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The hydroxyl radical (OH) fuels atmospheric chemical cycling as the main sink 
for methane and a driver of the formation and loss of many air pollutants, but 
direct OH observations are sparse. We develop and evaluate an observation-based 
proxy for short-term, spatial variations in OH (ProxyOH) in the remote marine 
troposphere using comprehensive measurements from the NASA Atmospheric 
Tomography (ATom) airborne campaign. ProxyOH is a reduced form of the OH 
steady-state equation representing the dominant OH production and loss path-
ways in the remote marine troposphere, according to box model simulations of OH 
constrained with ATom observations. ProxyOH comprises only eight variables that 
are generally observed by routine ground- or satellite-based instruments. ProxyOH 
scales linearly with in  situ [OH] spatial variations along the ATom flight tracks 
(median r2 = 0.90, interquartile range = 0.80 to 0.94 across 2-km altitude by 20° 
latitudinal regions). We deconstruct spatial variations in ProxyOH as a first-order 
approximation of the sensitivity of OH variations to individual terms. Two terms 
modulate within-region ProxyOH variations—water vapor (H2O) and, to a lesser 
extent, nitric oxide (NO). This implies that a limited set of observations could offer 
an avenue for observation-based mapping of OH spatial variations over much of 
the remote marine troposphere. Both H2O and NO are expected to change with 
climate, while NO also varies strongly with human activities. We also illustrate the 
utility of ProxyOH as a process-based approach for evaluating intermodel differences 
in remote marine tropospheric OH.

atmospheric oxidation | marine troposphere | tropospheric chemistry | hydroxyl radical

As the primary sink for methane, a strong greenhouse gas and air pollutant precursor, the 
hydroxyl radical (OH) is an influential yet poorly quantified lever on methane variations. 
Uncertainty in OH interannual variations is sufficiently high that it can hinder attribution 
of annual methane fluctuations. For example, inverse modeling analyses suggested sev-
eral—sometimes conflicting—source sectors could explain the observed stabilization in 
methane levels from 2000 to 2005 (1–5), while uncertainty in the OH sink hinders 
effective trend attribution (6–8). Declining OH due to COVID-19 lockdowns has been 
invoked as a cause of the record-breaking increase in methane concentration observed 
since 2020 (9). The lack of constraints on OH also affects its representation in models 
that are applied to project future atmospheric composition and climate. Even when using 
the same emission inventories, chemistry-climate models simulate different methane life-
times (10, 11), global mean OH (12, 13), and OH sensitivity to its drivers (13–15). Here, 
we develop and evaluate a proxy (ProxyOH) built from OH steady-state chemistry over 
the remote marine troposphere. ProxyOH maps spatial variations in OH and can also be 
deconstructed to infer the processes contributing to OH fluctuations, information that 
extends beyond the capacity of existing proxies.

Sharp spatiotemporal variations in OH confound the development of a representative 
measurement network. Interannual variability in global (16–19) or hemispheric (20) mean 
OH is typically inferred using the loss rate of relatively long-lived, well-mixed chemicals that 
react principally with OH, such as methyl chloroform (21–23). Formaldehyde, an interme-
diate product of methane oxidation with a lifetime of several hours, shows promise for reflect-
ing daily OH fluctuations at the relatively small scale of a tropospheric column (24, 25). 
Although they offer much-needed information on OH variability, none of the existing proxies 
provides insight into the individual photochemical processes controlling OH.

We use an unprecedented set of observations from the NASA Atmospheric Tomography 
(ATom) airborne campaign (26). This dataset, comprising 146,494 10-s average air parcels 
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(27), offers the most spatially comprehensive set of in situ profile 
measurements of OH and its chemical and radiative drivers to date 
(28). In general, we subset the relatively unpolluted, remote marine 
tropospheric data into regional bins to account for large-scale vertical 
and latitudinal variations in OH. We first consider potential formu-
lations of ProxyOH using a chemical box model (the Framework for 
0-D Atmospheric Modeling, F0AM) constrained to the ATom obser-
vations (24, 29). Then we calculate ProxyOH directly from the obser-
vations and evaluate it against ATom [OH]. While there is a rich 
history of using box models constrained by airborne data to examine 
OH and its sensitivities to individual photochemical drivers (e.g., 
refs. 30–34), we instead calculate the proxy directly from observa-
tions and laboratory-measured kinetic rate coefficients (35) using 
only eight variables (Section 2.1.1). This differs from other analyses 
that, for example, calculate daily average methane loss rates in models 
constrained by ATom observations (36).

