some hash

function, Hz, and inserting each element, s, into the IBF corresponding to the number

of trailing zeros in Hz(s).

Algorithm 4: Strata Estimator Encode

for s ∈ S do

z = Number of trailing zeros in s.

Insert s into the zth IBF

Algorithm 5: Strata Estimator Decode

for i = 0 to log(u) do

if (IBF1[i] - IBF2[i]) decodes then

return 2(i+1)× element count in (IBF1[i] - IBF2[i])

2.3 Analysis

In this section we review and prove theoretical results concerning the efficiency

of Invertible Bloom Filters and our stratified sampling scheme.

Theorem 1. Let S and T be disjoint sets with d total elements, and let B be an invertible

Bloom filter with C = (k+1)d cells, where k is the number of random hash functions in

B, and with at least Ω(k log d) bits in each hashSum field. Suppose that (starting from a

Bloom filter representing the empty set) each item in S is inserted into B, and each item

in T is deleted from B. Then with probability at most O(d−k) the IBFDecode operation

will fail to correctly recover S and T .

Proof. The proof follows immediately from the previous analysis for invertible Bloom

filters (e.g., see [28]).

21

Estimator 1
...

IBF 1

IBF 2

IBF 3

IBF 4

Estimator 2
...

IBF 1

IBF 2

IBF 3

IBF 4

- Host 1

BA

Host 2

DC

4x

Figure 2.5: To estimate the size of the difference using a Strata Estimator, the strata for

two estimators are evaluated pairwise, beginning with the strata containing the largest

partition of the elements. The IBF subtract and decode operations are performed on

each pair. If the ith pair sucessfully decodes, then the number of elements recovered is

scaled by 2i. In this example, the second pair of strata is the first to successfully decode

and four elements are recovered. Hence, the estimate returned is 4 × 22 = 16.

We also have the following.

Corollary 1. Let S and T be two sets having at most d elements in their symmetric

difference, and let BS and BT be invertible Bloom filters, both with the parameters as

stated in Theorem 1, with BS representing the set S and BT representing the set T .

Then with probability at most O(d−k) we will fail to recover S and T by applying the

IBFSubtract operation to BS and BT and then applying the IBFDecode operation to the

resulting invertible Bloom filter.

Proof. Define S ′ = S − T and T ′ = T − S. Then S ′ and T ′ are disjoint sets of total

size at most d, as needed by Theorem 1.

Let us next consider the accuracy of our stratified size estimator. Suppose that

a set S has cardinality m, and let i be any natural number. Then the ith stratum of our

Strata Estimator for S has expected cardinality m/2i. The following lemma shows that

our estimators will be close to their expectations with high probability.

Lemma 1. For any s > 1, with probability 1−2−s, the cardinality of each of the stratum

numbered up to i is within a multiplicative factor of 1±O(
√

s2i/m) of its expectation.

22

Proof. Let Yj be the size of the jth stratum, for j = 0, 1, . . . , i, and let µj be its expec-

tation, that is, µj = E(Yj) = m/2j . By standard Chernoff bounds (e.g., see [38, 39]),

for δ > 0,

Pr (Yj > (1 + δ)µj) < e−µjδ2/4

and

Pr (Yj < (1 − δ)µj) < e−µjδ2/4.

By taking δ =
√

4(s + 2)(2i/m) ln 2, which is O(
√

s2i/m), we have that the probabil-

ity that a particular Yj is not within a multiplicative factor of 1 ± δ of its expectation is

at most

2e−µjδ2/4 ≤ 2−(s+1)2i−j

.

Thus, by a union bound, the probability that any Yj is not within a multiplicative factor

of 1 ± δ of its expectation is at most

i
∑

j=0

2−(s+1)2i−j

,

which is at most 2−s.

Putting these results together, we have the following:

Theorem 2. Let ǫ and δ be constants in the interval (0, 1), and let S and T be two sets

whose symmetric difference has cardinality d. If we encode the two sets with our Strata

Estimator, in which each IBF in the estimator has C cells using k hash functions, where

C and k are constants depending only on ǫ and δ, then, with probability at least 1 − ǫ,

it is possible to estimate the size of the set difference within a factor of 1 ± δ of d.

Proof. By the same reasoning as in Corollary 1, each IBF at level i in the estimator is a

valid IBF for a sample of the symmetric difference of S and T in which each element is

sampled with probability 1/2i+1. By Theorem 1, having each IBF be of C = (k + 1)g

cells, where k = ⌈log 1/ǫ⌉ and g ≥ 2, then we can decode a set of g elements with

probability at least 1 − ǫ/2.

We first consider the case when d ≤ c2
0δ

−2 log(1/ǫ), where c0 is the constant in

the big-oh of Lemma 1. That is, the size of the symmetric difference between S and T

23

is at most a constant depending only on ǫ and δ. In this case, if we take

g = max
{

2, ⌈c2
0δ

−2 log(1/ǫ)⌉
}

and k = ⌈log 1/ǫ⌉, then the level-0 IBF, with C = (k + 1)d cells, will decode its set

with probability at least 1 − ǫ/2, as noted above. In this case, our estimator learns the

exact set-theoretic difference between S and T , without error, with high probability.

Otherwise, let i be such that

d/2i ≈ c2
0δ

2/ log(1/ǫ)

and let

g = max
{

2, ⌈c2
0δ

−2 log(1/ǫ)⌉
}

and k = ⌈log 1/ǫ⌉, as above. So, with probability 1−ǫ/2, using an IBF of C = (k+1)d

cells, we correctly decode the elements in the ith stratum, as noted above. By Lemma 1

(with s = ⌈log 1/ǫ⌉+1), with probability 1−ǫ/2, the cardinality of the number of items

included in the ith stratum is within a multiplicative factor of 1 ± δ of its expectation,

and all the levels below i are within a similar multiplicative factor of their expectations.

Thus, with high probability, our estimate for d is within a 1 ± δ factor of d.

2.4 The KeyDiff System

We now describe KeyDiff, a service that allows applications to leverage dis-

tributed set-difference calculation using Difference Digests. As shown in Figure 2.6,

the KeyDiff service provides three operations, add, remove, and diff. Applications

can add and remove keys from an instance of KeyDiff, then query the service to discover

the set difference between any two instances of KeyDiff. These instances may be local

to the host, or distributed across the network.

As an example, suppose a developer wants to write an efficient file synchroniza-

tion application. In this case, the application running at each host would map files to

unique keys and add these keys to a local instance of KeyDiff. In order to efficiently

synchronize files, the application would then query KeyDiff for differences between the

set stored locally and the set stored at a remote host. The KeyDiff service opens a TCP

24

KeyDiff

ApplicationApplication

Add(key)

Remove(key)

Diff(loc1, loc2)

KeyDiff

KeyDiff

ApplicationDiffe
rence Digests

Application Data

Figure 2.6: KeyDiff Service. The KeyDiff service can be run as part of an application

or as a stand-alone server. Applications can add and remove keys from a KeyDiff in-

stance. KeyDiff can compute the set difference between two instances and return this

information to the application.

connection to the KeyDiff instance running on the remote host and runs the Difference

Digest algorithm — first estimating the size of the difference by sending its Strata Es-

timator, and then computing the set difference after receiving an IBF of sufficient size

from the remote host. Upon receiving the lists of unique keys from the KeyDiff service,

the application can then perform the reverse mapping to identify and transfer the files

that differ between the hosts.

The KeyDiff service is implemented using a client-server model and is accessed

through an API written in C. All requests and responses between KeyDiff instances

travel over a single TCP connection.

KeyDiff achieves efficient diff operations through the use of pre-computation.

Internally, KeyDiff maintains an estimator structure, which can be quickly updated on-

line as keys are added and removed. This structure is quickly serialized and transmitted

in response to requests from other instances of KeyDiff. However, computing IBF’s

online is difficult since the number of cells required is dependent on the size of the dif-

ference, which is a value not known until after the estimation phase. Thus, in scenarios

where computation is a bottleneck, KeyDiff can be configured to update several IBF’s

of pre-determined sizes online. Hence, the computational cost of building the IBF can

be amortized across all of the calls to add and remove. This is reasonable because

the cost of incrementally updating the Strata Estimator and a few IBF’s when a key is

added or removed is very small (a few microseconds) and should be a small fraction of

25

the time required for the application to create or store the object corresponding to the

key.

For example, if the application is a peer-to-peer application and is synchronizing

file blocks, the cost to store a new block on disk will be at least a few msec, and the

small additional latency of microseconds to incrementally update a few IBF’s will be

inconsequential. We will show in the evaluation that if the IBF’s are precomputed, then

the latency of diff operations can be extremely small (100’s of microseconds) for

small set differences. In particular, this may help speed up the last phase of a P2P file

download when only small set differences remain.

2.5 Evaluation

Our evaluation seeks to provide practical insights into the configuration and per-

formance of Difference Digests and the KeyDiff system. To do so, we address the

following four questions. First, what are the optimal parameters for an Invertible Bloom

Filter? (Section 2.5.1). Second, how should one tune the Strata Estimator to balance

accuracy and overhead? (Section 2.5.2). Third, how do IBF’s compare with the existing

Approximate Reconcilliation Tree technique? (Section 2.5.3). Finally, for what range

of differences are Difference Digests most effectiveness in the entire KeyDiff system

compared to using earlier approaches? (Section 2.5.4).

For our evaluation, we assume that U is all 32-bit values. Hence, we allocate

12 bytes for each IBF cell, with 4 bytes given to each idSum, hashSum and count

field. We created pairs of files, each containing keys from U. We exercised two degrees

of freedom in creating pairs of files: the number of keys in each file, and the number of

values that differed between the files, which we refer to as the files’ delta. To create a

pair of files, we randomly chose the specified number of keys from U and wrote them

to the first file. The second file was created by copying the first file, then randomly

selecting delta keys to delete. Thus, the second file is a subset of the first. For each

experiment we created 100 file pairs. As our objective is set reconciliation, we consider

an experiment successful only if we are able to successfully determine all of the elements

in the set difference.

26

 0

 20

 40

 60

 80

 100

0 5 10 15 20 25 30 35 40 45 50

P
e
rc

e
n
t
S

u
c
c
e
s
s
fu

lly
 D

e
c
o
d
e
d

Set Difference

IBF size = 50 cells

100 keys
1K keys

10K keys
100K keys

1M keys

Figure 2.7: Rate of successful IBF decode shown for sets of various sizes. The ability

to decode an IBF scales with the size of the set difference, not the set sizes. The IBF

contained 50 cells and used 4 hash functions.

2.5.1 Tuning the IBF

We start by validating the property that IBF size scales with the size of the set

difference not the total set size. To do so, we generated sets with 100, 1K, 10K, 100K

and 1M keys, and deltas between 0 and 50. We then compute the set difference using an

IBF with 50 cells.

Figure 2.7 shows the success rate for recovering all of the keys in the set differ-

ence. We see that for deltas up to 25, the IBF decodes completely with extremely high

probability, regardless of set size. Between set differences of 30 and 40, the rate of suc-

cessful decoding declines for all set sizes. This occurs as the number of collisions in the

IBF prevents an adequate number of pure cells from being uncovered. We also see that

at deltas of 45 and 50 the collision rate is so high that no IBF’s are able to completely

decode. The results in Figure 2.7 confirm that the probability of decoding success is

independent of the original set sizes.

Determining table size and number of hash functions Both the size of the table

and the hash count are critical in determining the number of collisions and, hence,

the rate of successful decoding. We now investigate the effects of these parameters.

To evaluate the effect of hash count, we attempted to decode sets with 100 keys

27

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50

S
u
c
c
e
s
s
fu

l
D

e
c
o
d
in

g
s
 (

%
)

Set Difference

IBF size = 50 cells

Hash Cnt = 2
Hash Cnt = 3
Hash Cnt = 4
Hash Cnt = 5
Hash Cnt = 6

Figure 2.8: Probability of successful decoding for IBF’s with varying hash count’s.

Each experiment was run with 100-element sets and replicated 1000 times.

and deltas between 0 and 50 using an IBF with 50 cells. As we have seen above, the

size of the sets does not influence decoding success rates. Hence, these results are

representative for arbitrarily large sets. We ran this configuration for 1000 file pairs

using hash count’s between 2 and 6. Our results are displayed in Figure 2.8.

For deltas less than 30, hash count = 4 decodes 100% of the time, while

higher and lower values for hash count show degraded success rates. Intuitively,

lower hash counts do not provide equivalent decode rates since each pure cell pro-

cessed only removes the key from a small number of other cells. Higher values of

hash count avoids this problem but a larger value for hash count also decreases

the probability there will initially be a cell in the table that is pure. For deltas greater

than 30, hash count = 3 provides the highest rate of successful decoding. However,

at smaller deltas, hash count = 3 is less reliable than hash count = 4, with approx-

imately 98% success for deltas from 15 to 25 and 92% at 30.

Given that failed decodings require expensive retransmission, we minimize the

probability of decoding failure as follows. Figure 2.9 quantifies the combination of IBF

sizes and hash count’s necessary to recover set differences with 99% certainty. We

used 100 element sets with deltas ranging from 0 to 100 and attempted to recover the

set difference with IBF’s containing up to 150 cells. We replicated this experiment

1000 times per IBF size. Each curve in Figure 2.9 plots the lowest number of cells

28

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

 0 10 20 30 40 50 60 70 80 90 100

IB
F

 S
iz

e
 (

in
 c

e
lls

)

Set Difference

Minimum size required to successfully decode at >99%

Hash Cnt = 2
Hash Cnt = 3
Hash Cnt = 4
Hash Cnt = 5
Hash Cnt = 6

Figure 2.9: The minimum number of IBF cells required to ensure that the set difference

can be completely recovered with 99% certainty. We see that hash count equal to 4

requires the least memory for deltas less than 100.

above which 99% or more of the experiments successfully decoded. We see that a

hash count of 4 achieves full recovery in 99% of the experiments with the smallest

memory footprint for all deltas greater than 15.

To understand the memory overhead (ratio of IBF’s cells to set-difference size),

we used sets contain 100K elements and varied the number of cells in each IBF as a

proportion of the delta. We then evaluated the memory overhead required for 99% of the

replicates to completely decode a wide range of deltas. We plot this data in Figure 2.10.

Deltas below 100 all require at least of 50% overhead to completely decode. However,

beyond set differences of 1000, the memory overhead reaches an asymptote as the size

of the set difference continues to grow. As before, we see a hash count of 4 decodes

consistently with less than 5 or 6, but interestingly, hash count = 3 has the lowest

memory overhead at all deltas greater than 400.

2.5.2 Tuning the Strata Estimator

Since the Strata Estimator is constructed from several IBF’s, we first look at

which IBF size and hash count provides the most accurate estimation. Based on our

findings from Section 2.5.1, we know that hash count = 4 has the most consistent

29

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 10 100 1000 10000 100000

O
v
e
rh

e
a
d

Set Difference

Minimum overhead required to successfully decode at >99%

Hash Cnt = 3
Hash Cnt = 4
Hash Cnt = 5
Hash Cnt = 6

Figure 2.10: We evaluate 100K sets with a wide range of delta and plot the minimum

space overhead (IBF cells/delta) required to ensure that the set difference can be com-

pletely recovered with 99% certainty.

odds of successful recovery at IBF sizes less than 400 cells. Hence, we focus on Strata

Estimators whose IBF’s use a hash count of 4.

In Figure 2.11 we plot the performance of Strata Estimators with varying IBF

sizes run on sets containing 100K elements and a wide range of deltas. Figure 2.11a

plots the average relative error between the value returned by the Strata Estimator and

the true size of the set difference. We see that the relative error drops sharply as the

number of cells per IBF is increased from 10 to 40. The rate of improvement slows

as more cells are added and flattens after 100 cells. Hence, choosing a Strata Estimator

with IBF’s containing between 80 and 100 cells gives the best trade off between memory

overhead and estimation error.

Recall that if the Strata Estimator over-estimates, the subsequent IBF will be

unnecessarily large and waste bandwidth. However, if the Strata Estimator under-

estimates, then the subsequent IBF may not decode and cost an expensive retransmis-

sion. To mitigate the affects of under-estimation, the values returned by the estimator

should be scaled by some factor. For our evaluation, we report the scaling overhead re-

quired such that 99% of the estimates will be greater than or equal to the true difference.

Figure 2.11b plots the scaling overhead required for the 1st percentile of estimations.

Again we see that Strata Estimators containing large IBF’s reach a point of diminishing

30

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100 120 140 160

R
e
la

ti
v
e
 S

iz
e
 E

s
ti
m

a
te

 E
rr

o
r

(%
)

IBF Size (in cells)

Average Relative Estimation Error - Hash Count = 4

Delta = 10
Delta = 100

Delta = 1000
Delta = 10000

Delta = 100000

(a) Average Relative Error - Hash Count = 4

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120 140 160

O
v
e
rh

e
a
d

IBF Size (in cells)

Overhead to Correct 1st Percentile Estimation - Hash Count = 4

Delta = 10
Delta = 100

Delta = 1000
Delta = 10000

Delta = 100000

(b) 1st Percentile Estimation Correction - Hash Count = 4

Figure 2.11: Strata Estimator performance versus strata size. Estimator accuracy im-

proves with larger strata up to 100 cells. To mitigate the affects of under-estimation,

Figure 2.11b plots the scaling overhead necessary to ensure that 99% of the estimates

are greater than or equal to the true delta’s size.

31

returns with a good size-to-accuracy trade off occurring around 80 cells per IBF. With

80 cells per IBF, any estimate returned by a Strata Estimator should be scaled by a factor

of 1.47.

However, deltas less than 100 are an exception to these trends. As seen in

Figure 2.11, deltas of 10 do not respond to an increase in memory, reporting a rela-

tive error of 22% and scaling overheads for 1st percentile estimates of 2.5. Intuitively,

we expect 50% of the elements in the difference to accumulate in the first stratum’s IBF.

Therefore, any variance in the estimated value is dictated by the number of elements

hashed into the first stratum, and not the size of the IBF.

Strata Estimator vs. Min-wise We next compare our Strata Estimator to the Min-

wise Estimator (see Section 2.1). For our comparison we used sets with 100K elements

and deltas ranging from 10 to 100K. Given knowledge of the approximate total set

sizes a priori, the number of strata in the Strata Estimator can be adjusted to conserve

communication costs. From the data in Figure 2.9, we see that an IBF with 80 cells can

successfully decode deltas up to 50 with 99% probability. Therefore, a Strata Estimator

with 12 strata containing 80 cells per IBF has a maximum range of 50 × 212 = 200K.

At 12 bytes per IBF cells, this configuration requires approximately 11.5 KB of space.

Alternatively, one could allocate a Min-wise estimator with 2880 4-byte hashes in the

same space.

In Figure 2.12 we compare a Strata Estimator and a Min-wise estimator each

consuming equal memory footprints. In Figure 2.12a, we see that the Min-wise estima-

tor has diminishing errors ranging from 15.2% to 0% as deltas increase beyond 1000.

The Strata Estimator returns values with average relative errors consistently between

15.6% and 9.6% for the same range. However, the accuracy of the Min-wise estimator

deteriorates rapidly for smaller delta values, reaching 149% at a delta of 10, compared

to 21.8% for the Strata Estimator. This is not surprising because as the size of the differ-

ence shrinks relative to the total size of the sets, the odds that hashes created by elements

in the difference are included in the array drops.

Figure 2.12b shows the scaling factors required such that 99% of the estimates

from the Strata and Min-wise estimators are greater than or equal to the true delta. We

32

see that the overhead required by Min-wise increases significantly as the size of the

set difference decreases. In fact, for all deltas below 400, the 1st percentile of Min-

wise estimates are 0, resulting in infinite overhead. In contrast, we see that the Strata

Estimator provides estimates for all delta values, and our second phase IBF will have

sufficient space 99% of the time by scaling any estimation greater than 10 by 1.84.