ProxyOH serves as a reduced-form model that offers a first-order 
estimate of the sensitivity of OH spatial variations to individual 
reaction rates or variables over the remote marine troposphere. 
We show below that ProxyOH suggests that two key drivers, water 
vapor (H2O) and nitric oxide (NO), contribute most to regional 
variations in OH observed during the ATom campaign. We also 
apply ProxyOH to evaluate the simulated abundance and sensitivity 
of OH spatial variations in a global model used to project future 
composition and climate.

1.  Results

1.1.  Proxy Formulation over the Remote Marine Troposphere. 
We define variations in OH as the spread in concentration 
at a specified spatiotemporal scale. Our goal is to distill the 
representation of OH to terms (e.g., photolysis rates or chemical 
species) that individually shape local OH distributions and, when 
combined, collectively capture measured OH variations. We use 
the F0AM photochemical box model constrained with ATom 
observations to test potential formulations of a proxy for OH 
spatial variations (Section 2.1.2).

Relatively few processes dominate OH variations over long 
timeframes or large spatial scales (37–39). Five years of OH 
measurements from a site in southern Germany suggest that 
insolation largely controls its temporal variations (40). Modeled 
global annual mean OH scales as a simple function of the ratio 
of reactive nitrogen and carbon emissions from preindustrial 
times to present-day (41). When combined with atmospheric 
humidity and overhead ozone columns, a proxy constructed 
from these four variables alone can capture global mean OH 
changes on glacial-interglacial (42) and decadal (13) timescales. 
Column-based satellite retrievals of species serving as OH 
sources and sinks reflect interannual modeled OH variations 
across U.S. cities from 2005 to 2014 (43) and to within 20 to 
30% over the oceanic mid-troposphere from 2008 to 2017 
(44). Here, we build on these previously identified sets of OH 
drivers to develop a proxy from observable quantities that 
reflect OH variations over smaller regional scales. We seek the 
simplest possible formulation that correlates strongly with 
ATom-measured [OH], so that ProxyOH may also serve as a 
reduced-form model. The advantage of a reduced-form model 
is that it can infer the relative importance of specific chemical 
species or reactions in contributing to variations in observed 
or simulated OH.

Locally, [OH] should be at steady state (OH production rate = 
OH loss rate) on timescales that exceed the OH lifetime of ~1 to 2 
s (37). Over much of the troposphere, OH production is dominated 
by the reactions between singlet D atomic oxygen (produced from 

ozone photolysis) and water vapor (O(1D) + H2O) and the hydrop-
eroxyl radical with nitric oxide (HO2 + NO), while losses are dom-
inated by carbon monoxide (CO) and, secondarily, methane (38). 
We confirm that these two dominant production pathways capture 
spatial variations in OH production with the F0AM box model. In 
F0AM, the sum of the O(1D) + H2O and HO2 + NO production 
rates strongly covary across the full ATom dataset with the total OH 
production rate (∑POH; r2 = 0.98) and account for 60% of ∑POH 
(related to the slope of the regression between the proxy production 
rates and ∑POH regression slope; m = 0.75). The tight fit between 
OH and the sum of the two largest production terms, even though 
these terms cumulatively comprise only 60% of ∑POH, implies that 
O(1D) + H2O and HO2 + NO covary with other terms that con-
tribute to ∑POH. We show example correlated reactions included in 
F0AM in SI Appendix, Table S1. The O(1D) + H2O and HO2 + NO 
pathways, plus the HO2 + O3 reaction and the photolysis of hydro-
gen peroxide (H2O2) and methyl hydroperoxide (CH3OOH) cumu-
latively represent 98% of ∑POH (m increases to 0.98), with all other 
processes contributing <1% to ∑POH individually. While including 
additional OH production processes beyond the two dominant 
pathways increases the slope to approach 1, it has little influence on 
the fit between the simplified representation of production and ∑POH 
(Δr2 < 0.01). This general pattern holds on smaller scales; the corre-
lation coefficient between the sum of the O(1D) + H2O and HO2 
+ NO with ∑POH is r2 = {0.97, 0.98} over the Pacific or Atlantic, 
respectively, and the median ( r2

Mdn
 ) is 0.98 across smaller regional 

domains of 2 km by 20° latitudinal bins (Section 2.1.3). The com-
position of ∑POH also generally holds over smaller scales (SI Appendix, 
Fig. S1). Thus, we adopt a simplified proxy representation of OH 
production that includes only the O(1D) + H2O and HO2 + NO 
reactions (Eq. 1). Note that this formulation does not rely on the 
relatively uncertain NO2 measurement (36).