Hybrid Estimator The Strata Estimator outperforms Min-wise for small differences,

while the opposite occurs for large differences. This suggests the creation of a hybrid

estimator that keeps the lower strata to ensure accurate small deltas estimation, while

augmenting more selective strata with a Min-wise estimator.

For our previous Strata Estimator configuration of 80 cells per IBF, each stratum

consumes 960 bytes. Therefore, we can trade a stratum for 240 additional Min-wise

hashes. From Figure 2.12 we see that the Strata Estimator performs better for deltas

less than 1000. Therefore, we retain the lower 5 strata, giving the Strata Estimator

component a range of 50 × 25 = 1600. With the remaining 6720 bytes, we allocate a

Min-wise estimator with 1680 cells to answer any queries beyond the range of the lower

strata.

Results from our Hybrid Estimator are plotted in Figure 2.12 against the results

of the original Strata and Min-wise estimators. We see that the Hybrid Estimator mirrors

the results of the Strata Estimator for all deltas up to 1000, as desired.

Difference Digest Configuration Guideline. By using the Hybrid Estimator in

the first phase, we achieve an estimate greater than or equal to the true difference size

99% of the time by scaling the result by 1.67. In the second phase, we further scale by

1.25 to 2.3 and set hash count to either 3 or 4 depending on the estimate from phase

one. In practice, a simple rule of thumb is to construct an IBF in Phase 2 with twice

the number of cells as the estimated difference. For estimates greater than 200, 3 hashes

should be used and 4 hashes otherwise. At 12 bytes per IBF cell, we can reconcile the

two sets at a cost of 25 to 46 bytes per element in the set difference.

33

 0

 5

 10

 15

 20

 25

 30

 35

 10 100 1000 10000 100000

R
e
la

ti
v
e
 E

rr
o
r

in
 E

s
ti
m

a
ti
o
n
 (

%
)

Set Difference

Average Est. Err. - 11.5 KBytes

Hybrid (5 strata, 1680 hashes)
Strata (12 strata, 80 cells)

Min-wise (2880 hashes)

(a) Average Relative Error

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 10 100 1000 10000 100000

O
v
e
rh

e
a
d

Set Difference

Overhead to Correct 1st Percentile Estimation

Hybrid (5 strata, 1680 hashes)
Strata (12 strata, 80 cells)

Min-wise (2880 hashes)

(b) 1st Percentile Estimation Correction

Figure 2.12: Comparison of Estimators. Average relative error and scaling overhead to

correct down to the 1st percentile of estimates are shown when memory is constrained

to 11.5KB. The Strata Estimator is configured with 12 strata each containing 80 cells.

The Hybrid Estimator uses 5 IBF’s each containing 80 cells and 1680 min-wise hashes.

34

 0

 100

 200

 300

 400

 500

 600

 700

 10 100 1000 10000 100000

K
B

y
te

s

Set Difference

ART
D.Digest

Figure 2.13: Data transmission required by ART and Difference Digests to recover 95%

and 100% of the set difference, respectively, with 99% reliability.

2.5.3 Difference Digest vs. ARTree

Having understood how to configure a Difference Digest, we compare the Differ-

ence Digest to Approximate Reconciliation Trees (ART) [18]. We note that ART’s were

originally designed to compute most but not all the keys in SA − SB . Bloom Filters in

ART lead to the possibility of false positives and the inadvertent pruning of branches

that contain unique keys. To address this, the system built in [18] used erasure coding

techniques to ensure that hosts received pertinent data. However, while this approach

is reasonable for some P2P applications it may not be applicable to or desirable for all

applications described at the beginning of this chapter.

Given that ART’s were not designed for computing the complete set difference,

we arbitrarily choose the standard of 95% of the difference 99% of the time and plot the

amount of data required to achieve this level of performance with ART. For comparison,

we also plot the data used by Difference Digest for both estimation and reconcilia-

tion to compute the complete difference 99% of the time. These results are shown in

Figure 2.13.

The results show that the bandwidth required by ART decreases as the size of the

difference increases. This intuitively makes sense since the compacted ART encodes

the contents of SB, which is diminishing in size as the size of the difference grows

35

(|SB| = |SA| − |D|). Thus, the compacted ART requires fewer bits in its Bloom Filters

to capture the nodes in B’s ART. At the same time, while the size of the Estimator stays

constant, the IBF grows at a rate of 24 Bytes (three 4-byte values and a factor of 2

inflation for accurate decoding) per key in the difference.

Algorithm Selection Guidelines. The results show that for small differences

Difference Digests require an order of magnitude less bandwidth (175 to 14 KB) and

are better up to a difference of 4,000 (4%). However, the fact that ART does better

after 4K is misleading because we have allowed the ART to decode only 95% of the

difference, which may be unacceptable in many applications.

2.5.4 KeyDiff Performance

Having configured the Difference Digest and seen its potential benefit over ART

using microbenchmarks, we now examine the benefits of Difference Digest in system-

level benchmarks using KeyDiff service described in Section 2.4. To do so, we quantify

the performance of KeyDiff using Difference Digests versus ART’s and the simplest

approach of all, trading a complete list of keys (List). For these experiments, we de-

ployed KeyDiff on two dual-processor quad-core Xeon servers running Linux 2.6.32.8.

Our test machines were connected via 10 Gbps Ethernet and report an average RTT of

93µs.

Costs and Benefits of Incremental Updates For each algorithm, KeyDiff maintains

a set of structures. Some of these structures, such as the Difference Digest estimators,

can be updated online when a key is added or removed, while others, such as the IBF,

are based on runtime parameters and must be generated on the fly. While adding ele-

ments incurs very low overhead, on-the-fly generation of an IBF or compacting an ART

can introduce significant overhead to the diff operation. To address this issue, we

investigate the costs and benefits of precomputing techniques.

List. For the basic List algorithm, new keys are added to the tail of a linked list

and we transfer an entire listing of keys from host B to host A. Host A sorts both lists

and scans them to identify unique keys. By storing the lists in stored order the diff

operation can avoid the sorting phase during runtime at the cost of a slightly longer

36

sorted insertion.

ART. For each addition, a new interior and leaf node are added to the ART and

all ancestor nodes must be updated. When a summary is requested, the tree is traversed,

with interior nodes being added to one Bloom filter and the leaf nodes added to an-

other. Since the value of interior nodes may change with each insertion, one would need

to re-compute the Bloom filter for the interior nodes for each addition. However, the

limitation can be removed through incrementally updating the compacted ART, using a

counting bloom filter [25] and omitting the counters when the bloom filter is sent over

the network.

Difference Digest. The estimators for the Difference Digest are maintained on-

line as elements are added and removed from KeyDiff, however the IBF cannot be con-

structed until after the approximate size of the difference is known. We can avoid this

runtime overhead by maintaining several IBF’s of predetermined sizes with KeyDiff.

Each key is added to all IBF’s and the smallest IBF that should decode the estimated

difference is returned. The number of IBF’s to maintain in parallel will depend on the

computing and bandwidth overheads encountered for each application.

In Table 2.1, we report the average time required to add a key to our various

structures, both with and without precomputation during each add. We also report the

duration that the KeyDiff server must spend computing before a response can be sent.

We note that these times correspond closely with the number of memory locations each

algorithm touches, with Min-wise computing and checking values for all of its hashes,

ART traversing a path through its tree, and IBF updating hash count cells. For most

applications, the small cost (10’s of microseconds) for incremental updates during each

add operation should not dramatically affect overall application performance, while the

speedup during diff (seconds) is a clear advantage.

Diff Performance We now look at time required to run the diff operation. As we

are primarily concerned with the performance improvement as seen by an application

built on top of these algorithms, we use incremental updates and measure the wall clock

time required to compute the set difference.

For ART [18], we used 8 bits of storage per key with 70% allocated to storing

37

Table 2.1: Time required to add a key to KeyDiff and the time required to generate a

KeyDiff response for various summary and estimation algorithms. The time per add

call is averaged across the insertion of 1M keys. We see that precomputation increases

each addition, but greatly reduces the time to generate a response.

Algorithm Add (µs) Serv. Compute

List 0.215 6.542 msec

List (sorted) 1.309 6.545 msec

ART 1.995 6,937.831 msec

IBF N/A 3,957.847 msec

IBF (8x precompute) 31.320 0.022 msec

Min-wise (2880 hashes) 21.909 0.022 msec

Strata (12x80 cells) 4.303 0.021 msec

Hybrid (5x80 cells + 1680 hash) 17.139 0.023 msec

the ART’s leaf nodes. In addition, when comparing the local ART to the compacted

representation from the remote host, we allowed for 5 consecutive hits to occur in the

bloom filter containing the internal nodes of the remote ART before pruning the path

in the local tree. Based on the evaluation from [18], these parameters should recover

92% of the elements unique to the local host and be computationally efficient for small

differences. Difference Digests are run with 11.5 KB dedicated to the Estimator, and 8

parallel, precomputed IBF’s with sizes ranging from 256 to 400K cells in factors of 4.

We populated the first host, A with a set of unique 32-bit keys, SA and copied

a random subset of those keys, SB to the other host, B. From host A, we then query

KeyDiff to compute the set of unique keys. A KeyDiff instance at A can compute the

keys unique to both hosts (SA−B and SB−A) with either Difference Digest or List, but

ART only allows host A to compute SA−B. To allow a fair comparison with ART, we

limit our experiments to only consider the case where SB ⊆ SA (Difference Digests or

List do not need this assumption).

Our results can be seen in Figure 2.14a. We note that there are 3 components

contributing to the latency for all of these methods, the time to generate the response at

host B, the time to transmit the response, and the time to compare the response to the

set stored at host A. Since we maintain each data structure online, the time for host B

to generate a response is negligible and does not affect the overall latency.

38

We see from these results that the List shows fast performance across differ-

ence sizes, but performs particularly well as the size of the difference increases. Since

the size of the data sent decreases as the size of the difference increase, the transmission

time and the time to sort and compare at A decrease accordingly.

On the other hand, the Difference Digest performs best at small set differences

and its latency increases linearly with the size of the difference. This agrees with our the-

oretical result that both the transmission size and the decoding time for an IBF is O(D)

words. Since the estimator is maintained online, the estimation phase conclude very

quickly, often taking less than 1 millisecond. We also see that precomputing IBF’s at

various sizes is essential and significantly reduces the latency by eliminating the O(|SB|)
computation at host B at runtime.

Interestingly, we observe that ART shows the lowest latencies when the set differ-

ence is very small or very large, with the longest latencies occurring when the difference

is 10% of the total set size. When the difference is very small, SB is close to the size

of SA and the time required to produce the compacted ART at host B dominates the

latency. In the case that the difference is large, |SB| is small, hence computing the com-

pact ART finishes quickly. Since there are many differences, A must traverse almost its

entire ART, an operation that dominates the computation time.

In considering the resources required to for each algorithm, we see that List re-

quires 4|SB| bytes in transmission and touches |SA|+|SB| values in memory. Difference

Digest has a constant estimation phase followed by 6|D| to 24|D| bytes in transmission

and 3|D| × hash count memory operations (3 values in each IBF cell). Finally, ART

requires |SB| bytes of communication and roughly |D|log(|SA|)× the hash count of the

Bloom Filters in the compacted ART.

If our experimental setup were completely computation constrained, we would

expect List to have superior perform at large differences and Difference Digest to shine

at small difference. If we assume a hash count of 4, then Difference Digest’s latency

is 12|D|, while List’s is |SA| + |SB| = 2|SA| − |D|. Thus, they will have equivalent

latency at |D| = 2
12−1

SA, or a difference of 18%. We note that ART’s runtime also scales

with D, but for any practical set size, the log(|SA|) times the number of Bloom Filter

hashes will be larger than IBF’s constant factor of 12.

39

Guidance for Constrained Computation. We conclude that, for our test envi-

ronment, precomputed Difference Digests are superior for small difference sizes (less

than 10%), while sending a full list is preferable at difference sizes larger than 10%.

In contrast, ART’s perform significantly slower than these other approaches. We argue

that in environments where computation is severely constrained relative to bandwidth,

this crossover point can reach up to 18%. In such scenarios, precomputation is vital to

optimize diff performance.

Varying Bandwidth We now investigate how the latency of each algorithm changes

as the speed of the network decreases. For this we consider bandwidth of 10 Mbps

and 100Kbps, which are speeds typical in wide-area networks and mobile devices, re-

spectively. By scaling the transmission times from our previous experiments, we are

able to predict the performance at slower network speeds. We show these results in

Figure 2.14b and Figure 2.14c.

As discussed previously, the data required by List, ART, and Difference Di-

gests is 4|SB|, |SB|, and roughly 6|D|, respectively. Thus, as the network slows and

dominates the running time, we expect that ART will outperform List by a factor of 4

for all difference sizes. Since |SB| = |SA| − |D|, we expect the running times of Differ-

ence Digest and ART to be equal at |D| = |SA|
6−1

, or a difference of 20%. As the commu-

nication overhead for Difference Digest grows due to widely spaced precomputed IBF’s

the trade off point will move toward differences that are a smaller percentage of the total

set size. However, for small to moderate set sizes and highly constrained bandwidths

KeyDiff should create appropriately sized IBF’s on demand to reduce memory overhead

and minimize transmission time.

Guidance for Constrained Bandwidth. As bandwidth becomes a predomi-

nant factor in reconciling a set difference, the algorithm with the lowest data overhead

should be employed. Thus, ART will have superior performance for differences greater

than 20%. For smaller difference sizes, IBF will achieve faster performance, but the

crossover point will depend on the size increase between precomputed IBF’s. For con-

strained networks and moderate set sizes, IBF’s could be computed on-demand to min-

imize time.

40

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 100 1000 10000 100000
D

if
f
L
a
te

n
c
y
 (

s
e
c
)

Set Difference

List
D.Digest

(a) Measured - 1.2 Gbps

 0

 2

 4

 6

 8

 10

 12

 14

 16

 10 100 1000 10000 100000

D
if
f
L
a
te

n
c
y
 (

s
e
c
)

Set Difference

List
ART (no precomp.)

D.Digest

(b) Modeled - 10 Mbps

 0

 50

 100

 150

 200

 250

 300

 350

 10 100 1000 10000 100000

D
if
f
L
a
te

n
c
y
 (

s
e
c
)

Set Difference

List
ART (no precomp.)

D.Digest

(c) Modeled - 100 Kbps

Figure 2.14: Time to run KeyDiff diff for |SA|= 1M keys and varying difference

sizes. We show our measured results in 2.14a, then extrapolate the latencies for more

constrained network conditions in 2.14b and 2.14c.

41

2.6 Conclusions

We have shown how Difference Digests can efficiently compute the set differ-

ence of data objects on different hosts using computation and communication propor-

tional to the size of the set difference. The two main new ideas are whole set differenc-

ing for IBF’s, and a new estimator that accurately estimates small set differences via a

hierarchy of sampled IBF’s.

We implemented Difference Digests in a KeyDiff service run on top of TCP that

can be utilized by different applications such as Peer-to-Peer file transfer. There are

three calls in the API (Figure 2.6): calls to add and delete a key, and a call to find the

difference between a set of keys at another host.

Our evaluation found that IBF’s and Strata Estimators have the lowest overhead

and best accuracy when hashing each key to 4 cells. In addition, using 80 cells per

stratum in the estimator worked well, and after the first 5 strata, Min-wise hashing pro-

vides better accuracy. Combined as a Difference Digest, the IBF and Estimator provide

the best performance for differences less than 10 to 20% of the set size. This threshold

changes with the ratio of bandwidth to computation, but could be estimated by observing

the throughput during the estimation phase to choose the optimal algorithm.

While we have implemented a generic Key Difference service using Difference

Digests, a next step is to use a KeyDiff service in some application to improve overall

user-perceived performance. While we hope that KeyDiff can improve the endgame

of a Peer-to-Peer protocol, we do not know if there are clear regimes in which it will

improve file download times. Despite this, we hope the simplicity and elegance of

Difference Digests and their application to the classical problem of set difference will

inspire readers to more imaginative uses.

Chapter 2, in part, is a reprint of the material as it will appear in the article “Set

Synchronization without Prior Context using Difference Digests” in the Proceedings

of the Special Interest Group on Data Communications (SIGCOMM), Toronto, ON,

Canada, August 2011. David Eppstein, Michael T. Goodrich, Frank Uyeda, George

Varghese.

Chapter 3

Efficiently Measuring Bandwidth at All

Time Scales

How can a manager of a computing resource detect bursts in resource usage that

cause performance degradation without keeping a complete log? The problem is one of

extracting a needle from a haystack; the problem gets worse as the needle gets smaller

(as finer-grain bursts cause drops in performance) and the haystack gets bigger (as the

rate of consumption increases). While this chapter addresses this general problem, we

focus on detecting bursts of bandwidth usage, a problem that has received much atten-

tion [12, 42, 48] in modern data centers.

Data-center traffic consists of both large bandwidth-intensive flows and short

latency-critical flows [33, 29]. While buffering in the network serves to smooth small

bursts of traffic and maintain high link utilization, correlated bursts can fill switch buffers

causing increases in latency and packet loss. Thus, network administrators would like

to information about the timing, magnitude, and correlation between bursts to aid in

debugging and tuning their distributed applications. To further complicate measurement

efforts, the confluence of multi-Gigabit link speeds and small switch buffers have led to

“microbursts”, very short-lived events, which cause packet drops and large increases in

latency.

The simplest definition of a microburst is the transmission of more than B bytes

of data in a time interval t on a single link, where t is in the order of 100’s of microsec-

onds. For input and output links of the same speed, bursts must occur on several links

42

43

at the same time to overrun a switch buffer, as in the Incast problem [19, 42]. Thus, a

more useful definition is the sending of more than B bytes in time t over several input

links that are destined to the same output switch port. This general definition requires

detecting bursts that are correlated in time across several input links.

Microbursts cause problems because data center link speeds have moved to 10

Gbps while commodity switch buffers use comparatively small amounts of memory

(Mbytes). Since high-speed buffer memory contributes significantly to switch cost,

commodity switches continue to provision shallow buffers, which are vulnerable to

overflowing and dropping packets. Dropped packets lead to TCP retransmissions, which

can cause millisecond latency increases that are unacceptable in data centers.

Administrators of financial trading data centers, for instance, are concerned with

the microburst phenomena [7] because even a latency advantage of 1 millisecond over

the competition may translate to profit differentials of $100 million per year [36]. While

financial networks are a niche application, high-performance computing is not. Expen-

sive, special-purpose switching equipment used in high-performance computing (e.g.

Infiniband and FiberChannel) is being replaced by commodity Ethernet switches. In

order for Ethernet networks to compete, managers need to identify and address the fine-

grained variations in latencies and losses caused by microbursts. At the core of this

problem is the need to identify the bandwidth patterns and corresponding applications

causing these latency spikes so that corrective action can be taken.

Efficient and effective monitoring becomes increasingly difficult as faster links

allow very short-lived phenomenon to overwhelm buffers. For a commodity 24-port 10

Gbps switch with 4 MB of shared buffer, the buffer can be filled (assuming no draining)

in 3.2 msec by a single link. However, given that bursts are often correlated across

several links and buffers must be shared, the time scales at which interesting bursts

occur can be ten times smaller, down to 100’s of µs. Instead of 3.2 msec, the buffer can

overflow in 320 µs if 10 input ports each receive 0.4 MB in parallel. Assume that the

strategy to identify correlated bursts across links is to first identify bursts on single links

and then to observe that they are correlated in time. The single link problem is then to

efficiently identify periods of length t where more than B bytes of data occur. Currently,

t can vary from hundreds of microseconds to milliseconds and B can vary from 100’s of

44

Kbytes to a few Mbytes. Solving this problem efficiently using minimal CPU processing

and logging bandwidth is one of the main concerns of this chapter.