	 [1]

The OH sink terms also range in integration timescales. Within 
a parcel, OH loss to more reactive chemical species can fluctuate 
rapidly, on the order of minutes (e.g., OH + HO2) to hours (e.g., 
OH + isoprene). CO or methane, the dominant OH sinks over 
the remote troposphere, may not vary within a parcel because their 
lifetimes range from months to years, though transport can pro-
duce sharp gradients across neighboring air parcels. The most 
appropriate terms to represent OH loss will thus vary with  
the local chemical regime and spatiotemporal scale under 
consideration.

To determine which loss pathways to include in the proxy, we 
consider the component of OH loss that is independent of its 
concentration, the “OH reactivity,” denoted k′OH.. We focus on 
the 2-km altitude by 20° latitudinal regional bins before consid-
ering oceanic scales or all ATom observations together. Within the 
regional bins, F0AM indicates that CO is the largest contributor 
to the magnitude of ∑k′OH in each bin (22 to 53%), followed by 
CH4 (9 to 22%). This holds everywhere except the southern trop-
ical lower troposphere, where CH3OOH reactivity is maximum 
at 20% (SI Appendix, Fig. S2). CO reactivity spatially covaries 
with ∑k’OH ( r2

Mdn
 = 0.45) within the 2-km altitude by 20° latitu-

dinal bins more than does methane reactivity ( r2
Mdn

 = 0.22). The 
reactivities of HO2, H2O2, and small, shorter-lived VOCs like 
formaldehyde (HCHO), CH3OOH, or methanol (CH3OH) 

POH =
2JO(1D)kO(1D)+H2O

[

O3

][

H2O
]

kO(1D)+M [M ] + kO(1D)+H2O
[H2O]

+kHO2 +NO[HO2][NO].

http://www.pnas.org/lookup/doi/10.1073/pnas.2209735120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2209735120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2209735120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2209735120#supplementary-materials
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frequently correlate most strongly with ∑k’OH over this regional 
scale (SI Appendix, Fig. S3). However, they also moderately cor-
relate with CO in any given regional bin (r2 of approximately 0.3 
to 0.5; SI Appendix, Fig. S4). Thus, the regional analysis suggests 
that, among all OH sink terms, CO contributes most to both the 
magnitude and spatial variations of ∑k′OH across the remote 
marine troposphere, as it often covaries with other OH sinks.

When considering all ATom observations together or when 
subsetting for the Pacific, methane reactivity emerges as a better 
predictor of ∑k′OH variations than other sinks, including CO 
(SI Appendix, Fig. S5). The methane and CO reactivities corre-
late across the full ATom dataset (r2 = 0.58). Although using 
both CO and methane reactivity slightly improves the slope of 
the regression with ∑k′OH (with CO reactivity alone, m = 0.24; 
when summing CO and methane reactivities, m = 0.37), it does 
not substantially improve the correlation either over the full 
dataset or within a given oceanic basin (Δr2 ≤ 0.05). We there-
fore opt for simplicity and represent the OH sink term using 
only the CO reactivity, or equivalently, the lifetime of OH 
against its reaction with CO (denoted τOH,CO, Eq. 2).

	 [2]

As a simplified version of OH steady-state chemistry in the 
remote marine troposphere, ProxyOH is a reduced-form model for 
OH comprising the sum of the O(1D) + H2O and HO2 + NO 
reactions scaled by τOH,CO (Eq. 3).

	 [3]

Combining the ATom observations directly with reaction rate 
coefficients (35), we demonstrate that alternative proxy formula-
tions do not improve upon the ProxyOH fit with measured OH 
spatial variations (Section 1.2), though some formulations provide 
more comprehensive insight into the observed OH magnitude 
(Section 1.3). The remainder of this manuscript uses the ATom 
measurements directly (in other words, the F0AM box model is 
not used).

1.2.  ProxyOH Captures Much of the ATom-Observed Variations 
in OH. We assess the skill of ProxyOH, calculated directly from 
the ATom observations, in predicting measured OH variations 
within each bin of our regional domain (Fig. 1 and Sections 2.1.1 
and 2.1.3). We fit the ProxyOH-[OH] regression slope and 
intercept within each bin using a Bayesian mixed-effects model 
implemented with Markov Chain Monte Carlo (MCMC) 
simulations (Section 2.2). The altitude and latitude are random 
effects in this mixed-effects model. The Bayesian approach offers 
an advantage over a frequentist method (e.g., ordinary least square 
regression, among other maximum likelihood approaches) because 
it evaluates distributions of ProxyOH and [OH] that account for the 
instruments’ uncertainties. “True” values for OH and the proxy 
terms (i.e., JO(1D) and the concentrations of H2O, HO2, NO, 
etc.) are drawn from normal distributions with mean and variance 
defined by the measured concentration and error, respectively. 
The posterior distributions, ProxyOH,true and [OH]true), are used to 
assess the ProxyOH predictive skill quantified by the coefficient of 
determination and slope and intercept regression parameters. For 
comparison, SI Appendix, Fig. S6 shows these parameters when 
derived by an ordinary least squares regression, without accounting 
for measurement uncertainty, and the sample size and ProxyOH 
and [OH] value ranges within each spatial bin (the subplot axes 
in SI Appendix, Fig. S6 are the same as in Fig. 1). A comparison 
of the coefficient of determination (subplot background colors) 
SI Appendix, Fig. S6 demonstrates that the Bayesian mixed-effect 
approach (Fig. 1A) places less emphasis than ordinary least square 
regressions (SI Appendix, Fig. S6A) on few points distant from the 
data’s primary mode of variation (for example, in subplots over the 
Pacific between −60° and −40°N and above 2 km).

The ProxyOH-[OH] within-bin covariation is generally robust, 
with a median coefficient of determination ( r2

Mdn
 ) across all spatial 

bins of 0.90 (IQR = 0.80 to 0.94). It is highest between 2- to 8-km 
altitude ( r2

Mdn
 = 0.93, IQR = 0.87 to 0.95) and over the Northern 

Hemisphere ( r2
Mdn

 = 0.93, IQR = 0.88 to 0.95). The proxy skill is 
expected to degrade where processes that are not included in its 
formulation affect OH variations. For example, convection may 
affect OH variations, potentially due to lofted peroxides (45), in 

�OH ,CO =
[OH]

kco+OH [CO][OH]
=

(

kco+OH [CO]
)−1

.

ProxyOH = POH�OH ,CO .

Fig. 1. The steady-state proxy for OH (ProxyOH) captures much of the in situ measured and modeled [OH] variations along the ATom flight tracks. Shown is the 
spatial distribution over the (A) Pacific and (B) Atlantic oceans of the ATom-observed (blue dots) or AM3 modeled (orange dots) regression between ProxyOH and 
[OH] (both in ppt). The background color and number in the upper left corner of each subplot indicates the mean r-squared coefficient of determination (r2) of 
the ATom ProxyOH-[OH] posterior distributions, and the light blue shading illustrates the 95% Bayesian credible interval (Section 2.2). The model correlation is 
not shown but is slightly higher than observed (see text). The orange line is the AM3 ProxyOH-[OH] ordinary least square regression. See SI Appendix, Fig. S6 for 
axes’ descriptions.

http://www.pnas.org/lookup/doi/10.1073/pnas.2209735120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2209735120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2209735120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2209735120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2209735120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2209735120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2209735120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2209735120#supplementary-materials
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some midlatitude plumes above 4 km (SI Appendix, Fig. S7). The 
comparably weaker fit in the lower troposphere may stem from 
marine-emitted halogens affecting the oxidation regime (46–48). 
However, the residuals of the ProxyOH-[OH] regression do not show 
a systematic relationship (spatial median r2 ≤ 0.03) with other vari-
ables that affect oxidation (e.g., particle number concentration, hal-
ogens, convection; SI Appendix, Table S2). Overall, the aircraft 
observations suggest that ProxyOH reflects observed OH spatial var-
iations on smaller scales than has previously been possible to discern 
using existing, globally well-mixed proxies.

In Section 1.1, the F0AM simulations indicated that alternate 
forms of a steady-state proxy over the 2-km altitude by 20° latitude 
bins could employ the OH lifetime against small oxidized carbon 
compounds (e.g., HCHO and CH3OOH, which are included in 
the 10-s ATom observations; SI Appendix, Figs. S2 and S3) in place 
of, or in combination with, τOH,CO. However, using the ATom 
observations directly to assess alternative proxy formulations that 
use these variables indicates that the simplest proxy formulation, 
using only CO as in Fig. 1, best reflects OH variations over the 
regional domain (SI Appendix, Table S3).