Although identifying “bursts” on a single link for a range of possible time scales

and byte thresholds is challenging, the ideal solution should do two more things. First,

the solution should efficiently extract flows responsible for such bursts so that a manger

can reschedule or rate limit them. Second, the tool should allow a manager to detect

bursts correlated in time across links. While the first problem can be solved using

heavy-hitter techniques [40], we briefly describe some new ideas for this problem in

our context. The second problem can be solved by archiving bandwidth measurement

records indexed by link and time to a relational database, which can then be queried

for persistent patterns. This requires an efficient summarization technique so that the

archival storage required by the database is manageable.

Generalizing to Bandwidth Queries: Beyond identifying microbursts, we believe

that modeling traffic at fine time scales is of fundamental importance. Such modeling

could form the basis for provisioning NIC and switch buffers, and for load balancing and

traffic engineering at fine time scales. While powerful, coarse-grain tools are available,

the ability to flexibly and efficiently measure traffic at different, and especially fine-

grain, resolutions is limited or non-existent.

For instance, we are unable to answer basic questions such as: what is the dis-

tribution of traffic bursts? At which time-scale did the traffic exhibit burstiness? With

the identification of long-range dependence (LRD) in network traffic [24], the research

community has undergone a mental shift from Poisson and memory-less processes to

LRD and bursty processes. Despite its widespread use, however, LRD analysis is hin-

dered by our inability to estimate its parameters unambiguously. Thus, our larger goal

is to use fine-grain measurement techniques for fine-grain traffic modeling.

While it is not difficult to choose a small number of preset resolutions and per-

form measurements for those, the more difficult and useful problem is to support traffic

measurements for all time scales. Not only do measurement resolutions of interest vary

with time (as in burst detection), but in many applications they only become critical after

the fact, that is, after the measurements have already been performed. This chapter de-

scribes an end-host bandwidth measurement tool that succinctly summarizes bandwidth

45

information and yet answers general queries at arbitrary resolutions without maintaining

state for all time scales.

Some representative queries (among many) that we wish such a tool to support

are the following:

1. What is the maximum bandwidth used at time scale t?

2. What is the standard deviation and 95th percentile of the bandwidth at time scale

t?

3. What is the coarsest time scale at which bandwidth exceeds threshold L?

In these queries, the query parameters t or L are chosen a posteriori — after

all the measurements have been performed, and thus require supporting all possible

resolutions and bandwidths.

Existing techniques: All the above queries above can be easily answered by

keeping the entire packet trace. However, our data structures take an order of magnitude

less storage than a packet trace (even a sampled packet trace) and yet can answer flexi-

ble queries with good accuracy. Note that standard summarization techniques (including

simple ones like SNMP packet counters [9]) and more complex ones (e.g., heavy-hitter

determination [35]) are very efficient in storage but must be targeted towards a partic-

ular purpose and at a fixed time scale. Hence, they cannot answer flexible queries for

arbitrary time scales.

Note that sampling 1 in N packets, as in Cisco NetFlow [1], does not provide

a good solution for bandwidth measurement queries. Consider a 10 Gbps link with an

average packet size of 1000 bytes. This link can produce 10 million packets per second.

Suppose the scheme does 1 in 1000 packet sampling. It can still produce 10,000 samples

per second with say 6 bytes per sample for time-stamp and packet size. To identify bursts

of 1000 packets of 1500 bytes each (1.5 MB), any algorithm would look for intervals

containing 1 packet and scale up by the down sampling factor of 1000. The major

problem is that this causes false positives. If the trace is well-behaved and has no bursts

in any specified period (say 10 msec), the scaling scheme will still falsely identify 1 in

1000 packets as being part of bursts because of the large scaling factor needed for data

reduction. Packet sampling, fundamentally, takes no account of the passage of time.

46

From an information-theoretic sense, packet traces, are inefficient representa-

tions for bandwidth queries. Viewing a trace as a time series of point masses (bytes in

each packet), it is more memory-efficient to represent the trace as a series of time inter-

vals with bytes sent per interval. But this introduces the new problem of choosing the

intervals for representation so that bandwidth queries on any interval (chosen after the

trace has been summarized) can be answered with minimal error.

Our first scheme builds on the simple idea that for any fixed sampling interval,

say 100 microseconds, one can easily compute traffic statistics such as max or Standard

Deviation by a few counters each. By exponentially increasing the sampling interval,

we can span an aggregation period of length T , and still compute statistics at all time

scales from microseconds to milliseconds, using only O(logT) counters. We call this

approach Exponential Bucketing (EXPB). The challenge in EXPB is to avoid updating

all log T counters on each packet arrival and to prove error bounds.

Our second idea, dubbed Dynamic Bucket Merge (DBM), constructs an approx-

imate streaming histogram of the traffic so that bursts stand out as peaks in this his-

togram. Specifically, we adaptively partition the traffic into k intervals/buckets, in such

a way that the periods of heavy traffic map to more refined buckets than those of low

traffic. The time-scales of these buckets provide a “visual history” of the burstiness of

the traffic—the narrower the bucket in time, the burstier the traffic. In particular, DBM is

well-suited for identifying not only whether a burst occurred, but how many bursts, and

when.

System Deployment: Exponential Bucketing and Dynamic Bucket Merge have

low computational and storage overheads, and can be implemented at multi-gigabit

speeds in software or hardware. As shown in Figure 3.1, we envision a deployment

scenario where both end hosts and network devices record fine-grain bandwidth sum-

maries to a centralized log server. We argue that even archiving to a single commodity

hard disk, administrators could pinpoint, to the second, the time at which correlated

bursts occurred on given links, even up to a year after the fact.

This data can be indexed using a relational database, allowing administrators

to query bandwidth statistics across links and time. For example, administrators could

issue queries to “Find all bursts that occurred between 10 and 11 AM on all links in

47

Log Server
Query &

Visualize

Realtime

Summaries

Relational

Database

Figure 3.1: Example Deployment. End hosts and network devices implementing EXPB

and DBM push output data over the network to a log server. Data at the server can be

monitored and visualized by administrators then collapsed and archived to long-term,

persistent storage.

Set S”. Set S could be the set of input links to a single switch (which can reveal Incast

problems) or the path between two machines. Bandwidth for particular links can then

be visualized to further delineate burst behavior. The foundation for answering such

queries is the ability to efficiently and succinctly summarize the bandwidth usage of a

trace in real-time, the topic of this chapter.

We break down the remainder of our work as follows. We begin with a dis-

cussion of related algorithms and systems in Section 3.1. Section 3.2 illustrates the

Dynamic Bucket Merge and Exponential Bucketing algorithms, both formally and with

examples. We follow with our evaluations in Section 3.3, describe the implications for

a system like Figure 3.1 in Section 3.4, and conclude in Section 3.5.

3.1 Related Work

Tcpdump [10] is a mature tool that captures a full log of packets at the end

host, which can be used for a wide variety of statistics, including bandwidth at any time

scale. While flexible, tcpdump consumes too much memory for continuous monitoring

at high speeds across every link and for periods of days. Netflow [1] can capture packet

headers in routers but has the same issues. While sampled Netflow reduces storage,

48

configurations with substantial memory savings cannot detect bursts without resulting

in serious false positives. SNMP counters [9], on the other hand, provide packet and

byte counts but can only return values at coarse and fixed time scales.

There are a wide variety of summarization data structures for traffic streams,

many of which are surveyed in [40]. None of these can directly be adapted to solve the

bandwidth problem at all time scales, though solutions to quantile detection do solve

some aspects of the problem [40]. For example, classical heavy-hitters [35] measures the

heaviest traffic flows during an interval. By contrast, we wish to measure “heavy-hitting

sub-intervals across time”, so to speak. However, heavy-hitter solutions are complemen-

tary in order to identify flows that cause the problem. The LDA data structure [34] is for

a related problem – that of measuring average latency. LDA is useful for directly mea-

suring latency violations. Our algorithms are complementary in that they help analyze

the bandwidth patterns that cause latency violations.

DBM is inspired by the adaptive space partitioning scheme of [30], but is greatly

simplified, and also considerably more efficient, due to the time-series nature of packet

arrivals.

3.2 Algorithms

Suppose we wish to perform bandwidth measurements during a time window

[0, T], assuming, without loss of generality, that the window begins at time zero. We

assume that during this period N packets are sent, with pi being the byte size of the ith

packet and ti being the time at which this packet is logged by our monitoring system, for

i = 1, 2, . . . , N . These packets are received and processed by our system as a stream,

meaning that the ith packet arrives before the jth packet, for any i < j.

The bandwidth is a rate, and so converting our observed sequence of N packets

into a quantifiable bandwidth usage requires a time scale. Since we wish to measure

bandwidth at different time scales, let us first make precise what we mean by this. Given

a time scale (or granularity) ∆, where 0 < ∆ < T , we divide the measurement window

[0, T] into sub-intervals of length ∆, and aggregate all those packets that are sent within

the same interval. In this way, we arrive at a sequence S∆ = 〈s1, s2, . . . , sk〉, where si

49

is the sum of the bytes sent during the sub-interval ((i − 1)∆, i∆], and k = ⌈T/∆⌉ is

the number of such intervals.1

Therefore, every choice of ∆ leads to a corresponding sequence S∆, which we

interpret as the bandwidth use at the temporal granularity ∆. All statistical measure-

ments of bandwidth usage at time scale ∆ correspond to statistics over this sequence

S∆. For instance, we can quantify the statistical behavior of the bandwidth at time scale

∆ by measuring the mean, standard deviation, maximum, median, quantiles, etc. of S∆.

In the following, we describe two schemes that can estimate these statistics for

every a posteriori choice of the time scale ∆. That is, after our algorithms have pro-

cessed the packet stream, the users can query for an arbitrary granularity ∆ and receive

provable quality approximations of the statistics for the sequence S∆.

Our first scheme, DBM, is time scale agnostic, and essentially maintains a stream-

ing histogram of the values s1, s2, . . . , sk, by adaptively partitioning the period [0, T].

Our second scheme EXPB explicitly computes statistics for a priori settings of ∆, and

then uses them to approximate the statistics for the queried value of ∆.

Since the two schemes are quite orthogonal to each other, it is also possible to use

them both in conjunction. We give worst-case error guarantees for both of the schemes.

Both schemes are able to compute the mean with perfect accuracy and estimate the

other statistics, such as the maximum or standard deviation, with a bounded error. The

approximation error for the DBM scheme is expressed as an additive error, while the

EXPB scheme offers a multiplicative relative error. In particular, for the DBM scheme,

the estimation of the maximum or standard deviation is bounded by an error term of

the form O(εB), where 0 < ε < 1 is a user-specified parameter dependent on the

memory used by the data structure, and B =
∑N

i=1 pi is the total packet mass over

the measurement window. In the following, we describe and analyze the DBM scheme,

followed by a description and analysis of the EXPB scheme.

3.2.1 Dynamic Bucket Merge

DBM maintains a partition of the measurement window [0, T] into what we call

1To deal with the boundary problem properly, we assume that each sub-interval includes its right

boundary, but not the left boundary. If we assume assume that no packet arrives at time 0, we can form a

proper non-overlapping partition this way.

50

buckets. In particular, an m-bucket partition {b1, b2, . . . , bm}, is specified by a sequence

of time instants t(bi), with 0 < t(bi) ≤ T , with the interpretation that the bucket bi spans

the interval (t(bi−1), t(bi)]. That is, t(bi) marks the time when the ith bucket ends, with

the convention that t(b0) = 0, and t(bm) = T . The number of buckets m is controlled by

the memory available to the algorithm and, as we will show, the approximation quality of

the algorithm improves linearly with m. In the following, our description and analysis

of the scheme is expressed in terms of m. Each bucket maintains O(1) information,

typically the statistics we are interested in maintaining, such as the total number of

bytes sent during the bucket. In particular, in the following, we use the notation p(b) to

denote the total number of data bytes sent during the interval spanned by a bucket b.

The algorithm processes the packet stream p1, p2, . . ., pN in arrival time order,

always maintaining a partition of [0, T] into at most m buckets. (In fact, after the first

m packets have been processed, the number of buckets will be exactly m, and the most

recently processed packet lies in the last bucket, namely, bm.) The basic algorithm is

quite straightforward. When the next packet pj is processed, we place it into a new

bucket bm+1, with time interval (tj−1, T)—recall that tj−1 is the time stamp associated

with the preceding packet pj−1. We also note that the right boundary of the predecessor

bucket bm now becomes tj−1 due to the addition of the bucket bm+1. Since we now

have m+1 buckets, we merge two adjacent buckets to reduce the bucket count down to

m. Several different criteria can be used for deciding which buckets to merge, and we

consider some alternatives later, but in our basic scheme we merge the buckets based

on their packet mass. That is, we merge two adjacent buckets whose sum of the packet

mass is the smallest over all such adjacent pairs. A pseudo-code description of DBM is

presented in Algorithm 6.

DBM Example

To clarify the operation of DBM we give the following example, illustrated in

Figure 3.2.

Suppose that we run DBM with 4 buckets (m = 4), each of which stores a count

of the number of buckets that have been merged into it, the sum of all bytes belonging

to it, and the max number of bytes of any bucket merged into it. Now suppose that 4

51

Algorithm 6: DBM

foreach pj ∈ S do1

Allocate a new bucket bi and set p(bi) = pj2

if i == m + 1 then3

Merge the two adjacent bw, bw+1 for which p(bw) + p(bw+1) is55

minimum;

end6

end7

packets have arrived with masses 10, 20, 35, and 5, respectively. The state of DBM at

this point is shown at the top of Figure 3.2. Note that Algorithm 6 required that we

merge the buckets with the minimum combined sum. Hence, we maintain a min heap

that stores the sums of adjacent buckets.

When a fifth packet with a mass of 40 arrives, DBM allocates a new bucket for it

and updates the heap with the sum of the new bucket and its neighbor.

In the final step, the minimum sum is pulled from the heap and the buckets

contributing to that sum are merged. In this example, the bucket containing mass 10 and

20 are merged into a single bucket with a new mass of 30 and a max bucket value of 20.

Note that we also update the values in the heap, which included the mass of either of the

merge buckets.

DBM Analysis

The key property of DBM is that it can estimate the total number of bytes sent

during any time interval. In particular, let [t, t′] be an arbitrary interval, where 0 ≤
t, t′ ≤ T , and let p(t, t′) be the total number of bytes sent during it, meaning p(t, t′) =
∑N

i=1{pi | t ≤ ti ≤ t′}. Then we have the following result.

Lemma 2. The data structure DBM estimates p(t, t′) within an additive error O(B/m),

for any interval [t, t′], where m is the number of buckets used by DBM and B =
∑N

i=1 pi

is the total packet mass over the measurement window [0, T].

Proof. We first note that in DBM each bucket’s packet mass is at most 2B/(m−1), unless

52

Pkt. Size: 10

Count: 1

Sum: 10
...

20

Count: 1

Sum: 20
...

35

Count: 1

Sum: 35
...

5

Count: 1

Sum: 5
...

Buckets:

Min Heap 30 55 40

10 20 35 5 40

Count: 1

Sum: 40
...

30 55 40

Count: 1

Sum: 10
...

Count: 1

Sum: 20
...

Count: 1

Sum: 35
...

Count: 1

Sum: 5
...

10

Count: 2

Sum: 30
...

20 35

Count: 1

Sum: 35
...

5

Count: 1

Sum: 5
...

65

40

Count: 1

Sum: 40
...

40 45

Figure 3.2: Dynamic Bucket Merge with 4 buckets. Initially each bucket contains a

single packet and the min heap holds the sums of adjacent bucket pairs. When a new

packet (value = 40) arrives, a 5th bucket is allocated and a new entry added to the

heap. In the merge step, the smallest value (30) is popped from the heap and the two

associated buckets are merged. Last, we update the heap values that depended on either

of the merged buckets.

the bucket contains a single packet whose mass is strictly larger than 2B/(m − 1). In

particular, we argue that whenever two buckets need to be merged, there always exists

an adjacent pair with total packet mass less than 2B/(m − 1). Suppose not. Then,

summing the sizes of all (m − 1) pairs of adjacent buckets must produce a total mass

strictly larger than 2(m − 1)B/(m − 1) = 2B, which is impossible since in this sum

each bucket is counted at most twice, so the total mass must be less than 2B.

With this fact established, the rest of the lemma follows easily. In order to es-

timate p(t, t′), we simply add up the buckets whose time spans intersect the interval

53

[t, t′]. Any bucket whose interval lies entirely inside [t, t′] is accurately counted, and so

the only error of estimation comes from the two buckets whose intervals only partially

intersect [t, t′]—these are the buckets containing the endpoints t and t′. If these buckets

have mass less than 2B/(m − 1) each, then the total error in estimation is less than

4B/m, which is O(B
m

). If, on the other hand, either of the end buckets contains a single

packet with large mass, then that packet is correctly included or excluded from the esti-

mation, depending on its time stamp, and so there is no estimation error. This completes

the proof.

Theorem 3. With DBM we can estimate the maximum or the standard deviation of S∆

within an additive error εB, using memory O(1/ε).

Proof. The proof for the maximum follows easily from the preceding lemma. We

simply query DBM for time windows of length ∆, namely, (i∆, (i + 1)∆], for i =

0, 1, . . . , ⌈T/∆⌉, and output the maximum packet mass estimated in any of those in-

tervals. In order to achieve the target error bound, we use m = 4
ε

+ 1 buckets.

We now analyze the approximation of the standard deviation. Recall that the

sequence under consideration is S∆ = 〈s1, s2, . . . , sk〉, for some time scale ∆, where si

is the sum of the bytes sent during the sub-interval ((i − 1)∆, i∆], and k = ⌈T/∆⌉ is

the number of such intervals. Let V ar(S∆), E(S∆), and E(S2
∆), respectively, denote

the variance, mean, and mean of the squares for S∆. Then, by definition, we have

V ar(S∆) = E(S2
∆) − E(S∆)2 =

∑k
i=1 si

2

k
− E(S∆)2

Since DBM estimates each si within an additive error of εB, our estimated vari-

ance respects the following bound:

≤
∑

(si + εB)2

k
− E(S∆)2

However, we can compute E(S∆)2 exactly, because it is just the square of the mean.

In order to derive a bound on the error of the variance, we assume that k > m, that

is, the size of the sequence S∆ is at least as large as the number of buckets in DBM.

(Naturally, statistical measurements are meaningless when the sample size becomes too

small.) With this assumption, we have 2/k < 2/m, and since ε = 4/(m − 1), we get

54

that 2
P

si

k
≤ εB, which, considering k ≥ 1, yields the following upper bound for the

estimated variance:

≤
∑

s2
i

k
− E(S∆)2 +

k + 1

k
ε2B2 ≤ V ar(S∆) + 2ε2B2

which implies the claim.

Similarly, we can show the following result for approximating quantiles of the

sequence S∆.

Theorem 4. With DBM we can estimate any quantile of S∆ within an additive error εB,

using memory O(1/ε).

Proof. Let s1, s2, . . . , sk be the sequence of data in the intervals (i∆, (i + 1)∆], for

i = 1, 2, . . . , k = ⌈T/∆⌉, sorted in increasing order, and let ŝ1, ŝ2, . . . , ŝk be the sorted

estimated sequence for the same intervals. We now compute the desired quantile, for

instance the 95th percentile, in this sequence. Supposing the index of the quantile is

q, we return ŝq. We argue that the error of this approximation is O(εB). We do this

by estimating bounds on the si values that are erroneously (due to approximation) mis-

classified, meaning reported below or equal the quantile when they are actually larger

or vice versa. If no si have been misclassified then ŝq and sq correspond to the same

sample, and by Lemma 2 the estimated value ŝq − sq ≤ εB, hence the claim follows.

On the other hand, if a misclassification occurred, then the sample sq is reported at an

index different than q in the estimated sequence. Assume without loss of generality that

the sample sq has been reported as ŝu where u > q. Then, by the pigeonhole princi-

ple, there is at least a sample sh (h > q) that is reported as ŝd, d ≤ q. By Lemma 2,

ŝd − sh ≤ εB. Since sq and sh switched ranks in the estimated sequence ŝ, by Lemma 2

it holds that sh − sq ≤ εB and ŝu − ŝd ≤ εB. By assumption u > q ≥ d, then it follows

that ŝu ≥ ŝq ≥ ŝd in the sorted sequence ŝ, which implies that ŝq − ŝd ≤ εB. The chain

of inequalities implies that ŝq − sq ≤ 3εB, which completes the proof.

Algorithm 6 can be implemented at the worst-case cost of O(log m) per packet,

with the heap operation being the dominant step. The memory usage of DBM is Θ(m)

as each bucket maintains O(1) information.

55

Extensions to DBM for better burst detection

Generic DBM is a useful oracle for estimating bandwidth in any interval (chosen

after the fact) with bounded additive error. However, one can tune the merge rule of

DBM if the goal is to pick out the bursts only. Intuitively, if we have an aggregation

period with k bursts for small k (say 10) spread out in a large interval, then ideally

we would like to compress the large trace to k high-density intervals. Of course, we

would like to also represent the comparatively low traffic adjacent intervals as well, so

an ideal algorithm would partition the trace into 2k + 1 intervals where the bursts and

ideal periods are clearly and even visually identified. We refer to the generic scheme

discussed earlier that uses merge-by-mass as DBM-mm, and describe two new variants as

follows.

• merge-by-variance (DBM-mv): merges the two adjacent buckets that have the min-

imum aggregated packet mass variance

• merge-by-range (DBM-mr): merges the two adjacent buckets that have the mini-

mum aggregated packet mass range (defined as the difference between maximum

and minimum packet masses within the bucket)

These merge variants can also be implemented in logarithmic time, and require

storing O(1) additional information for each bucket (in addition to p(bi)).

One minor detail is that DBM-mv and DBM-mr are sensitive to null packet mass

in an interval while DBM-mm is not. For these reasons, we make the DBM-mr and

DBM-mv algorithms work on the sequence defined by S∆, where ∆ is the minimum time

scale at which bandwidth measurements can be queried. Then DBM-mr and DBM-mv

represents S∆ as a histogram on m buckets, where each bucket has a discrete value for

the signal. The goal of a good approximation is to minimize its predicted value versus

the true under some error metric. We consider both the L2 norm and the L∞ norm for

the approximation error.

E2 = (

n
∑

i=1

|si − ŝi|2)
1

2 (3.1)

56

where ŝi is the approximation for value si.

E∞ = maxn
i=1|si − ŝi| (3.2)

We compare the performance of DBM-mr and DBM-mv algorithms with the opti-

mal offline algorithms, that is, a bucketing scheme that would find the optimal partition

of S∆ to minimize the E2 or the E∞ metric. Then, the analysis of [17, 27] can be

adapted to yield the following results that formally state our intuitive goal of picking out

m bursts with 2m + 1 pieces of memory.

Theorem 5. The L∞ approximation error of the m-bucket DBM-mr is never worse than

the corresponding error of an optimal m/2-bucket partition.

Theorem 6. The L2 approximation error of the m-bucket DBM-mv is at most
√

2 times

the corresponding error of an optimal m/4-bucket partition.

3.2.2 Exponential Bucketing

Our second scheme, which we call Exponential Bucketing (EXPB), explicitly

computes statistics for a priori settings of ∆1, . . . , ∆m, and then uses them to approx-

imate the statistics for the queried value for any ∆, for ∆1 ≤ ∆ ≤ ∆m. We assume

that the time scales grow in powers of two, meaning that ∆i = 2i−1∆1. Therefore, we

can assume that the scheme processes data at the time scale ∆1, namely, the sequence

S∆1
= (s1, s2, . . . , sk).

Conceptually, EXPB maintains statistics for all m time scales ∆1, . . . , ∆m. A

naı̈ve implementation would require updating O(m) counters per (aggregated) packet si.

However, by carefully orchestrating the accumulator update when a new si is available

it is possible to avoid spending m updates per measurement as shown in Algorithm 7.

The intuition is as follows. Suppose one is maintaining statistics at 100 µs and

200 µs intervals. When a packet arrives, we update the 100 µs counter but not the 200

µs counter. Instead, the 200 µs counter is updated only when the 100 µs counter is

zeroed. In other words, only the lowest granularity counter is updated on every packet,

and coarser granularity counters are only updated when all the finer granularity counters

are zeroed.

57

Algorithm 7: EXPB

sum=< 0, . . . , 0 > (m times) ;1

foreach si do2

sum[0]=si;3

j=0;4

repeat66

updatestat(j,sum[j]);88

if j < m then9

sum[j+1]+=sum[j];10

end11

sum[j]=0;12

j++;13

until i mod 2j 6= 0 or j ≥ m ;14

end15

EXPB Example

To better understand the EXPB algorithm we now present the example illustrated

in Figure 3.3.

In this example, we maintain 3 buckets (m = 3) each of which stores statistics

at time scales of 1, 2 and 4 time units. Each bucket stores the count of the intervals

elapsed, the sum of the bytes seen in the current interval, and fields to compute max

and standard deviation. We label the time units along the top and the number of bytes

accumulated during each interval along the bottom.

In the first time interval 10 bytes are recorded in the first bucket and 10 is pushed

to the sum of the second bucket. We repeat this operation when 20 is recorded in the

second interval. Since 2 time units have elapsed, we also update the statistics for the ∆2

time scale, and add bucket two’s sum to bucket 3. In the third interval we update bucket

1 as before. Finally, at time 4 we update bucket 2 with the current sum from bucket

1, update bucket two’s statistics, and push bucket two’s sum to bucket 3. Finally, we

update the statistics for ∆3 with bucket three’s sum.

58

Count:

Sum:

Sum^2:

Max:

1

2

...

Buckets

10 20Samples: 35 5

Time: 1 2 3 4

Count: 1

Sum: 10

...

Count: 2

Sum: 20

...

Count: 1

Sum: 30

...

Count: 3

Sum: 35

...

Count: 4

Sum: 5

...

Count: 2

Sum: 40

...

Count: 1

Sum: 70

...3

Count:

Sum:

Sum^2:

Max:

Count:

Sum:

Sum^2:

Max:

Figure 3.3: Exponential Bucketing Example. Each of the m buckets collects statistics

at 2i−1 times the finest time scale. At the end of each time scale, ∆i, buckets 1 to i must

be updated. Before storing the new sum in a bucket j, we first add the old sum into

bucket j + 1, if it exists.

EXPB Analysis

Algorithm 7 uses O(m) memory and runs in O(k) worst-case time, where k =

⌈T/∆1⌉ is the number of intervals at the lowest time scale of the algorithm. The per-

interval processing time is amortized constant, since the repeat loop starting at Line 6

simply counts the number of trailing zeros in the binary representation of i, for all 0 <

i < k = T/∆. The procedure updatestat() called at Line 8 updates in constant time

the O(1) information necessary to maintain the statistics for each ∆i, for 1 ≤ i ≤ m.

We now describe and analyze the bandwidth estimation using EXPB. Given any

query time scale ∆, we output the maximum of the bandwidth corresponding to the

smallest index j for which ∆j ≥ ∆, and use the sum of squared packet masses stored

for granularity ∆j to compute the standard deviation. The following lemma bounds the

error of such an approximation.

Lemma 3. With EXPB we can return an estimation of the maximum or standard de-

viation of S∆ that is between factor 1/2 and 3 from the true value. The bound on the

59

standard deviation holds in the limit when the ratio E(S2
∆)/E(S∆)2 is large.

Proof. We first prove the result for the statistic maximum, and then address the standard

deviation. Let I be the interval ((i − 1)∆, i∆] corresponding to the time scale ∆ in

which the maximum value is achieved, and let p(I) be this value. Since ∆j ≥ ∆,

there are at two most consecutive intervals Ij
i , I

j
i+1 at time scale ∆j that together cover

I . By the pigeonhole principle, either Ij
i or Ij

i+1 must contain at least half the mass of

I , and therefore the maximum value at time scale ∆j is at least 1/2 of the maximum

value at ∆. This proves the lower bound side of the approximation. In order to obtain

a corresponding upper bound, we simply observe that if Ij
i is the interval at time scale

∆j with the maximum value, then Ij
i overlaps with at most 3 intervals of time scale ∆.

Thus, the maximum value at time scale ∆j cannot be more than 3 times the maximum

at ∆ proving an upper bound on the approximation.

The analysis for the standard deviation follows along the same lines, using the

observation that stddev∆ =
√

E(S2
∆) − E(S∆)2. An argument similar to the one used

for the maximum value holds for the approximation of E(S2
∆). Then assuming the ratio

E(S2
∆)/E(S∆)2 to be a constant sufficiently greater than 1 implies the claim. We omit

the simple algebra from this extended abstract.

We note that there is a non-trivial extension of EXPB which allows it to work

with a set of exponentially increasing time granularities whose common ratio can be

any α > 1. This can reduce average error. For a general α > 1, Algorithm 7 cannot

be easily adapted, so we need a generalization of it that uses an event queue while

processing measurements to schedule when in the future a new measurement of length

∆j must be sent to updatestat(). The details are omitted for lack of space.

3.2.3 Culprit Identification

As mentioned earlier, we do not want to simply identify bursts but also to identify

the flow (e.g., TCP connection, or source IP address, protocol) that caused the burst so

that the network manager can reschedule or move the offending station or application.

The naive approach would be to add a heavy-hitters [35] data structure to each DBM

60

bucket, which seems expensive in storage. Instead, we modify DBM to include two extra

variables per bucket: a flowID and a flow count for the flowID.

The simple heuristic we suggest is as follows. Initially, each packet is placed in

a bucket, and the bucket’s flowID is set to the flowID of its packet. When merging two

buckets, if the buckets have the same flowID, then that flowID becomes the flowID of

the merged bucket and the flow counts are summed. If not, then one of the two flowIDs

is picked with probability proportional to their flow counts. Intuitively, the higher count

flows are more likely to be picked as the main contributor in each bucket as they are

more likely to survive merges.

For EXPB, a simple idea is to use a standard heavy-hitters structure [35] corre-

sponding to each of the logarithmic time scales. When each counter is reset, we update

the flowID if the maximum value has changed and reinitialize the heavy-hitters struc-

ture for the next interval. This requires only a logarithmic number of heavy-hitters

structures. Since there appears to be redundancy across the structures at each time scale,

more compression appears feasible but we leave this for future work.

3.3 Evaluation

We now evaluate the performance and accuracy of DBM and EXPB to show that

they fulfill our goal of a tool that efficiently utilizes memory and processing resources

to faithfully capture and display key bandwidth measures. We will show that DBM and

EXPB use significantly fewer resources than packet tracing and are suitable for network-

wide measurement and visualization.

3.3.1 Measurement Accuracy

We implemented EXPB and the three variants of DBM as user-space programs and

evaluated them with real traffic traces. Our traces consisted of a packets captured from

the 1 Gigabit switch that connects several infrastructure servers used by the Systems

and Networking group at U.C. San Diego, and socket-level send data produced by the

record-breaking TritonSort sorting cluster [43].

Our “rsync” trace captured individual packets from an 11-hour period during

61

which our NFS server ran its monthly backup to a remote machine using rsync. This

trace recorded the transfer of 76.2 GB of data in 60.6 million packets, of which 66.6

GB was due to the backup operation. The average throughput was 15.4 Mbps with a

maximum of 782 Mbps for a single second.

The “tritonsort” trace contains time-stamped byte counts from successful send

system calls on a single host during the sorting of 500 GB of data using 23 nodes con-

nected by a 10 Gbps network. This trace contains an average of 92,488 send events per

second, with a peak of 123,322 events recorded in a single 1-second interval. In total,

20.8 GB were transferred over 34.24 seconds for an average throughput of 4.9 Gbps.

Ideally, our evaluation would include traffic from a mix of production applica-

tions running over a 10 Gbps network. While we do not have access to such a de-

ployment, our traces provide insight into how DBM and EXPB might perform given the

high bandwidth and network utilization of the “tritonsort” trace and the large variance

in bandwidth from second to second in the “rsync” trace.

For our accuracy evaluation, we used an aggregation period of 2 seconds. To

avoid problems with incomplete sampling periods in EXPB, we must choose our time

scales such that they all evenly divide our aggregation period. Since the prime factors of

2 seconds in nsec are 211 and 510 nsec, EXPB can use up to 11 buckets. Thus for EXPB,

we choose the finest time scale to be ∆ = 78.125 µs (57 nsec) and the coarsest to be

∆ = 80 msec (21157 nsec), which is consistent with the time scales for interesting bursts

in data centers. For consistency, we also configure DBM to use a base sampling interval

of 78.125 µs, but note that it can answer queries up to ∆ = 2 seconds.

To provide a baseline measurement, we computed bandwidth statistics for all of

our traces at various time scales where ∆ ≥ 78.125 µs. To ensure that all measurements

in S∆ are equal, we only evaluated time scales that evenly divided 2 seconds. In total,

this provided us with ground-truth statistics at 52 different time scales ranging from

78.125 µs to 2 seconds. In the following sections we report accuracy in terms of error

relative to these ground-truth measurements. While any number of values could be used

for ∆ and T in practice, we used these values across our experiments for the sake of a

consistent and representative evaluation between algorithms.

62

Accuracy vs. Memory

We begin by investigating the tradeoff between memory and accuracy. At one

extreme, SNMP can calculate average bandwidth using only a single counter. In con-

trast, packet tracing with tcpdump can calculate a wide range of statistics with perfect

accuracy, but with storage cost scaling linearly with the number of packets. Both DBM

and EXPB provide a tradeoff between these two extremes by supporting complex queries

with bounded error, but with orders of magnitude less memory.

For comparison, consider the simplest event trace, which captures a 64-bit times-

tamp and a 16-bit byte length for each packet sent or received. Using this data, one could

calculate bandwidth statistics for the trace with perfect accuracy at a memory cost of 6

bytes per event. In contrast, DBM and EXPB require 8 and 16 bytes of storage per bucket

used, respectively, along with a few bytes of metadata for each aggregation period.

To quantify these differences, we queried our traces for max, standard deviation,

and 95th percentile (DBM only). For each statistic, we compute the average relative error

of the measurements at each of our reference time scales and report the worst-case. To

avoid spurious errors due to low sample counts, we omit accuracy data for standard

deviations with fewer than 10 samples per aggregation period and 95th percentiles with

fewer than 20 samples per aggregation period. We show the tradeoff between storage

and accuracy in Table 3.1.

While the simple packet trace gives perfectly accurate statistics, both DBM and

EXPB consume memory at a fixed rate, which can be configured by specifying the num-

ber of buckets and the aggregation period. In the presented configuration, both DBM and

EXPB generate 4 KBps and 96 Bps, respectively — orders of magnitude less memory

than the simple trace.

The cost of reduced storage overhead in DBM and EXPB is the error introduced

in our measurements. However, we see that the range of average relative error rates

is reasonable for max, standard deviation, and 95th percentile measurements. Further,

of the DBM algorithms, DBM-mr gives the lowest errors throughout. While not shown,

DBM’s errors are largely due to under-estimation, but its accuracy improves as the query

interval grows. EXPB gives consistent estimation errors for max across all of our refer-

ence points, but gradually degrades for standard deviation estimates as query intervals

63

increase. Thus, for this trace, EXPB achieves the lowest error for query intervals less

than 2msec. We have divided Table 3.1 to show the worst-case errors in these regions.

In Table 3.2 , we show the accuracy of DBM-mr and EXPB when run on the

“rsync” trace with the same parameters as before. We note that again DBM-mr gives the

most accurate results for larger query intervals, but now out-performs EXPB for query

intervals greater than 160µs for max and 1msec for standard deviation.

To see the effect of scaling the number of buckets, we picked a representative

query interval of 400 µs and investigated the accuracy of DBM-mr as the number of

buckets were varied. The results of measuring the max, standard deviation and 95th

percentile on the “tritonsort” trace are shown in Figure 3.4. We see that the relative

error for all measurements decreases as the number of buckets is increased. However, at

4,000 buckets the curves flatten significantly and additional buckets beyond this do not

produce any significant improvement in accuracy. While one might expect the error to

drop to zero when the number of buckets is equal to the number of samples at S∆ (5000

samples for 400µs), we do not see this since the trace is sampled at a finer granularity

(78.125 µs) and the buckets are merged online. There is no guarantee that DBM will

merge the buckets such that each spans exactly 400µs of the trace.

With approximations of the max and standard deviation with this degree of ac-

curacy, we see both DBM and EXPB as an excellent, low-overhead alternative to packet

tracing.

DBM Visualization

One unique property of the DBM algorithms is that they can be visualized to show

users the shape of the bandwidth curves. Note that we proved earlier that DBM-mr is

optimal in some sense in picking out bursts. We now investigate experimentally how all

DBM variants do in burst detection.

In Figures 3.5 we show the output for a single, 2 second aggregation period

from the “rsync” trace using DBM-mr. For visual clarity, we configured DBM-mr to

aggregate measurements at a 4 msec base time scale (250 data points) using 9 buckets.

Figure 3.5 shows the raw data points (bandwidth use in each 4 msec interval of the

2 second trace) with the DBM-mr output superimposed. Notice that DBM-mr picks

64

 0

 5

 10

 15

 20

 25

 30

 35

 10 100 1000 10000
R

e
la

ti
v
e
 E

rr
o
r

(%
)

Bucket Count

Quartiles + min,max
Avg

(a) Max measurements

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000

R
e
la

ti
v
e
 E

rr
o
r

(%
)

Bucket Count

Quartiles + min,max
Avg

(b) Std. Dev. measurements

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 100 1000 10000

R
e
la

ti
v
e
 E

rr
o
r

(%
)

Bucket Count

Quartiles + min,max
Avg

(c) 95th Percentile measurements

Figure 3.4: Relative error for DBM-mr algorithm shown for the 400 µs time scale.

The box plots show the median and the range of relative errors from the 25th to 75th

percentiles, with the box whiskers indicating the min and max errors.

65

out four bursts (the vertical lines). The fourth burst looks smaller than the 3.1 Mbps

burst observable in the raw trace. This is because there were two adjacent measurement

intervals in the raw trace with bandwidths of 3.1 and 2.2 Mbps, respectively. DBM-mr

merged these measurements into a single bucket of with an average bandwidth of 2.65

Mbps for 8 msec.

We show the output for all DBM algorithms in a more clean visual form in Fig-

ures 3.6a, 3.6c and 3.6e. We have normalized the width of the buckets and list their

start and end times on the x-axis. Additionally, we label each bucket with its mass

(byte count). This representation compresses periods of low traffic and highlights short-

lived, high-bandwidth events. From the visualization of DBM-mr in Figure 3.6e, we

can quickly see that there were four periods of time, each lasting between 4 and 8 msec

where the bandwidth exceeded 2.3 Mbps. Note that in Figure 3.6a, DBM-mm picks out

only two bursts. The remaining bursts have been merged into the three buckets spanning

the period from 1440 to 1636 msec, thereby reducing the bandwidth (the y-axis) because

the total time of the combined bucket increases.