On larger scales, ProxyOH demonstrates similar predictive skill in 
reflecting OH variations when all observations in the domain are 
considered together (ordinary least squares r2 = 0.52) as when sub-
setting for the Pacific or Atlantic (r2 = 0.49 or 0.60, respectively). 
Replacing τOH,CO in Eq. 3 with the OH lifetime against methane  
[= ( kCH4+OH

 [CH4])
−1] does not improve the correlation across all 

flight tracks (r2 = 0.44), even when representing the OH sink in the 
proxy denominator as the sum of both rates (r2 = 0.51). Despite the 
role of methane in modulating the global OH abundance, including 
it in ProxyOH does not improve the fit with observed OH because 
methane reactivity does not spatially covary with the total OH sink.

1.3.  Inferring the ATom-Observed OH Abundance. While the 
coefficient of determination describes the extent to which the 
proxy fits the observed variations in ATom [OH], the intercept 
and slope infer the magnitude of the proxy in comparison with 
[OH]. When considering all data together, the ProxyOH-[OH] 

intercept overlaps zero, averaging 0.05 ± 0.05 ppt (μ ± 95% 
CI), though the intercept is generally positive within a given bin 
(Fig. 2 A and B). A positive intercept indicates a small missing 
background source or underestimated sink, though the within-
bin MCMC mean intercept does not correlate with the mean of 
the processes considered for the residual analysis (across bins, r2 ≤ 
0.14; SI Appendix, Table S2). The strongest residual relationship is 
shown with CH3OOH, the probability of convective influence, 
and solar zenith angle. This suggests that ProxyOH could potentially 
be refined to reduce the regression intercept by accounting for the 
lofting and photolysis of CH3OOH.

The ProxyOH-[OH] slope overall averages to 0.39 ± 0.25. It gen-
erally maximizes below 4 km and at higher latitudes, particularly in 
the northern hemisphere, and minimizes in the upper troposphere 
(Fig. 2 C and D and SI Appendix, Fig. S9). The slope reflects the 
relative contribution of ProxyOH terms to total OH production and 
loss (SI Appendix, Fig. S8). For example, a larger slope could indicate 
that the ProxyOH production terms encompass more of the total OH 
production; alternatively, but not exclusively, it could suggest that 
the ProxyOH loss terms encompass less of the total OH loss (refer to 
Section 1.1 and SI Appendix, Figs. S1 and S2). While the ProxyOH 
representation of the magnitude of both OH production and loss 
influence the regression slope, the slope is more tightly coupled with 
the contribution of CO to the total OH loss (compare SI Appendix, 
Fig. S8 B and C), stemming from a larger underestimate in the OH 
sink than in its source as part of the ProxyOH formulation (compare 
F0AM-simulated percent contributions in SI Appendix, Fig. S1 with 
SI Appendix, Fig. S2).

Including additional sink terms in the proxy formulation 
increases the slope (SI Appendix, Table S3 and Fig. S9), but as 
described in Section 1.2, it does not improve the [OH] fit (little 
change in r2). ProxyOH only uses the OH lifetime against CO. 
Expanding to include the OH lifetime against HCHO 
(kHCHO+OH[HCHO]) and/or CH3OOH (kCH3OOH+OH[CH3OOH]) 
in the proxy sink term reduces the spatial gradients in the 
MCMC-simulated slopes (compare stars and squares to circles in 
SI Appendix, Fig. S9). The slope spatial gradients are smallest when 

A

C

B

D

Fig. 2. The ProxyOH-[OH] regression slope and intercept reflect the relationship between OH sources and sinks. The distinct spatial patterns in the regression 
parameters indicate that using the ProxyOH to infer the local OH concentration requires accounting for vertical and latitudinal distributions. Spatial distribution 
of the intercept (Top; A and B) and slope (Bottom; C and D) posteriors from the Bayesian linear regression between ProxyOH and observed [OH] are shown. Boxes 
span six 20° latitudinal bins (x axis and gradient in gray background color) and five 2-km altitude bins (color), separated by ocean basin (Left or A and C: Pacific; 
Right or B and D: Atlantic). For a given bin, the posterior is drawn as the final 1,000 iterations across three chains from Markov Chain Monte Carlo simulations 
used to implement the Bayesian fit (Section 2.2). Vertical colored lines indicate the 95% credible interval of the intercept and slope for that spatial bin.