In practice, a network administrator might want to quickly scan such a visualiza-

tion and look for microburst events. To simulate such a scenario, we randomly inserted

three bursts, each lasting 4 msec and transmitting between 4.0 and 4.4 MB of data. We

show the DBM visualization for this augmented trace in bottom of Figure 3.6. DBM-mr

and DBM-mm both allocate their memory resources to capture all three of these impor-

tant events, even though they only represent 12 msec of a 2 second aggregation period.

Again, DBM-mr cleanly picks out the three bursts.

Accuracy at High Load

As mentioned in Lemma 2, the error associated with the DBM algorithms in-

creases with the ratio of total packet mass (total bytes) to number of buckets within an

aggregation period. We now investigate to what extent increasing the mass within an

aggregation period affects the measurement accuracy of DBM. To evaluate this, we first

configured DBM to use a base time scale of ∆ = 78.125 µs and 1000 buckets, as be-

fore, but vary the mass stored in DBM by changing the aggregation period. Figures 3.7a

& 3.7b show the change in average relative error for both max and standard deviation

66

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 500 1000 1500 2000

R
a
te

 (
M

b
p
s
)

Time (msec)

Trace
DBM-mr

Figure 3.5: Visualization of events from a 2 second aggregation period overlaid with

the output of DBM-mr using 9 buckets and a 4 msec measurement time scale.

statistics in our high-bandwidth “tritonsort” trace at a representative query time scale

(400 µs) as the aggregation period is varied between 1 and 16 seconds.

For DBM-mm and DBM-mv with 1000 buckets the relative error diverges signifi-

cantly as the aggregation period is increased. In contrast, DBM-mr shows only a subtle

degradation for max from 5.9% to 12.3%. For standard deviation, DBM-mv show con-

sistently poor performance with average relative errors increasing from 32% to 64%,

while both DBM-mm and DBM-mr trend together with DBM-mr’s errors ranging from

9.8 to 31.7%.

We contrast DBM-mr’s performance for these experiments with that of EXPB.

We see that EXPB’s average relative error in the max measurement gradually falls from

2.8% to 1.9% as the aggregation period increases. Further, the error in standard devia-

tion falls from 1.4% at a 1 second aggregation period to 0.5% at 16 seconds.

These results indicate that degradation in accuracy does occur as the ratio of

the total packet mass to bucket count increases, as predicted by Lemma 2. While DBM

must be configured correctly to bound the ratio of packet mass to bucket count, EXPB’s

accuracy is largely unaffected by the packet mass or aggregation period.

67

 0

 0.5

 1

 1.5

 2

 2.5

 3

0 64 472 480 1440 1488 1536 1636 1644 2000

R
a
te

 (
M

b
p
s
)

Time (msec)

DBM-mm

1560
2064

2676

1724

1520 1560 2676

2652

2028

(a) DBM-mm visualization

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

0 304 308 580 584 1488 1636 1688 1692 2000

R
a
te

 (
M

b
p
s
)

Time (msec)

DBM-mm

3624

4200000

2676

4400000

3244 4236 3120

4000000

1560

(b) DBM-mm visualization of bursty traffic

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

0 64 472 480 1440 1444 1540 1636 1648 2000

R
a
te

 (
M

b
p
s
)

Time (msec)

DBM-mv

1560
2064

2676

1724

1520

1896 2340

3120

1560

(c) DBM-mv visualization

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

0 308 580 584 1440 1540 1636 1688 1692 2000

R
a
te

 (
M

b
p
s
)

Time (msec)

DBM-mv

42036242676

4400000

1724 3416 2340 3120

4000000

1560

(d) DBM-mv visualization of bursty traffic

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

0 472 480 1440 1444 1540 1548 1636 1644 2000

R
a
te

 (
M

b
p
s
)

Time (msec)

DBM-mr

3624

2676

1724

1520

1896

2340

0

2652

2028

(e) DBM-mr visualization

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

0 304 308 580 584 1636 1648 1688 1692 2000

R
a
te

 (
M

b
p
s
)

Time (msec)

DBM-mr

3624

4200000

2676

4400000

7480 3120 0

4000000

1560

(f) DBM-mr visualization of bursty traffic

Figure 3.6: Visualization of DBM with 9 buckets over a single 2 second aggregation

period. The start and end times for each bucket are shown on the x-axis, and each

bucket is labeled with its mass (byte count). The top figures show the various DBM

approximations of a single aggregation period, while the lower graphs show the same

period with three short-lived, high bandwidth bursts randomly inserted.

68

 0

 5

 10

 15

 20

 25

 1 2 4 8 16

R
e
la

ti
v
e
 E

rr
o
r

(%
)

Aggregation Period (sec)

DBM-mm
DBM-mv
DBM-mr

EXPB

(a) Max measurements with 1000 buckets

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 4 8 16

R
e
la

ti
v
e
 E

rr
o
r

(%
)

Aggregation Period (sec)

DBM-mm
DBM-mv
DBM-mr

EXPB

(b) Std. Dev. measurements with 1000 buckets

Figure 3.7: Average relative error for the DBM with 1000 buckets and EXPB with 11

buckets shown on the “tritonsort” trace for a 400 µs query interval and various aggrega-

tion periods.

3.3.2 Performance Overhead

As previously stated, we seek to provide an efficient alternative to packet capture

tools. Hence we compare the performance overhead of DBM and EXPB to that of an

unmodified vanilla kernel, and to the well-established tcpdump[10].

We implemented our algorithms in the Linux 2.6.34 kernel along with a userspace

program to read the captured statistics and write them to disk. To provide greater com-

putational efficiency we constrained the base time scale and the aggregation period to be

powers of 2. The following experiments were run on 2.27 GHz, quad-core Intel Xeon

servers with 24 GB of memory. Each server is connected to a top-of-rack switch via 10

Gbps Ethernet and has a round trip latency of approximately 100 µs.

To quantify the impact of our monitoring on performance, we first ran iperf [5]

to send TCP traffic between two machines on our 10 Gbps network for 10 seconds.

In addition, we instrumented our code to report the time spent in our routines during

the test. We first ran the vanilla kernel source, then added different versions of our

monitoring to aggregate 64 µs intervals over 1 second periods. We report both the

bandwidth achieved by iperf and the average latency added to each packet at the sending

server in Table 3.3. For comparison, we also report performance numbers for tcpdump

69

when run with the default settings and writing the TCP and IP headers (52 bytes) of each

packet directly to local disk. As DBM-mr is nearly identical to DBM-mm with respect to

implementation, we omit DBM-mr’s results.

As discussed in section 3.2.1, we see that the latency overhead per packet in-

creases roughly as the log of the number of buckets. However, iperf’s maximum through-

put is not degraded by the latency added to each packet. Since the added latency per

packet is several orders of magnitude less than the RTT, the overhead of DBM should not

affect TCP’s ability to quickly grow its congestion window. In contrast to DBM, tcpdump

achieves 3.5% less throughput.

To observe the overhead of our monitoring on an application, we transferred

a 1GB file using scp. We measured the wall-clock time necessary to complete the

transfer by running scp within the Linux’s time utility. To quantify the affects of our

measurement on the total completion time, we measured the total overhead imposed on

packets as they moved up and down the network stack. We report this overhead as a

percentage of each experiment’s average completion time (monitoring time divided by

scp completion time). Each experiment was replicated 60 times and results are reported

in Table 3.4. We see that although the cumulative overhead added by DBM grows log-

arithmically with the number of buckets, the time for scp to complete increases by at

most 4.5%.

We see that our implementations of DBM and EXPB have a negligible impact on

application performance, even while monitoring traffic at 10 Gbps.

3.3.3 Evaluation Summary

Our experiments indicate DBM-mr consistently provides better burst detection

and has reasonable average case and worst case error for various statistics. When mea-

suring at arbitrary time scales, EXPB has comparable or better average and worst-case

error than DBM while using less memory. In addition, EXPB is unaffected by high mass

in a given aggregation period. On other hand, DBM can approximate time series, which

is useful for seeing how burst are distributed in time and for calculating more advanced

statistics (i.e. percentiles). We recommend a parallel implementation where EXPB is

used for Max and Standard Deviation and DBM-mr is used for all other queries.

70

3.4 System Implications

So far, we have described DBM and EXPB as part of an end-host monitoring tool

that can aggregate and visualize bandwidth data with good accuracy. However, we see

these algorithms a part of a larger infrastructure monitoring system.

Long-term Archival and Database Support It is useful for administrators to retro-

spectively troubleshoot problems that are reported by customers days after the fact. At

slightly more than 4 KBps, the data produced by both DBM and EXPB for a week (2.4

GB per link) could easily be stored to a commodity disk. With this data, an administra-

tor can pinpoint traffic abnormalities at microsecond time scales and look for patterns

across links. The data can be compacted for larger time scales by reducing granularity

for older data. For example, one hour of EXPB data could be collapsed into one set of

buckets containing max and standard deviation information at the original resolutions

but aggregated across the hour.

With such techniques, fine-grain network statistics for hundreds of links over an

entire year could be stored to a single server. The data could be keyed by link and time

and stored in a relational database to allow queries across time (is the traffic on a single

link becoming more bursty with time?) or across links (did a number of bursts correlate

on multiple switch input ports?).

Hardware Implementation Both DBM and EXPB algorithms can be implemented in

hardware for use in switches and routers. EXPB has an amortized cost of two bucket

updates per measurement interval. Since bucket updates are only needed at the fre-

quency of the measurement time scale, these operations could be put on a work queue

and serviced asynchronously from the main packet pipeline. The key complication for

implementing DBM in hardware is maintaining a binary heap. However, a 1000 bucket

heap can be maintained in hardware using a 2-level radix-32 heap that uses 32-way

comparators at 10 Gbps. Higher bucket sizes and speeds will require pipelining the

heap. The extra hardware overhead for these algorithms in gates is minimal. Finally, the

logging overhead is very small, especially when compared to NetFlow.

71

3.5 Conclusions

Picking out bursts in a large amount of resource usage data is a fundamental

problem and applies to all resources, whether power, cooling, bandwidth, memory, CPU,

or even financial markets. However, in the domain of data center networks, the increase

of network speeds beyond 1 Gigabit per second and the decrease of in-network buffering

has made the problem one of great interest.

Managers today have little information about how microbursts are caused. In

some cases they have identified paradigms such as InCast, but managers need better

visibility into bandwidth usage and the perpetrators of microbursts. They would also

like better understanding of the temporal dynamics of such bursts. For instance, do they

happen occasionally or often? Do bursts linger below a tipping point for a long period

or do they arise suddenly like tsunamis? Further, correlated bursts across links lead

to packet drops. A database of bandwidth information from across an administrative

domain would be valuable in identifying such patterns. Of course, this could be done by

logging a record for every packet, but this is too expensive to contemplate today.

Our work provides the first step to realizing such a vision for a cheap network-

wide bandwidth usage database by showing efficient summarization techniques at links

(∼4 KB per second, for example, for running DBM and EXPB on 10 Gbps links) that

can feed a database backend as shown in Figure 3.1. Ideally, this can be supplemented

by algorithms that also identify the flows responsible for bursts and techniques to join

this information across multiple links to detect offending applications and their timing.

Of the two algorithms we introduce, Exponential Bucketing offers accurate measure-

ment of the average, max and standard deviation of bandwidths at arbitrary sampling

resolutions with very low memory. In contrast, Dynamic Bucket Merge approximates

a time-series of bandwidth measurements that can be visualized or used to compute

advanced statistics, such as quantiles.

While we have shown the application of DBM and EXPB to bandwidth measure-

ments in end hosts, these algorithms could be easily ported to in-network monitoring de-

vices or switches. Further, these algorithms can be generally applied to any time-series

data, and will be particularly useful in environments where resource spikes must be

detected at fine time scales but logging throughput and archival memory is constrained.

72

Chapter 3, in part, is a reprint of the material as it appears in the article “Effi-

ciently Measuring Bandwidth at All Time Scales” in the Proceedings of the 8th Sympo-

sium on Networked Systems Design and Implementation (NSDI), Boston, MA, March

2011. Frank Uyeda, Luca Foschini, Subhash Suri, George Varghese.

73

T
a

b
le

3
.1

:
M

em
o

ry
v

s.
A

cc
u

ra
cy

.
W

e
ev

al
u

at
e

th
e

“t
ri

to
n

so
rt

”
tr

ac
e

w
it

h
a

b
as

e
ti

m
e

sc
al

e
o

f
∆

=
7

8
.1

2
5

µ
s

an
d

a
2

se
co

n
d

ag
g

re
g

at
io

n
p

er
io

d
.

D
at

a
o

u
tp

u
t

ra
te

is
re

p
o

rt
ed

fo
r

a
si

m
p

le
p

ac
k
et

tr
ac

e
co

m
p

ar
ed

w
it

h
th

e
D
B
M

an
d
E
X
P
B

al
g

o
ri

th
m

s.
F

o
r

ea
ch

st
at

is
ti

c,
w

e
co

m
p

u
te

th
e

m
ax

o
f

th
e

av
er

ag
e

re
la

ti
v
e

er
ro

r
o

f
m

ea
su

re
m

en
ts

fo
r

ea
ch

o
f

o
u

r
re

fe
re

n
ce

ti
m

e
sc

al
es

.

M
ax

o
f

A
v

g
.

R
el

at
iv

e
E

rr
o

r

≤
2

m
se

c
>

2
m

se
c

O
u

tp
u

t
R

at
e

M
ax

S
.D

ev
.

9
5

th
M

ax
S

.D
ev

.
9

5
th

p
ac

k
et

tr
ac

e
(a

v
g

)
5

5
5

K
B

p
s

(p
ea

k
)

7
4

0
K

B
p

s
0

%
0

%
0

%
0

%
0

%
0

%

D
B
M
-
m
m

,
1

0
0

0
b
u

ck
et

s
4

K
B

p
s

2
5

.9
%

4
3

.3
%

1
8

.3
%

2
.2

%
5

.7
%

1
.1

%

D
B
M
-
m
v

,
1

0
0

0
b
u

ck
et

s
4

K
B

p
s

1
6

.7
%

5
8

.9
%

2
6

.7
%

7
.2

%
3

9
.0

%
1

0
.4

%

D
B
M
-
m
r

,
1

0
0

0
b
u

ck
et

s
4

K
B

p
s

1
4

.0
%

3
5

.0
%

1
6

.1
%

2
.0

%
4

.1
%

0
.9

%

E
X
P
B

,
1

1
b
u

ck
et

s
9

6
B

p
s

2
.7

%
2

.5
%

N
/A

2
.8

%
8

.1
%

N
/A

74

Table 3.2: We repeated our evaluation with the “rsync” trace and report accuracy re-

sults for our two best performing algorithms — DBM-mr and EXPB. We calculated the

average relative error for each of our reference time scale and show the worst case.

Max of Avg. Rel. Error

Output Max S.Dev. 95th

trace (avg) 9.2 KBps

(peak) 396 KBps 0% 0% 0%

DBM-mr 4 KBps 7.6% 14.7% 14.9%

EXPB 96 Bps 14.2% 5.9% N/A

Table 3.3: Average TCP bandwidth reported by iperf over 60 10-second runs. We also

show the average time spent in the kernel-level monitoring functions for each packet

sent. DBM and EXPB were run with a base time scale of ∆ = 64 µs and T = 1 second

aggregation period.

Version Buckets Avg. BW Overhead/Pkt

vanilla N/A 9.053 Gbps 0.0 nsec

DBM-mm 10 9.057 Gbps 256.5 nsec

100 9.010 Gbps 335.7 nsec

1000 9.104 Gbps 237.5 nsec

10000 8.970 Gbps 560.4 nsec

DBM-mv 10 9.043 Gbps 205.7 nsec

100 8.986 Gbps 327.9 nsec

1000 9.067 Gbps 432.2 nsec

10000 9.067 Gbps 457.2 nsec

EXPB 14 9.109 Gbps 169.4 nsec

tcpdump N/A 8.732 Gbps N/A

75

Table 3.4: The time needed to transfer a 1GB file over scp. We measured the cumu-

lative overhead incurred by our monitoring routines for all send and receive events. We

report this overhead as a percentage of each experiment’s total running time.

Version Buckets Time Overhead

vanilla N/A 14.133 sec N/A

DBM-mm 10 14.334 sec 1.3%

100 14.765 sec 1.9%

1000 14.483 sec 2.7%

10000 14.527 sec 2.5%

DBM-mv 10 14.320 sec 1.7%

100 14.344 sec 2.3%

1000 14.645 sec 2.9%

10000 14.482 sec 3.1%

EXPB 14 14.230 sec 0.4%

tcpdump N/A 15.253 sec 7.9%

Chapter 4

Evaluating the Efficacy of

Software-Based Traffic Pacing

Recent measurement studies [33, 29] have shown that modern data-center traf-

fic consists of both short latency-critical flows (e.g., search queries) together with large

bandwidth-intensive flows (e.g., transactions that build the search index). The latency-

critical flows have various service-level agreements (SLA’s) that govern acceptable la-

tency: in some trading environments, the requirement is for latencies on the order of

microseconds. While TCP and other window-based flow control techniques provide

good bandwidth utilization for large flows, they do so by opening large windows until

losses occur. As a result switch buffers often fill, delaying latency-sensitive packets. At

best, this causes latency increases; at the worst, it causes packet drops, which can be

followed by large timeout periods. The situation is exacerbated by the fact that many

commodity switches in the data center are shallow-buffered: their cost is reduced by

shrinking the amount of costly high-speed buffer memory. In these environments, even

short-lived “microbursts” of traffic may significantly delay flows [42, 19]. These factors

have led to proposals for pacing at 1 and 10 Gbps.

Pacing and rate-based congestion control has gone in and out of fashion in aca-

demic research from NETBLT [20] in 1987 to proposals for ATM flow control [32] in

2000. However, pacing at end hosts is becoming mainstream once again. For example,

the Quantized Congestion Notification (QCN) [11] protocol for Data Center Ethernets

uses congestion feedback from switches that is then acted upon by Network Interface

76

77

Cards (NICs) at end hosts. Far from being a fringe movement, QCN has been approved

by the IEEE in the 802.1Qau standard [4] and is actively implemented and vigorously

marketed by industry leaders, such as Cisco, HP, and Intel. The increasing use of pac-

ing is driven by higher speeds accompanied by small buffer sizes at switches, and the

prevalence of financial and cluster applications with stringent demands on latency and

loss.

While rate control with QCN has been deployed within the data center, it requires

hardware support at the end host, which may not exist in deployed systems or may be

undesirable due to increased component costs. Software-based pacing avoids these con-

cerns, albeit it is only a rate-control mechanism and other feedback mechanisms are

needed to adjust the traffic rate. While QCN is suited for the data center where the feed-

back loop is short, large internet services now span multiple geographically-distributed

data centers. In such scenarios software-based pacing at end hosts is desirable for flows

traveling between data centers as higher-level protocols, such as TCP, and even the ap-

plication itself will send traffic at a rate that matches the network capacity. Without

software pacing, excess traffic must be stored either in TCP or socket buffers. While

hosts have plentiful memory, this unnecessarily increases latency.

Token buckets [41, 6] are a widely used pacing model that has been implemented

as the Token Bucket Filter (TBF) in the Linux kernel. While early versions of TBF were

inaccurate at 100 Mbps due to course timer resolution, the advent of Linux’s High Res-

olution Timers [3] has significantly improved performance at these speeds. However,

verifying the performance of pacing tools at Gigabit speeds is difficult due to the large

number of packets and small time scales involved. To address this problem, we intro-

duce an efficient new software tool for measuring bandwidth and traffic burstiness at

end hosts with microsecond granularity. We implemented our tool in the Linux kernel

and use it to show the limitations of the Linux Token Bucket Filter (TBF) at speeds up

to 10 Gbps.