http://www.pnas.org/lookup/doi/10.1073/pnas.2209735120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2209735120#supplementary-materials
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including the OH lifetime against CH3OOH (squares in 
SI Appendix, Fig. S9), although the spread (vertical bars) increases 
due to larger CH3OOH measurement uncertainty. For all proxy 
formulations, the slope is generally smallest between 8- and 10-km 
altitude. In this vertical layer, SI Appendix, Fig. S1 indicates that 
H2O2 photolysis and the reaction of HO2 + O3 are often larger 
contributors to POH than O(1D) + H2O. Overall, this analysis 
suggests that changes in the composition of k’OH generally drive 
the spatial variations in the slope, while missing sources may con-
tribute most in the upper troposphere.

The ProxyOH underestimate of the total magnitude of the OH 
source and sink terms stems from its intended simplicity, such 
that one limitation of ProxyOH is that it does not represent the 
exact ratio of OH production to loss. However, the tight fit of the 
regression between ProxyOH and measured [OH] implies that the 
spatial distribution of slopes and intercepts derived here can be 
used to infer the total magnitude of [OH] over the remote marine 
troposphere (further discussion of the spatial variations in regres-
sion parameters is available in SI Appendix, Text S1).

1.4.  Decomposing the Observation-Based Proxy to Evaluate the 
Sensitivity of OH Variations. We decompose ProxyOH across all 
ATom observations, by oceanic basin and within each altitude–
latitude bin as a first-order estimate of the chemical sensitivity of 
OH variations to individual species and chemical production or 
loss pathways. This decomposition is a major advantage relative 
to existing OH proxies because it enables inference of the relative 
importance of different processes in contributing to spatial OH 
variations. Specifically, we construct sensitivity versions of the 
proxy in which we hold a single reaction rate (e.g., O(1D) + H2O) 
or term (e.g., NO or temperature, T) constant at its mean value 
per 2 km by 20° zonal bin, and then calculate the coefficient of 
determination (r2) between ProxyOH and each sensitivity version 
to assess the change in fit (1 – r2). This simple approach assumes 
a linear relationship between each term or rate and ProxyOH. 
Because it neglects higher order chemical processes that may lead 
to nonlinear responses, the contributions summed across variables 
may not add to 100%. In addition, some of the drivers (e.g., NO 
and ozone) may be correlated. Below we display the influence of 
rates or terms as their contribution to the total proxy fit (1 – r2), 

such that 1 – r2 approaching 1 indicates a rate or term with a 
strong influence on [OH] variations.

We first evaluate the role of individual terms composing 
ProxyOH in each of the 2-km altitude by 20° latitude subsets of 
the ATom observations. We find that H2O dominates most of the 
ATom-observed ProxyOH variations (Fig. 3A), especially in the 
midtroposphere. This result is also robust when considering all 
ATom observations together or when subsetting by oceanic basin 
(SI Appendix, Table S4). Controls on proxy variations over either 
oceanic basin are shown in SI Appendix, Fig. S10. Our 
observation-based analysis affirms that, consistent with previous 
model-based analyses of the remote troposphere (37, 38), O(1D) 
+ H2O is most influential throughout much of the free tropo-
sphere, while HO2 + NO dominates in the upper troposphere and 
sometimes in the more polluted lower troposphere. In addition, 
our results are consistent with earlier work showing that several 
models constrained with ATom chemical observations attribute 
much of the difference in intermodel OH distributions to H2O 
discrepancies (27). Further, climate model intercomparisons 
demonstrate biases in H2O of ± 10% in the lower troposphere 
that increase to as much as ± 100% in the upper troposphere (49, 
50). Convection and cloud microphysics have long challenged 
accurate simulations of water vapor vertical profiles (e.g., refs. 
51–55). Our results reinforce that variations in OH are heavily 
tied to water vapor. Improving the accuracy of atmospheric hydro-
logic processes in chemistry-climate models should thus improve 
OH trend simulations, as well as those for methane, CO, and 
other trace gases whose primary sink is reaction with OH.