We show that TBF works very well up to 1 Gbps. Despite this, we demonstrate

that at speeds greater than 4 Gbps TBF has a number of issues. For example, at a speci-

fied pacing speed of 7 Gbps, TBF sends at nearly 10 Gbps, leading to a 40% overshoot.

Even after fixing a bug that causes overshoot, we show that late timers in TBF can cause

78

undershoot of 25% at small bucket sizes. While this undershoot can be fixed by increas-

ing the token bucket’s size, this leads to additional traffic burstiness, buffering in the

network, and the further delays latency-sensitive traffic. We show that this trade-off be-

tween switch-buffer occupancy and undershoot in average bandwidth is caused by late

timers and explore some simple ideas to improve this trade-off.

This chapter is about making software pacing work in an emerging world of 10

Gbps links. In this context, our contributions are as follows:

• Measurement tools to determine the effectiveness of Pacing: The timer inaccuracy

that plagues software pacing also affects the accuracy of measurement software.

We work around this dilemma by a simple recalibration trick and describe sim-

ple tools based on this idea (Section 4.2) that we have implemented in the Linux

kernel to measure bandwidth and burstiness at fine time scales.

• Experiments to determine the effectiveness of Linux Software Pacing (TBF): In

Section 4.3, we describe simple experiments to evaluate Linux software pacing

at speeds over 1Gbps and demonstrate its performance in the presence of system

load.

• Improvements to TBF: In Section 4.4 we propose some simple changes to TBF

to remove a prominent bug and to improve the trade-off between burstiness and

achieved bandwidth.

The rest of the chapter is organized as follows. We describe the issues with soft-

ware pacing via a simple model in Section 4.1 and describe our new tools in Section 4.2.

We show our measurements in Section 4.3 and provide suggestions for improving TBF

in Section 4.4. We describe related work in Section 4.5 and conclude in Section 4.6.

4.1 Software Token Buckets and their Problems

In the token bucket model of pacing, a bucket storing up to B tokens is contin-

uously filled at a rate R. Before sending a packet of size P bytes, the controller checks

that the bucket contains at least P tokens. If at least P tokens have accumulated in the

79

bucket, then P tokens are removed and the packet is sent. If there are less than P tokens

in the bucket, then the packet is delayed until P tokens have accumulated. Since the

bucket is filled at rate R, the bandwidth passing through the token bucket cannot exceed

R bytes per second. However, the token bucket may transmit a burst of up to B bytes

at line rate. Thus, the parameters of the token bucket model limit both the average rate

and the maximum burst size of the resulting traffic stream.

In practice, it is inefficient for token bucket implementations to simulate a con-

tinuous stream of tokens filling the bucket. Hence one of two approaches is used to

approximate this behavior. Hardware implementations often set a timer to fire at some

fixed interval, T . At each timer event, RT tokens are added to the bucket and packets

are sent if sufficient tokens have accumulated. In the second model, implemented in the

Linux Token Bucket Filter, when each packet arrives at the token bucket, the number of

tokens in the bucket is updated to account for the time elapsed since the last event. If

sufficient tokens are available, the packet is immediately sent. Otherwise, a timer is set

to fire at the time when sufficient tokens will have accumulated to allow the packet to be

sent. When the timer fires, the number of tokens in the bucket is updated and the packet

is sent.

Figure 4.1 abstracts the code implemented in the Linux Token bucket filter. The

bulk of the work is done by a routine serviceQueue that fills the bucket based on the

time elapsed since the last packet sent. The routine then tries to service as many packets

as possible such that the total size of the packets serviced does not exceed the number

of tokens in the bucket. Finally, if there are packets remaining in the queue, a timer is

set to expire when there will be sufficient tokens to send the packet at the head of the

queue.

Figure 4.2 shows how inaccurate timers can hurt performance of software pacing

by reducing throughput below the specified rate because of “lost tokens”. Assume that

the last send event left the bucket with I tokens remaining. In an ideal model, the bucket

will fill to capacity at time B−I
R

. If the lag L before the next event or timer fire is greater

than B−I
R

, then LR − (B − I) tokens will be discarded because the bucket size cannot

exceed B and no packets will be sent during the lag period because the thread is asleep.

A token bucket pacer with perfect timers can also discard arriving tokens if there

80

B: maximum bucket size, parameter

R: fill rate, parameter

Q: queue of packets

lastTime: time last packet was sent

bucket: token bucket counter

Initially bucket = 0; lastTime = 0;

on_send_event(packet P)

Place packet P in Q;

serviceQueue();

on_timer_tick()

serviceQueue();

serviceQueue()

packet P = Head of Q;

/* dequeue loop */

while (P is not nil); do

var now = getCurrentTime();

var tokens = (now - lastTime) * R;

tokens = Max (B, tokens + bucket);

if (size(P) <= tokens); do

bucket = tokens - size(P);

Remove (P) from Q;

Send (P);

lastTime = currentTime;

P = Head of Q;

else

SetTimer (now + (size(P)-tokens)/R);

return;

done

end

Figure 4.1: Pseudocode for the algorithm implemented by the Linux Token Bucket

Filter.

81

Next event or Innacurate tickLast event or Innacurate tick
Lag L

Bucket full

I

B

Time to fill = (B − I) / R All arriving tokens wasted

Figure 4.2: Bandwidth loss caused by inaccurate timers. If a timer expires after the

buffer fills, all later-arriving tokens are wasted.

are idle periods with no data to send. However, tokens should never be discarded if there

is a constant stream data to be sent. In reality, timers are imperfect and token discarding

(and hence wasted send opportunities) can happen even when there is always data to

send. For example, suppose the bucket size is B = 1 MTU and the rate is R = 1 MTU

per time unit. Assume the inaccurate timer always fires after an interval 2/R instead of

the desired 1/R. Then the bucket will fill after the first half of the sleep interval, and the

tokens accumulated during the remaining half will be wasted. Thus the inaccurate timer

will cause the pacer to reduce its average throughput to R/2 instead of R even if there

is an infinite amount of data to send.

More generally, suppose the distribution of lags is known and we plot the proba-

bility that the lag is greater than some specified time T (the complement of the CDF) as

shown in Figure 4.3. Then whenever the lag exceeds T = B/R, the excess above B/R

is wasted (assuming there is data to be sent). We can calculate the expected amount

of wasted time as the area under the curve beyond B/R (shown shaded). To find the

degradation in bandwidth, let Y = Max(L− B
R
, 0). We wish to consider the distribution

of the random variable we call the relative degradation D = Y/L. Then the expected

reduction in bandwidth is E(D). For example, in the earlier example D = 1/2 always

and hence the bandwidth is degraded by 50%.

Increasing the bucket size, B, reduces the probability that the inaccurate timer

causes wasted tokens (this has the effect of shifting the threshold in Figure 4.3 to the

right and hence reducing the degradation). However, doing so increases the burstiness

of traffic and hence increases the buffer occupancies of downstream switches. Thus, in-

accurate timers produce a trade-off between bandwidth and buffering, which ultimately

82

Time T

Probability

Lag > T T=B/R

Lag Distribution 1

Lag Distribution 2

Figure 4.3: A probabilistic model for bandwidth degradation in the presence of inac-

curate timers in software pacing. Lag distribution 1 is less wasteful because it has less

area beyond the threshold.

affects latency. We will explore this trade-off experimentally in Section 4.3.3.

4.2 Tools for Measuring the Effectiveness of Pacing in

Software

To evaluate a software pacing scheme we need tools to measure both bandwidth

and “burstiness”. For example, a simple tool may measure the peak bandwidth of a flow

in any interval of say 10µs. This can be done simply by a counter, a timer that fires every

10µs, and a variable that holds the maximum observed value of the counter. However,

we have just seen that the trade-off in software pacing is caused by inaccurate timers.

This same inaccuracy will plague any software measurement tool operating at fine time

scales.

The following simple idea, which we call recalibration, can be used to transform

algorithms that work in a world of ideal timers to work with real timers. In particular,

we will use recalibration to design software tools to measure the bandwidth achieved

and buffering required by a flow.

The top of Figure 4.4 shows an ideal algorithm that applies some function to its

state variables when either events (shown as E1, E2, etc.) or timer ticks (T1, T2, etc.)

occur. In networking algorithms, the events are often packet send or receive events. The

ideal algorithm assumes that the time between timer ticks is fixed at some ideal tick t.

83

T1 T2 T3 T4 T5

E1

Timer Tick

count=3 count=0 count=0 count=1

E2 E3 E4

Algorithm with Accurate Timers

T'1 T'2
E1

Inaccurate Timer Tick

E2 E3 E4
Lag L

Last Update, TL

count=3

Recal(TL)
Output count=3

Simulate 2x count=0

Algorithm with Inaccurate Timers

E1 E2 E3 E4
Lag L

Last Update, TL

count=3

Recal(TL)
Output count=3

Simulate 2x count=0

New count=1

Event-Driven Recalibration Algorithm

Figure 4.4: Illustrating Recalibration. A recalibration function is used to correct for

missed timer ticks that should have occurred during the lag interval.

For example, to measure bandwidth in 10µs intervals, t is 10µs and the state variable

used is a counter that is output and reset on each timer tick.

The middle figure shows the real situation. The events are unchanged but the

timer ticks unpredictably, as denoted by ticks T ′
1 and T ′

2. In the example, the inaccurate

timer has missed 3 ideal timer ticks (T2, T3, T4) but no events. To define the recalibrated

version we need to specify a recalibration function Recal that must fix-up the ideal

algorithm’s state to make up for any time it has missed. The recalibration algorithm

utilizes a variable TL that records the time of the last event or timer tick. In some cases,

given a recalibration function, one may not need explicit timer ticks, but can simply call

the recalibration function at events as shown on the bottom figure of Figure 4.4.

For example, if the ideal algorithm is a measurement algorithm using measure-

ment intervals, Recal(TL) must calculate how many measurement intervals are missed

84

and adjust its output accordingly. While the simplest approach is to simulate the ideal

algorithm output on each interval, in practice the real algorithm may miss 1000’s of ideal

intervals. Thus, it is important to define the outputs of the ideal algorithm carefully so

that Recal(TL) can summarize the work of 1000’s of intervals efficiently.

4.2.1 BandwidthTracker

Our first tool for measuring software pacing is BandwidthTracker, which effi-

ciently samples bandwidth at microsecond resolutions and reports aggregate statistics

(max, average, standard deviation). As input, it takes a traffic stream (either as a live

stream or a log), a specified granularity G (e.g., 10µs), and a measurement interval M

(e.g., 1 second). It outputs the maximum, average, and standard deviation of the bytes

sent by the stream in every G units of time.

As discussed above, the algorithm for BandwidthTracker in a world with perfect

timers is trivial. However, for small granularities, such as 12µs (the time to transmit

1500 bytes at 1 Gbps), the overhead of the basic algorithm is high due to constantly

firing 12µs timers and error-prone due to the occasional inaccuracies that accompany

short timers. Instead, an event-driven recalibration can be employed.

As shown at the bottom of Figure 4.4, an event-driven recalibration algorithm

piggy-backs solely on events without explicitly setting timers. We give the pseudocode

for our recalibrated BandwidthTracker in Figure 4.5. In our example, assume that each

event Ei is a packet containing a single byte. At each invocation, BandwidthTracker

recalls the timestamp of the previous event, TL, and reads the current time, T . If

⌊TL/G⌋ = ⌊T/G⌋ then the current event occurred in the same sampling interval as

the previous one, and the count is incremented. In our example, E1, E2, E3 all occur

during the first interval, so the counter is updated to 3.

If a new event does not occur in the same sampling interval, then Bandwidth-

Tracker simulates the ideal time tick for the end of the interval containing TL by record-

ing the value of the counter, then simulates any intervals with no events. In general, the

algorithm needs to simulate ⌊T/G⌋ − ⌊TL/G⌋ − 1 intervals with a counter of 0.

For the statistics tracked by BandwidthTracker we record the old count, then

increment the number of intervals by ⌊T/G⌋ − ⌊TL/G⌋. Finally, BandwidthTracker

85

T_L: last time updated

T: current time

count: byte count for current interval

sum: total bytes across intervals

sum2: square of bytes for all intervals

ivals: total number of complete intervals

on_send_event(packet P):

elapsed = floor(T/G) - floor(T_L/G);

/* recalibration code */

if (elapsed > 0); do

sum = sum + count

sum2 = sum2 + countˆ2

ivals = ivals + elapsed

count = sizeof(P)

else

count = count + sizeof(P)

Figure 4.5: Recalibration Pseudocode for the BandwidthTracker algorithm.

resets the counter and records the number of bytes of the packet arriving at T . In our

example, when Recal(TL) is called at time T , the counter of 3 is recorded, zeros are

recorded for the next (T4 − T1 − 1) = 2 intervals, and the counter is set to 1 to record

the progress so far in the fourth interval.

BandwidthTracker works particularly well in scenarios where events may be

separated by long delays, as the cost of running Recal(TL) is always O(1). We can

further optimize the speed of our event-driven recalibration algorithms by restricting the

granularity of G to powers of 2. This allows us to replace the division and floor functions

with simple right bit-shift operations. Such optimizations are of particular significance

for hardware implementations.

Note that our algorithm bears some resemblance to Partridge and Garrett’s TB

algorithm [41] and to subsequent generalizations by Tang and Tai [45]. However, the

86

goal of TB is to take a time-stamped stream of packets and to find a set of token bucket

parameters that are consistent with that stream. In other words, find a token bucket with

a set of parameters such that all packets within the stream will be sent out immediately.

This is particularly useful for measurement-based admission control.

However, our goal here is not to find a set of token bucket parameters consistent

with a stream but to simply implement any reasonable measure(s) of burstiness of a

stream. BandwidthTracker calculates the average and variation of the bandwidth in

any specified interval and could be used in conjunction with more complex aggregation

techniques [46]. Our next tool, BufferSim, takes a different tack as it simulates the buffer

size at a next hop queue as a measure of burstiness. Thus our algorithms are simpler and

different from that of [45].

4.2.2 BufferSim

BandwidthTracker provides some indication of the “smoothness” of a flow at

any specified time granularity and can be used for debugging a wide range of problems.

However, to investigate the impact of queueing on latency, we now focus on tracking

buffer occupancy. The classical way to formally extract buffer sizing information from

traffic models is by queueing theory. However, the use of queueing theory is daunting

because modeling the distribution of the lag (as in Figure 4.3) from machine to machine

is hard, and because solving the resulting G/D/1 queueing system may be hard.

To bypass this dilemma, we introduce a second tool called BufferSim. BufferSim

emulates buffers of any specified size in real-time when supplied with a model of how

the buffer is drained and a live traffic stream. In other words, BufferSim provides an

online simulation of the occupancy of an imaginary buffer. BufferSim allows an analyst

or algorithm to experiment with “what-if scenarios” (e.g., how does the latency or drop

rate vary for an HDTV stream if the buffer size is doubled or the switch uses cut-through)

without physically implementing the buffer.

BufferSim takes as input an input traffic stream S, a buffer size B in cells, a cell

size C, a specified granularity G (e.g., 10µs), and a measurement interval M (e.g., 1

second). It outputs the number of dropped packets that would occur due to insufficient

buffer capacity. In addition, BufferSim also simulates an unbounded buffer and report

87

C: bytes per cell, integer

max: maximum buffer size seen

drops: simulates number of drops

on_send_event(packet P):

cells = ceiling (size(P)/C);

U = U + cells;

max = Max (U, max);

If F + cells <= B then

F = F + cells;

Else drops = drops + 1;

on_timer_tick:

U = Max(0, U - 1);

F = Max(0, F - 1);

Figure 4.6: Pseudocode for the Ideal Buffer Simulation.

the maximum buffer occupancy produced by the traffic stream.

The ideal algorithm for BufferSim is shown in Figure 4.6. This algorithm sets

a timer to fire at the specified granularity and keeps two byte counters: F simulates a

finite buffer of maximum size B and U simulates an unbounded buffer. At each timer

event, if F or U is non-zero, then it is decremented by one cell. For each packet event,

we check if there are sufficient cells to add the packet’s size to F with out exceeding B.

If F would exceed B, then F is not increased and drops is incremented. However, U is

always increased by the number of cells required to store the packet.

The recalibrated version is shown in Figure 4.7. Variable TL records the last

update time (last packet received). The simple insight is that even if an arbitrary amount

of time has passed since the last packet reception, it cannot affect either the max buffer

size or number of drops. However, we need to simulate the buffer drain model over

the missed time by decrementing F and U by the number of cells that could have been

dequeued in this period, taking care to leave these variables non-negative.

88

T_L: last time updated

T: current time

G: granularity

Recal():

elapsed = floor(T/G) - floor(T_L/G);

F = Max(0, F - elapsed);

U = Max(0, U - elapsed)

Figure 4.7: Recalibration Pseudocode for the BufferSim algorithm.

4.2.3 Linux Kernel Implementation of Tools

We have implemented BandwidthTracker and BufferSim in the Linux 2.6.32.8

kernel. In order to observe incoming and outgoing packets, we inserted code between

the NIC driver and the IP layer in the networking stack, as shown in Figure 4.8. For each

socket buffer, we enable nanosecond-resolution timestamping, which records the system

time for incoming packets as the device driver receives them. For outgoing packets, we

note the system time and update our statistics after the traffic has been shaped by TBF,

but before it passes into the driver.

Monitoring is enabled by specifying a source/destination IP-address pair, a sam-

pling interval in nanoseconds, and the number of samples to aggregate together when

reporting statistics. The aggregate statistics from BandwidthTracker and BufferSim are

accessible to user-space programs through a system call interface. Our user-space log-

ger polls once per aggregation period to receive the aggregated data and write it to a

log file. Future programs could use this interface to actively monitor their behavior and

dynamically tune themselves.

While the bulk of this chapter assumes a software setting, we believe it is useful

for routers and other hardware devices to deploy tools such as BandwidthTracker and

BufferSim to determine the smoothness of flows and their impact on buffer occupancy.

The tools are sufficiently simple to be easily implementable in hardware ASICs. While

recalibration is strictly not necessary in a hardware setting, it allows the use of a coarse

timer for recording data each aggregation period, which should simplify implementation

89

S
e
n
d

Applicationtc logger

TCP / UDP

TBF

IP

BandwidthTracker

BufferSim

NIC Driver

R
e
c
e
iv

e

Kernel-Space

Figure 4.8: Software Organization. BandwidthTracker and BufferSim are implemented

below the IP layer and Token Bucket Filter. The tc utility enables and configures TBF,

while our custom user-space logger configures and records data from the Bandwidth-

Tracker and BufferSim.

and reduce power.

4.3 Evaluating Linux Token Bucket Filter

In our experiments, we used two 2.3Ghz, hyperthreaded, quad-core, Intel Xeon

servers, each with 24GB of RAM and two 10Gbps Myricom network interfaces. Our

machines are running our instrumented version of the Linux 2.6.32.8 operating system.

We connected these two machines through a 10 Gbps Cisco Nexus 5020 switch. Except

where noted otherwise, our traffic workload is generated by a custom UDP sender ap-

plication that spawns four threads that wait in a tight loop sending UDP packets as fast

as possible. We used the tc utility to configure the Linux TBF to rate-limit outbound

traffic at various speeds.

We chose to use a custom UDP application in place of iperf [5] because we

could vary more parameters such as simulating distributions of packet sizes. We needed

to use 4 sending threads since our initial experiments indicated that this setup achieved

the highest number of send events per second (1.3 million) with the fewest number of

threads. Using 4 threads, we could reach transmit speeds just below 10 Gbps using

90

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

B
a
n
d
w

id
th

 (
M

b
p
s
)

Target Rate (Mbps)

1.5KB bucket
1MB bucket

ideal

Figure 4.9: Observed bandwidth deviates from the specified rate. With a large 1MB

bucket the observed rate overshoots the target rate due to insufficient precision when

calculating inter-packet spacing. For a small, 1 MTU bucket size, late timers cause

undershoot at values below 6 Gbps but precision errors cause overshoot at 7 and 8 Gbps.