The water vapor feedback due to anthropogenic climate change 
could increase methane destruction by accelerating its loss through 
reaction with tropospheric OH (39). Global average OH has histor-
ically been well buffered (18) because its variability was dominated 
by anthropogenic combustion (41), which affects both its production 
(via NO and O3) and loss (via CO and other forms of reactive car-
bon). However, rising atmospheric [H2O] only directly affects OH 
production, in the absence of a compensating increase in the OH 
sink. A coupled chemical model would be necessary to account for 
the full effect of climate change on atmospheric oxidation, for exam-
ple, due to offsetting feedbacks, like an increase in H2O2 production 
followed by deposition or weather-sensitive emissions such as 

Fig. 3. Few terms—water vapor (H2O), nitric oxide (NO), the hydroperoxy radical (HO2), ozone (O3) and the rate of O3 photolysis to O(1D) (  J
O(
1
D)

)—dominate the 
sensitivity of ProxyOH variations over the remote troposphere. Spatial distribution of the difference in the ProxyOH-[OH] fit (1 - r2) attributed to each of the physical 
or chemical terms that comprise ProxyOH H2O, NO, HO2, J

O(
1
D)

 , O3, temperature (T), CO or the pressure dependence of the CO reaction rate ( M
k
CO

 ) are individually 
held constant, for (A) ATom observations and (B) AM3 fields sampled along the ATom flight tracks. The colors indicate which of the terms is the largest contributor 
to proxy variance in that cell, with bold text and an asterisk indicating that the colored term contributes 0.20 more (r2 units) than the next-most influential term.
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methane from wetlands. ProxyOH instead offers a simple, first-order 
projection of how OH might respond to the expected rise in atmos-
pheric water vapor abundances with future climate change. Applying 
the mean increase in water vapor between 2,010 and 2,100 from 
RCP 8.5 (56), used by Holmes et al. (39), we infer from ProxyOH 
that the projected magnitude of change in [H2O] (42.3%) along the 
ATom flight tracks where H2O dominates the OH sensitivity 
(between 2- and 8-km altitude) could increase regional average [OH] 
by 19%. This estimate indicates the potential for a large, negative 
feedback to climate change by increasing the methane sink. However, 
this sensitivity was derived from short-term, regional observations, 
and needs further study into the connection to long-term global 
trends. This approach also neglects nonlinear chemical feedbacks 
and potential simultaneous offsetting processes (e.g., an increase in 
methane). While additional work employing a more complex model 
is needed, this first-order estimate suggests that higher water vapor 
associated with anthropogenic climate change could cause a depar-
ture from the recent era, in which OH derived from globally 
well-mixed proxies has not shown a substantial trend since the start 
of the methyl chloroform record (18, 19, 57).

NO is the second-largest driver of within-bin ProxyOH spatial 
variations based on our analysis of the ATom observations over the 
remote marine troposphere (Fig. 3A and SI Appendix, Fig. S10). 
JO(1D) sometimes dominates over midlatitude, lower tropospheric 
regions in the Southern Hemisphere. HO2 emerges as influential in 
some regions, in particular when separating the data by oceanic basin 
(SI Appendix, Fig. S10 A and C). Ozone also affects the ProxyOH 
spatial variations in several bins, though not substantially more  
(Δr2 < 0.2) than the next-most influential term (Fig. 3A). On larger 
scales, ozone is generally a stronger driver of ProxyOH spatial varia-
tions than NO, JO(1D) or HO2, while H2O still dominates 
(SI Appendix, Table S4). The OH lifetime against CO does not dom-
inate in any of the 2 km by 20° latitudinal bins or over larger spatial 
scales (SI Appendix, Table S4) likely due to the relatively long lifetime 
of CO. However, trends in CO sources may affect the OH sensitivity 
over longer timescales, for example, due to climate-driven changes 
in biomass burning emissions (58).

We compare a parallel decomposition of a more comprehensive 
proxy version with the terms that covary most strongly with 
ProxyOH (compare Fig. 3 and SI Appendix, Fig. S11). The expanded 
proxy includes additional terms affecting [OH] that were identi-
fied in previous sections as important for reconstructing the total 
OH abundance based on their contribution to the total OH 
source or sink (SI Appendix, Figs. S1 and S2 and Table S1) or an 
increased slope of the proxy-[OH] fit (SI Appendix, Fig. S9 and 
Table S3). Additional OH production terms are H2O2 photolysis 
and the reaction of HO2 with O3; OH sink terms are its reaction 
with methane, formaldehyde, and methyl hydroperoxide. 
Conducting the same sensitivity analysis, as in Fig. 3A, the same 
terms dominate the base and expanded proxy sensitivity analysis 
(SI Appendix, Fig. S11). We conclude that the base ProxyOH cap-
tures key terms for inferring within-bin OH spatial variations 
(compare bins with asterisks in Fig. 3 and SI Appendix, Fig. S11). 
This sensitivity analysis indicates that, even though some of the 
expanded proxy terms affect the magnitude of OH (e.g., 
CH3OOH; see SI Appendix, Fig. S9), they are not as influential 
over OH spatial variations on these scales.