1500-byte packets. Burstiness calculations were done using BufferSim with a drain

model that uses 64 byte cells – the same cell size used in our Cisco switches. Average

bandwidth is measured using BandwidthTracker with a granularity G of 64µs. Error

bars on our graphs show the standard deviations across 60 separate runs of 1 second

each.

4.3.1 Bandwidth Problems with TBF

We begin by demonstrating the performance of the Linux Token Bucket Filter at

target rates above 1Gbps. Figure 4.9 shows the achieved average bandwidth for given

bucket fill rates for a very small bucket (1 MTU) and at a reasonably large bucket (1

MB). The ideal bandwidth is shown as a straight line of slope 1.

The 1MB token bucket performs as expected up to 4 Gbps. After this point it

frequently overshoots the target bandwidth. For example when the target bandwidth is

5 Gbps and the bucket size is 1 MB, the average measured bandwidth was close to 6

91

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 200 400 600 800 1000 1200 1400 1600

B
a
n
d
w

id
th

 (
M

b
p
s
)

Packet Size(Bytes)

1.5KB bucket
1MB bucket

Figure 4.10: TBF is run with a target rate of 5 Gbps. At packet sizes less than 500 Bytes

the bandwidth is constrained due to speed of send system calls. For packet sizes greater

than 500B, insufficient precision in inter-packet spacing cause overshoot.

Gbps, an overshoot of 20% with a standard deviation of 0.4 Gbps over 60 runs. The

situation worsens considerably at higher target rates. For example, at a target rate of 7

Gbps, the measured average is 9.7 Gbps (essentially line rate) with a standard deviation

of 0.06 Gbps.

On the other hand, the 1.5 Kbyte token bucket undershoots the target bandwidth

beyond 2 Gbps. At a target of 5 Gbps, the average throughput is 3.9 Gbps, an undershoot

of 22% with a standard deviation of 6%. At 6 Gbps, the average is even lower at 3.64

Gbps, a 25% undershoot, while at 7 Gbps, there is an overshoot of 12%.

To further investigate this behavior, we configured the TBF with a fixed rate of

5 Gbps and varied the size of our UDP packets. The results are plotted in Figure 4.10.

Note that the ideal (not shown) is a horizontal line at 5 Gbps. At packet sizes less

than 500 bytes, the sending rate cannot be achieved because of the overhead of system

calls. However, beyond this point the achieved bandwidth continues to increase for

both bucket sizes, reaching 9.6 Gbps at 1200 bytes per packet and a 1 MB bucket – an

overshoot of 92%!

We investigated this phenomenon and found a bug in the tc utility used to set the

92

token bucket’s kernel parameters. First, observe that the token bucket code in Figure 4.1

requires a division to set timers for arbitrary target rates. However, Kernel code does not

to support floating point arithmetic, thus the Linux Token Bucket Filter uses a lookup

table that maps the shortfall in tokens required to send the next packet to the delay

required for those tokens to accumulate. This lookup table is computed in user-space by

tc and passed into the kernel when the token bucket is initialized. Due to integer-type

variables used in tc, times that are computed with microsecond resolution have their

fractional components discarded.

For example, in the ideal scenario, a 1500-byte packet should be sent every 2.4µs

to achieve a rate of 5 Gbps. However, due to the truncation of partial microseconds in

tc, the value stored in the lookup table is 2µs. Transmitting full MTU packets at an

inter-packet spacing of 2µs results in a bandwidth of 6 Gbps, which agrees with our

observed value in Figure 4.10. Because of this problem, all packets with size less than

1250B are sent at 1µs intervals, and packets between 1250B and 1500B sent every 2µs.

At rates below 1 Gbps, this problem does not manifest itself as the disregarded

nanoseconds have minimal impact on inter-packet delays of 10’s to 1000’s of microsec-

onds. However, as we have seen here, commonly used tools should be re-evaluated as

bandwidths scale to multiple gigabits per second.

4.3.2 Average Bandwidth after Fixing tc

We corrected this bug in the tc utility by ensuring that all variables used in

computing the TBF lookup table were at nano-second resolution. To validate our fix,

we re-ran the previous two experiments. These results appear in Figures 4.11 and 4.12.

Note that the large bucket experiments now track much more closely to the specified

target rates. For example, at a target of 6 Gbps, the average is 5.7 Gbps with a standard

deviation of 0.7 Gbps; at a target of 7 Gbps, the average is 6.9 Gbps with almost no

variance.

However, at small bucket sizes, there is still significant undershoot. For exam-

ple, at a specified bandwidth of 6 Gbps, the average is only 3.6 Gbps, which is a 40%

undershoot with a standard deviation of 0.3 Gbps. We will show that this undershoot is

caused by late timers that cause tokens to be dropped as in Figure 4.2.

93

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

B
a
n
d
w

id
th

 (
M

b
p
s
)

Target Rate (Mbps)

1.5KB bucket
1MB bucket

ideal

Figure 4.11: Specified versus observed bandwidth after fixing precision bug. Experi-

ments run with 1500-byte packets.

Some initial evidence that this undershoot is caused by late timers can be seen

from Figure 4.12 at a fixed target of 5 Gbps. Note that once again the average bandwidth

at low packet sizes is less than 5 Gbps because of the overhead of system calls. However,

after 600 bytes the undershoot increases with packet size.

It is clear to see the cause of this undershoot by considering the following exam-

ple. Consider a packet size of 750 bytes and a bucket size of 1500 bytes. At 5 Gbps,

sending a 750-byte packet causes a timer to be set for 1.2µs. Even if this timer is late

by 1.2µs (such lateness is rare in our system, as we show later), tokens will not be lost

because they “fit” into the bucket size of 1500 bytes. On the other hand, when sending

a 1500-byte packet, the timer is set for 2.4µs. If the timer is 1µs late, then 1µs worth

of tokens are lost forever. In such a case, any time inaccuracy causes missed sending

opportunities. Thus, the smaller the packet size relative to the bucket size, the less likely

it is for tokens to be lost.

94

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 200 400 600 800 1000 1200 1400 1600

B
a
n
d
w

id
th

 (
M

b
p
s
)

Packet Size(Bytes)

1.5KB bucket
1MB bucket

Figure 4.12: Average bandwidth versus packet sizes after correcting the precision bug

for a fixed target rate of 5Gbps.

4.3.3 Balancing Bandwidth and Buffering

If undershoot is due to lost tokens as in Figure 4.3, then the probability of lost

tokens can be lowered by increasing the bucket size because it moves the vertical line T

to the right. However, this will also increase the burstiness of TBF. Figure 4.13 shows

this trade-off by plotting both the average bandwidth (solid line) and the maximum

“buffer” occupancy measured by BufferSim as bucket size increases. The target is fixed

at 5 Gbps.

First, note that at small bucket sizes, such as 1.5 Kbytes, the average bandwidth

is only 3.1 Gbps, an undershoot of 38%. At a bucket size of 2 Kbytes, the average band-

width is 4.4 Gbps, reaching 4.9 Gbps at 3 Kbytes. However, the simulated maximum

buffer sizes to required to absorb the corresponding bursts generated at these bucket

sizes are 2675, 3080, and 4115, respectively. While this does not seem like a big in-

crease if regarded as an additive increase of 1.5 Kbytes, it is more serious when viewed

as a multiplicative increase of 54% in queueing delay.

Further, late timers are likely to be worse as the system load increases. The TBF

code is driven by timer interrupts tied to a single core. In our multicore environment

95

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 2 4 6 8 10 12 14 16
 0

 2

 4

 6

 8

 10

 12

 14

 16

B
a
n
d
w

id
th

 (
M

b
p
s
)

M
a
x
 B

u
ff
e
r

O
c
c
u
p
a
n
c
y
 (

K
B

)

Bucket Size (KB)

Avg Send BW
Max Buffer

Figure 4.13: The average bandwidth and maximum buffer occupancy with a target rate

of 5Gbps for various bucket sizes.

TBF does not incur significant overhead – consuming only one of the 8 cores in our ma-

chine. However, TBF performance may be affected as contention for interrupt handling

increases. To investigate this hypothesis, we subjected the sending host to additional

load caused by a high volume of received UDP traffic (as fast as it could be sent from

another host) in addition to the 4 threads trying to send UDP traffic. Figure 4.14 shows

the average bandwidth achieved (dotted line) with interference. While not shown, the

maximum buffer occupancies with and without interference are virtually identical. We

see that even at bucket sizes of 6 and 9 Kbytes, the average bandwidth with interference

does not exceed 4.5 Gbps. This suggests that a much higher multiplicative factor in

buffering at high loads, even up to a factor of 4 or 5.

If a large number of hosts connected to a commodity switch with a small amount

of buffers are doing software pacing, such an increase can significantly impact latency.

Assuming a 48 port switch, and two 5 Gbps rate limited flows per port and a multiplica-

tive factor of 5 to account for high load, we could expect a worst case buffer occupancy

of 600 Kbytes just to cover for the inaccuracy of software timers. While this extra buffer

occupancy increases the chances of dropped packets, its more serious problem is the in-

crease in latency. This cost will worsen at higher speeds as timer accuracy diminishes

96

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 2 4 6 8 10 12 14 16

B
a
n
d
w

id
th

 (
M

b
p
s
)

Bucket Size (KB)

TBF
TBF w/ load

Figure 4.14: Variability of observed bandwidth for various bucket sizes in the face of

interference from high volume of UDP receive traffic.

for short intervals.

Chained Token Bucket Limitations A frequently advocated approach to using large

bucket sizes while limiting the affects of bursts is to use two token buckets chained

serially. In this model, the rate of the first bucket, R1 is set to the desired average

bandwidth and given a bucket size B1 that is sufficiently large as to mitigate the effects

of late timers (or gaps in the packet stream). The second bucket is configured to smooth

any bursts of traffic released by the first bucket by setting R2 to a “peakrate” greater than

R1, and B2 to the size of 1 MTU. Thus, any bursts released by first bucket will be paced

out at R2 instead of the line rate.

The Linux TBF implements this feature, which can be enabled through tc’s

peakrate option. We show its performance in Figure 4.15. For this experiment we

set a target rate of R1 = 5Gbps, a bucket size of B1 = 1Mbyte, and varied the peakrate,

R2. The chained token bucket is able to reclaim some of lost sending opportunities. For

example at a peak rate of 8Gbps, the observed bandwidth is 4.9Gbps, but the maximum

buffer occupancy is 880 Kbytes – two orders of magnitude more than the standard TBF.

Since the chained bucket is implemented with the same inaccurate timers it suffers from

97

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5 5.5 6 6.5 7 7.5 8
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

B
a
n
d
w

id
th

 (
M

b
p
s
)

M
a
x
 B

u
ff
e
r

O
c
c
u
p
a
n
c
y
 (

K
B

)

Peak Rate (Gbps)

Avg Send BW
Max Buffer

Figure 4.15: Performance of chained token buckets. The average bandwidth and max-

imum buffer occupancy with a target rate of 5Gbps and a bucket size of 1 MByte are

shown for varying peak rates.

the same problems as the standard token bucket. However, running the buckets in series

compounds these problems.

4.3.4 Dissecting Timer Settings in TBF

To verify our hypothesis that the trade-off is caused by lost tokens, we instru-

mented the Linux kernel with a counter that tracks lost time. For example, if the bucket

size is 1500 bytes and the target is 5 Gbps, when the timer fires at 3.4µs instead of 2.4µs,

we add 1µs to the counter. Figure 4.16 shows the percentage of time lost as bucket size

varies. At a bucket size of 1.5 Kbytes, we see that the percentage waste is 39% and at 2

Kbytes it is 12% which is consistent with the results in Figure 4.13, thus confirming our

hypothesis.

Timer Distributions Next we investigated the distribution of timers set by TBF after

fixing the precision bug. For example, at a token bucket size of 1500 bytes and a target

rate of 5 Gbps, we might expect the vast majority of timers to be set for 2.4µs. However,

98

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12 14 16

P
e
rc

e
n
t
T

im
e
 L

o
s
t

Bucket Size (KB)

TBF
TBF w/ load

Figure 4.16: Percentage of time lost due to overflowing token bucket versus the size of

the token bucket. Shown with and without load for a target rate of 5Gbps and a packet

size of 1500 bytes.

we found that timers were set according to the distributions in Figure 4.17, shown in the

case of low load and high load.

The most surprising phenomenon was the presence of negative and zero timers.

Notice that without load 12% of the timers were set to at or below zero. Further, with

high load 17% of timers were set with target values in the past.

There are several factors contributing to negative and zero timers. First, the

code often sets small timers (around 68% of timers in Figure 4.17 are set for less than

500nsec). This happens because TBF sets the timer value on every event, even when

the timer is already set. For example, suppose that the first packet is due to be sent in

2.4µs and a timer is set to expire at that time in the future. If a second packet arrives

at the token bucket 2.0µs later, then TBF will check the current time and compute that

the first packet is due to dequeue in another 0.4µs. Since only one timer is maintained,

TBF resets the timer for this time, overwriting the original expiration time with the same

value.

Such small timer values can also lead to negative timers for the following reason.

The timer expiration is specified in absolute time and is calculated based a timestamp

99

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1000 -500 0 500 1000 1500

C
D

F

Relative Expiration Time (nsec)

1.5k
1.5k+load

Figure 4.17: For all timer fires, the distribution of target times set with and without

interfering UDP receive load. Collect from TBF at a target rate of 5Gbps & bucket size

of 1500 bytes.

taken at the start of the dequeue loop. In the time required to calculate the timer’s

expiration time and to call the timer routine, sufficient time can pass (to execute the

code) such that the expiration time is now in the past. Since we measure the relative

expiration time for the point immediately after the timer is set, this produces a negative

value. The reason the time to execute the code is variable is because the timer must

acquire a lock to schedule itself. If there is contention for the lock (likely at high loads),

then this time can increase, which explains the occasionally large values of negative

timers, even up to -1.8µs.

Intuitively, spuriously readjusting timers could increase the number of timers set

to be significantly greater than the packets sent. We measured this and found this to

be true. For example, at 5 Gbps target and 1.5 Kbyte bucket size, during a 60 second

period, the code enqueued 15.6 million packets. However, the number of timers set or

readjusted was 28.2 million, almost double the number packets. The number of timers

that actually fired was 14.9 million. While this is 700K less than the number of enqueued

packets, we note that events caused by packet enqueues also update the state of TBF and

allow packets to pass through without waiting for a timer to fire if sufficient tokens are

100

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 4 16 64 256 1024 4096 16384

C
D

F

Error from Expected (nsec)

4k
4k+load

Figure 4.18: Distribution of timer error (time between desired expiration time and actual

timer callback) for a target of 5Gbps and a bucket size of 4 Kbytes, with and without

interfering UDP receive load.

available. At the very least readjusting the timer is unnecessarily baroque; at the very

worst, it increases the contention for timers and results in more late timer fires.

Timer Error Next, we measure the error in timer values. In other words, given that a

timer has been set for time T and fires at a later time T ′, the error is T ′ − T . We show

the distribution of errors at a target rate of 5 Gbps and a bucket size of 4K with and

without added load. Figure 4.18 shows, for example, that 42% of the timer errors is less

than 512nsec without load, while only 34% of timers achieve this accuracy with load.

However, we see that regardless of load approximately 90% of timers are no more than

1µs late. While not shown on this graph, 0.02% of the timer events are late by 16µs or

more, with some exceeding 65µs. We see that the addition of load from UDP receive

events affects the lateness timers, as well as, the number of timers set in the past.

Finally, we investigated the relationship between when a timer is set to expire

and the likelihood that it will be fire on time. In Figure 4.19 we show the distribution

of observed timer error for short intervals (between 128 and 256nsec) and long interval

(between 1408 and 1536nsec). We see that longer timers fire less than 256nsec late

101

 0.0001

 0.001

 0.01

 0.1

 1

 1 4 16 64 256 1024 4096 16384 65536

F
re

q
u
e
n
c
y

Error from Expected (nsec)

256ns
1536ns

Figure 4.19: Distribution of timer error for long and short timer expirations. Short

timers (128 to 256nsec) are between 512 and 1024nsec late with 92% probability, while

longer timers (1408 to 1536nsec) fire within 256nsec of the target 91% of the time.

with 91% probability, while short timers are frequently 512 to 1024nsec late. This

is particularly troubling for the TBF implementation since, as we noted above, events

occurring while a timer is already set will reset the timer’s value, often to a short (or

even negative) interval, thus increasing the lateness for the timer event.

4.4 Improving the TBF code

Based on our measurements, we modified the Linux TBF code to address some

of the inefficiencies we found.

4.4.1 Avoid Timer Readjustment

From the pseudocode in Figure 4.1, we see that each time a thread of execution

enters the serviceQueue loop either a packet is sent or a timer is set. However, if the

function attempts to set the timer while it is already active, the expiration time is updated

with the new value. If serviceQueue is run several times before the next packet is

102

sent, then each call will readjust the timer for the same expiration time. This process of

readjusting the timer adds additional overhead due to calls to timer subsystem functions,

some of which must acquire locks. In addition, Figure 4.19 indicated that setting short

timers increases the magnitude by which timers are late timer. Hence, resetting the timer

is both redundant and detrimental to performance.

To quantify this problem we observed the number of times the timer is set or

readjusted versus the number of timers that actually fire. We summarize this data in

Table 4.1. During a 60 second run, 28.2 million timers are set, but only 14.9 million

actually fire. This means that 47% of the calls to the time subsystem are unnecessary.

To address this inefficiency, we skip the timer readjustment if the timer is already

active. We show the modified pseudocode for serviceQueue in Figure 4.20. As seen

in Table 4.1, this simple change eliminated all spurious calls to the timer subsystem and

resulted in a 15% improvement in bandwidth with no increase in the maximum buffer-

ing. Additionally, this modification did not adversely affect the bandwidth achieved at

large bucket sizes.

In Figure 4.22 we show how this modification (labeled: TBF, no resets) affects

the achieved sending bandwidth as the token bucket size varies. At bucket sizes less than

2 Kbytes the performance difference between TBF and our modified “no resets” code is

most pronounced since the token bucket is not able to store extra tokens that arrive on a

late timer event. Since we prevent timer readjustment, our modified code utilizes longer

timers that have less error.

4.4.2 Send Early

From Figure 4.17, we observed that a large number of the scheduled timers are

set to expire in the past or in the very near future (<500nsec). However, Figure 4.18

showed that these timers are frequently late by up to 1µs. These late timers result in

lost sending opportunities if the bucket is small, or more bursts if the bucket is large. To

address this problem, we modified that code to allow the token bucket to send early if

the timer would be set for an interval less than a specified delta.

To ensure that we maintain the overall average bandwidth, we use up all avail-

able tokens, and store a negative token count in the bucket. This is very similar to

103

serviceQueue()

packet P = Head of Q;

/* dequeue loop */

while (P is not nil); do

var now = getCurrentTime();

var tokens = (now - lastTime) * R;

tokens = Max (B, tokens + bucket);

if (size(P) < tokens); do

bucket = tokens - size(P);

Remove (P) from Q;

Send (P);

lastTime = currentTime;

P = Head of Q;

else

/* don’t readjust if already set */

if (not TimerActivated()); do

SetTimer (now + (size(P)-tokens)/R);

return;

done

end

Figure 4.20: Updated pseudocode for serviceQueue from Figure 4.1 to avoid timer

readjustment.

104

keeping a deficit counter as in Deficit Round Robin [47]. We give the pseudocode for

our algorithm in Figure 4.21.

We show the results of this modification in Figure 4.22 and Table 4.1. We see

that sending early increases the achieved bandwidth at 1500B to 4.4Gbps, an improve-

ment of 41% over standard TBF, but also increases the maximum amount of buffering

required from 2675 to 3135 bytes, an increase of 17%. Notice that the increase in buffer-

ing is due to the fact that packets can now be spaced more closely together. Additionally,

our average bandwidth is increased both by avoiding short timers, and also by allowing

a deficit of tokens in the bucket. This deficit allows the token bucket to gracefully handle

some of the late timers. For example, suppose that our code is configured with a rate

of 5Gbps, a bucket size of 1500 bytes, and delta of 1µs. If a packet is sent 1µs early,

then the bucket will now contain -625 bytes and the next packet is scheduled to be sent

at 3.4µs in the future. However, if other packet-send events cause serviceQueue

to run any time between 2.4 and 3.4µs, another packet will also be sent early. Hence,

allowing a negative token count effectively increases the range of our bucket and also

avoids setting small, inaccurate timers.

4.5 Related Work

Timing wheels [47] were proposed in 1983 to allow efficient timer algorithms

and were added to FreeBSD and later as part of Linux Jiffies. Aron and Druschel pro-

pose the use of SoftTimers [13], to provide a probabilistic timer facility that often (but

not always) ticks in microsecond intervals. The key idea is to leverage common op-

erating system events such as system calls and hardware interrupts (which incur the

context switch overhead anyway) to check and fire timers. In 2006, High Resolu-

tion Timers [3] appeared in Linux leveraging improved hardware support to provide

microsecond-accurate timers.

In addition to the Linux Token Bucket Filter, software pacing has been imple-

mented in Linux’s Hierarchical Token Bucket[22, 6] and in PSPacer[8]. While hier-

archical token buckets is a separate code base that enables policies for pacing sets of

flows, the underlying token bucket model is the same and has not been evaluated at high

105

delta: amount of time to allow early send

serviceQueue()

packet P = Head of Q;

/* dequeue loop */

while (P is not nil); do

var now = getCurrentTime();

var tokens = (now - lastTime) * R;

tokens = Max (B, tokens + bucket);

if (size(P) < tokens + (delta*R)); do

bucket = tokens - size(P);

Remove (P) from Q;

Send (P);

lastTime = currentTime;

P = Head of Q;

else

SetTimer (now + (size(P)-tokens)/R);

return;

done

end

Figure 4.21: Updated pseudocode for serviceQueue from Figure 4.1 for sending

early to avoid setting short timers.

106

T
a

b
le

4
.1

:
M

ea
su

re
m

en
t

o
f

av
er

ag
e

ac
h

ie
v
ed

b
an

d
w

id
th

,
m

ax
im

u
m

b
u

ff
er

re
q

u
ir

ed
,

n
u

m
b

er
o

f
p

ac
k
et

s
en

q
u

eu
ed

,
n

u
m

b
er

o
f

ca
ll

s
to

d
eq

u
eu

e,
th

e
n

u
m

b
er

o
f

ti
m

er
s

se
t/

re
ad

ju
st

ed
,

an
d

th
e

to
ta

l
n

u
m

b
er

ti
m

er
fi

re
s

fo
r

o
u

r
tw

o
im

p
ro

v
em

en
ts

-
se

n
d

in
g

ea
rl

y

(1
0

2
4

n
se

c
d

el
ta

)
an

d
el

im
in

at
in

g
ti

m
er

re
se

ts
.

Im
p

le
m

en
ta

ti
o

n
A

v
g

.
B

W
M

ax
B

u
ff

er
E

n
q

u
eu

es
D

eq
u

eu
es

T
im

er
s

S
et

T
im

er
F

ir
ed

T
B

F
(o

ri
g

in
al

)
3

0
9

6
M

b
p

s
2

6
7

5
B

y
te

s
1

5
.6

M
4

3
.8

M
2

8
.2

M
1

4
.9

M

N
o

ti
m

er
re

se
ts

3
5

5
3

M
b

p
s

2
6

7
5

B
y

te
s

1
8

.0
M

5
0

.6
M

1
7

.7
M

1
7

.7
M

1
0

2
4

n
se

c
d

el
ta

4
3

7
6

M
b

p
s

3
1

3
5

B
y

te
s

2
2

.1
M

4
9

.1
M

2
7

.0
M

1
1

.9
M

1
0

2
4

n
se

c
d

el
ta

&
n

o
re

se
ts

4
3

7
0

M
b

p
s

3
2

0
5

B
y

te
s

2
1

.5
M

5
0

.5
M

1
6

.4
M

1
6

.4
M

107

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 1 2 3 4 5 6

B
a

n
d

w
id

th
 (

M
b

p
s
)

Bucket Size (KB)

TBF
TBF, no resets

TBF, 1024ns delta

Figure 4.22: Bandwidth vs. bucket size for our two improvements - sending early

(1024nsec delta) and eliminating timer resets.

speeds.

PSPacer is a software pacer for Linux (see also [44]) that adds artificial ”gap”

packets (e.g. 802.3 PAUSE frames that are discarded by switches) to precisely control

the inter-packet spacing between real packets. While this is an alternative to soft pacing

as in TBF, there are some issues with [44]. First, the evaluation in [44] was done at

1 Gbps. While this was clearly superior to TBF in Linux when Linux was using mil-

lisecond timers, we have seen that TBF works well at 1 Gbps and only manifests issues

at speeds over 4 Gbps. Thus PSPacer also needs evaluation at higher speeds. Further,

PSPacer is based on hijacking PAUSE frames which makes them unusable for conges-

tion control. The paper [44] justifies this by saying that receive congestion should rarely

occur at 1 Gbps with modern PCs. However, this premise may not hold at 10 Gbps.

The evaluation of PSPacer makes use of a custom, hardware buffer simulator that

implements a buffer drain model similar to the one we propose with BufferSim. How-

ever, we show that accurate buffer measurement can be implemented solely in software

by utilizing our Recalibration Paradigm.

The Recalibration Paradigm is inherent in many works but, as far as we are

108

aware, is not clearly abstracted. For instance, SoftTimers can be considered an instance

of this paradigm where the OS events recalibrate the required firing of timers. Many

algorithms use an event-driven approach where packet sending events are used to recal-

ibrate based on elapsed times but the essence of recalibration is often entangled with the

specifics of the implementation.

Microbursts are a common term for short-lived bandwidth spikes that can cause

significant latency increases for remote disk access [42] and many other data center ap-

plications [19]. NetScout and Corvil are hardware boxes that provide microburst alarms.

Vasudevan et. al. mitigate microbursts caused by the Incast problem by changing TCP

to use fine-grain timeouts [48], while ICTCP [49] seeks to prevent Incast by adjusting

the receive window on the receiver side. As mentioned earlier, Partridge and Garrett [41]

and Tang and Tai [45] did earlier work on tools for finding the token bucket parameters

for a traffic stream that is related but different from our tools that measure burstiness.

4.6 Conclusion

This chapter is based on the premise that software pacing will become more

important in a world where large bandwidth-intensive transfers compete with small

latency-sensitive flows over commodity hardware and multi-gigabit links.

Although we have not stressed it, our experiments have shown that software pac-

ing can be performed with modest processing overhead in a multi-core environment. For

example, on our 8-core test machines, Linux TBF running at up to 10 Gbps incurred a

CPU overhead of less than 12%. This is because a single core fielded the timer inter-

rupts. Further, we showed that software pacing is susceptible to late timers, which can

be exacerbated by system load. This manifests itself as a trade-off between reduced av-

erage bandwidth and increased burstiness. While larger bucket sizes can prevent a loss

in average bandwidth for a single flow, this increases the queueing delay and latency

experienced downstream by many other flows.

We have introduced a new measurement methodology to evaluate this trade-

off and describe two new kernel-level tools, BandwidthTracker and BufferSim that can

measure the burstiness of flows in software at very fine time scales, even in the presence

109

of coarse and inaccurate timers. Using these tools, we have evaluated the effectiveness

of the Linux Token Bucket Filter (TBF) and found that, while TBF works very well

at speeds of 1 Gbps or less, a number of issues appear at higher speeds. Upon further

inspection, we discovered that kernel timers are negatively affected by system load and

short expiration intervals. Timers were often late by 0.5 to 1µs, which caused significant

loss in average bandwidth at low bucket sizes.

Our measurements revealed three simple areas for improvement. First, a lack

of precision in division tables passed to the kernel from user-space caused considerable

overshoot. Second, we found that TBF unnecessarily readjusted its timer, causing timers

to be set for very short or negative durations, increasing contention, and ultimately wast-

ing sending opportunities. Third, we found that TBF lost opportunities due to late timers

and could compensate by occasionally sending packets slightly early.

We implemented these optimizations in the Linux kernel resulting in code that

is more predictable (no overshoots), takes less software overhead (less timers set), and

has a better trade-off between downstream buffer occupancy and average bandwidth

(close to the target rate even at small bucket sizes). While much work remains to make

a robust and accurate software pacing tool, we hope the tools and ideas in this chapter

will provide a basis for future improvements.

Chapter 4, in part, is a reprint of the material being prepared for submission for

publication. “How Effective is Software Pacing?”. Frank Uyeda, Amin Vahdat, George

Varghese.

Chapter 5

Conclusions

In this dissertation, we have shown that the communication performance of

large-scale distributed systems can be enhanced using software-based solutions. Toward

this end, we have proposed three improvements: increasing communication efficiency

through the use of Difference Digests, enabling fine-grain bandwidth monitoring to aid

in tuning and debugging communication performance, and smoothing traffic at end hosts

using software-based traffic pacing.

In Chapter 2, we have shown how Difference Digests can efficiently compute

the set difference of data objects on different hosts using computation and communica-

tion proportional to the size of the set difference. Our contributions in this space are the

application of Invertible Bloom Filters to the problem of computing set differences, and

a new estimator that accurately estimates small set differences via a hierarchy of sam-

pled IBF’s. Through experimentation, we explored the parameter space for Difference

Digests and provided guidance for the practical configuration of our algorithms.

Further, we implemented Difference Digests as part of our KeyDiff service that

can be utilized by different applications to compute set differences over the network.

Our system-level benchmarks exhibited the trade-offs between computation, storage,

and communication and how they ultimately affect latency in various scenarios. We

concluded that Difference Digests should be preferred over schemes that send the entire

list of keys when the size of the difference is less than 20% and should be precomputed

for best latency performance. In future work, we plan to use the KeyDiff service in real

applications to improve overall user-perceived performance and hope that the simplicity,

110

111

elegance, and relevance of Difference Digests will inspire readers to more imaginative

uses.

Next, in Chapter 3, we argued that today administrators have little information

about when and how microbursts occur and need better visibility into the temporal dy-

namics and perpetrators of this behavior in order to tune their data-center environments.

Our work provides the first steps toward realizing a cheap network-wide, bandwidth-

usage database for identifying correlated burst patterns from across an administrative

domain by introducing new, efficient summarization techniques. First, Exponential

Bucketing offers accurate measurement of the average, maximum and standard devi-

ation of bandwidths at arbitrary sampling resolutions with very low storage overhead.

Additionally, bandwidth visualizations and more advanced statistics, such as quantiles,

are provided by Dynamic Bucket Merge’s time-series approximations. Ideally, these

techniques will be supplemented by algorithms that also identify the flows responsible

for bursts and techniques to join information across multiple links to detect offending

applications and their timing.

While we have shown the application of DBM and EXPB to bandwidth measure-

ments in end hosts, these algorithms could be easily ported to in-network monitoring de-

vices or switches. Further, these algorithms can be generally applied to any time-series

data, whether power, cooling, bandwidth, memory, CPU, or even financial markets, and

will be particularly useful in environments where resource spikes must be detected at

fine time scales but logging throughput and archival memory is constrained.

Finally, we explored software-based traffic pacing, a technique for rate-limiting

and smoothing communication behavior at end hosts to avoid network congestion and

microbursts. Chapter 4 is based on the premise that software pacing will become more

important in a world where large bandwidth-intensive transfers compete with small

latency-sensitive flows over commodity hardware and multi-Gigabit links.

To evaluate the effectiveness of software pacing, we have introduced two new

kernel-level tools, BandwidthTracker and BufferSim that can measure the burstiness of

flows in software at very fine time scales, even in the presence of coarse and inaccurate

timers. We found that the Linux Token Bucket Filter works very well at speeds of 1

Gbps or less, but at higher speeds, and in the presence of high load, late timers create

112

a trade-off between reduced average bandwidth and increased burstiness. While larger

bucket sizes can prevent a degradation of average bandwidth for a single flow, this can

increase the queueing delay and latency experienced downstream by many other flows.

Our observations led us to three simple improvements, which we implemented in the

Linux kernel. The resulting implementation is more predictable, takes less software

overhead, and has a better trade-off between downstream buffer occupancy and average

bandwidth.

In summary, our contributions have shown software-based improvements to var-

ious facets of data-center communication with potential impacts for distributed comput-

ing in general. Even as our community pushes the boundaries of cloud computing and

makes great strides with each new generation of hardware, we believe that software-

based techniques for efficient communication will have continued importance in the

decades to come.

Bibliography

[1] Cisco netflow. www.cisco.com/web/go/netflow.

[2] Facebook statistics. http://www.facebook.com/press/info.php?statistics.

[3] hrtimers - high-resolution timer subsystem. http://www.tglx.de/hrtimers.html.

[4] IEEE 802.1Qau - Congestion Notification. http://www.ieee802.org/1/pages/802.

1au.html.

[5] iperf. http://iperf.sourceforge.net/.

[6] Linux Advanced Routing and Traffic Control. http://lartc.org.

[7] Performance Management for Latency-Intolerant Financial Trading Networks. Fi-

nancial Service Technology, 9.

[8] pspacer. http://www.gridmpi.org/pspacer-2.1/.

[9] A simple network management protocol (snmp). http://www.ietf.org/rfc/rfc1157.

txt.

[10] tcpdump. http://www.tcpdump.org/.

[11] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, R. Pan, B. Prabhakar,

and M. Seaman. Data center transport mechanisms: Congestion control theory and

IEEE standardization. In Communication, Control, and Computing, 2008.

[12] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sen-

gupta, and M. Sridharan. Data center TCP (DCTCP). SIGCOMM, 2010.

[13] M. Aron and P. Druschel. Soft timers: efficient microsecond software timer support

for network processing. ACM Trans. Comput. Syst., 18(3):197–228, 2000.

[14] B. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.

ACM, 13:422–426, 1970.

[15] A. Broder. On the resemblance and containment of documents. In Compression

and Complexity of Sequences 1997.

113

114

[16] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise inde-

pendent permutations. J. Comput. Syst. Sci., 60:630–659, 2000.

[17] C. Buragohain, N. Shrivastava, and S. Suri. Space Efficient Streaming Algorithms

for the Maximum Error Histogram. In ICDE, 2007.

[18] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost. Informed content delivery

across adaptive overlay networks.

[19] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph. Understanding TCP

incast throughput collapse in datacenter networks. In WREN 2009.

[20] D. D. Clark, M. L. Lambert, and L. Zhang. NETBLT: a high throughput transport

protocol. In SIGCOMM ’87.

[21] G. Cormode, S. Muthukrishnan, and I. Rozenbaum. Summarizing and mining

inverse distributions on data streams via dynamic inverse sampling. In Proc. 31st

Int. Conf. on Very Large Data Bases (VLDB), pages 25–36, 2005.

[22] M. Devera. http://luxik.cdi.cz/∼devik/qos/htb/.

[23] D. Eppstein and M. Goodrich. Straggler Identification in Round-Trip Data Streams

via Newton’s Identities and Invertible Bloom Filters. IEEE Trans. on Knowledge

and Data Engineering, 23:297–306, 2011.

[24] A. Erramilli, O. Narayan, and W. Willinger. Experimental queueing analysis with

long-range dependent packet traffic. IEEE/ACM Trans. Netw., 4(2):209–223, 1996.

[25] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary cache: a scalable wide-

area web cache sharing protocol. IEEE/ACM Transactions on Networking (TON),

8(3):281–293, 2000.

[26] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base appli-

cations. J. of Computer and System Sciences, 31(2):182 – 209, 1985.

[27] S. Gandhi, L. Foschini, and S. Suri. Space-efficient online approximation of time

series data: Streams, amnesia, and out-of-order. In ICDE, 2010.

[28] M. T. Goodrich and M. Mitzenmacher. Invertible Bloom Lookup Tables. ArXiv

e-prints, January 2011. 1101.2245.

[29] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,

P. Patel, and S. Sengupta. VL2: A scalable and flexible data center network. In

SIGCOMM 2009.

[30] J. Hershberger, N. Shrivastava, S. Suri, and C. Toth. Adaptive Spatial Partitioning

for Multidimensional Data Streams. Algorithmica, 2006.

115

[31] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the

curse of dimensionality. STOC ’98.

[32] S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, and B. Vandalore. The ERICA

switch algorithm for ABR traffic management in ATM networks. IEEE/ACM

Trans. Netw., 8(1):87–98, 2000.

[33] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The nature of

data center traffic: measurements & analysis. In IMC 2009.

[34] R. R. Kompella, K. Levchenko, A. C. Snoeren, and G. Varghese. Every microsec-

ond counts: tracking fine-grain latencies with a lossy difference aggregator. In

SIGCOMM 2009.

[35] Y. Lu, M. Wang, B. Prabhakar, and F. Bonomi. Elephanttrap: A low cost device

for identifying large flows. In HOTI, 2007.

[36] R. Martin. Wall Street’s Quest To Process Data At The Speed Of Light. Informa-

tion Week, April 23 2007.

[37] Y. Minsky, A. Trachtenberg, and R. Zippel. Set reconciliation with nearly op-

timal communication complexity. Information Theory, IEEE Transactions on,

49(9):2213 – 2218, 2003.

[38] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algo-

rithms and Probabilistic Analysis. Cambridge University Press, New York, NY,

USA, 2005.

[39] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University

Press, New York, NY, USA, 1995.

[40] S. Muthukrishnan. Data streams: Algorithms and applications. Found. Trends

Theor. Comput. Sci., 1:117–236, 2005.

[41] C. Partridge. Manual page of TB program, 1994.

[42] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R. Ganger, G. A.

Gibson, and S. Seshan. Measurement and analysis of TCP throughput collapse in

cluster-based storage systems. In FAST 2008.

[43] A. Rasmussen, G. Porter, M. Conley, H. V. Madhyastha, R. N. Mysore, A. Pucher,

and A. Vahdat. TritonSort: A Balanced Large-Scale Sorting System. In NSDI

2011.

[44] R. Takano, T. Kudoh, Y. Kodama, M. Matsuda, H. Tezuka, and Y. Ishikawa. De-

sign and evaluation of precise software pacing mechanisms for fast long-distance

networks. In PFLDNet, 2005.

116

[45] P. P. Tang and T.-Y. Tai. Network traffic characterization using token bucket model.

In INFOCOM ’99.

[46] F. Uyeda, L. Foschini, S. Suri, and G. Varghese. Efficiently measuring bandwidth

at all time scales. In NSDI 2011.

[47] G. Varghese and T. Lauck. Hashed and hierarchical timing wheels: data structures

for the efficient implementation of a timer facility. SIGOPS Oper. Syst. Rev., 21(5),

1987.

[48] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R. Ganger,

G. A. Gibson, and B. Mueller. Safe and effective fine-grained TCP retransmissions

for datacenter communication. SIGCOMM 2009.

[49] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP: Incast congestion control for TCP

in data center networks. In Co-NEXT ’10.