1.5.  Evaluating a Chemistry-Climate Model Using ProxyOH. We 
illustrate how ProxyOH can be used to evaluate the processes that 
control spatial OH variations in a chemistry-climate model. 
Paralleling our observation-based analysis, we construct ProxyOH 
from hourly fields archived from the GFDL AM3 chemistry-
climate model for comparison with AM3-simulated OH 

(Section 2.1.4). ProxyOH-[OH] correlations in the global AM3 
model sampled along the ATom flight tracks (orange points and 
line in Fig. 1) have a spatial median r2

Mdn
 = 0.95, just above the 

interquartile range of the observationally derived r2
Mdn

 (0.90, IQR 
= 0.80 to 0.94). The slightly tighter modeled relationship may 
reflect the different spatiotemporal coverage of the two datasets, 
or it could indicate a model underestimate in OH sink variations 
(59, 60). On larger spatial scales (here, considering the full ATom 
dataset), AM3 indicates the strength of relationship would be 
similar if the OH sink were represented through methane  
(r2 = 0.67 for all ATom; r2 = 0.63 or 0.71 over the Pacific or 
Atlantic, respectively) instead of CO (r2 = 0.65, 63, or 0.75, 
respectively). Overall, we conclude that the link between OH 
production and [OH] is tighter in AM3, and in F0AM (refer 
to SI  Appendix, Fig.  S5), than in the observations due to an 
underestimate in the variability of OH reactivity, potentially due 
to missing OH loss processes (SI Appendix, Fig. S12).

Decomposing the modeled ProxyOH variations by individual 
terms, we find similar spatial patterns for within-bin relation-
ships as in the observations, with some exceptions (Fig. 3B 
versus Fig. 3A). In both analyses, H2O emerges as the most 
influential term in most of the 2 km by 20° latitude bins, espe-
cially in the mid-troposphere. NO dominates the within-bin 
ProxyOH variations in the upper troposphere, though the model 
simulates NO influence on ProxyOH variations over a larger 
swath of the upper troposphere (>6 km) than indicated by the 
measurements (>8 km). This overestimate is generally associated 
with a high normalized mean bias in NO (in other words, mod-
eled NO is higher than observed; Section 2.1.4 and SI Appendix, 
Fig. S13), possibly indicating an error in low-temperature 
kinetic data for NOx-O3 photochemical cycling (61). Conversely, 
AM3 underestimates the extent of HO2 influence over ProxyOH 
spatial variations in the upper troposphere, colocated with a 
low normalized mean bias in modeled HO2 (SI Appendix, 
Fig. S14). AM3 also has a low bias in H2O in this region 
(SI Appendix, Fig. S15).

The model also fails to capture the observed variability in the 
drivers of ProxyOH spatial variations in the lower troposphere. 
AM3 suggests that only JO(1D) is influential across the Southern 
Hemisphere, while H2O modulates modeled ProxyOH spatial var-
iations throughout the Northern Hemisphere in this vertical layer. 
The observations, in contrast, limit the JO(1D) influence to a 
smaller horizontal extent, and indicate that H2O does not dom-
inate spatial variations in any lower tropospheric region (Fig. 3A). 
When considering individual oceanic basins, H2O emerges as a 
primary driver of ProxyOH variations over two lower tropospheric 
bins in the Atlantic (SI Appendix, Fig. S10). The model underes-
timates the sensitivity of ProxyOH spatial variations to NO in the 
lower troposphere, but the model NO bias differs in sign by hem-
isphere. We infer that, in the lower troposphere, modeled NO 
may be too low to drive ProxyOH variations in the Southern 
Hemisphere but is excessively high in the Northern Hemisphere, 
where ProxyOH variations may no longer be sensitive to NO.

The analysis above illustrates how ProxyOH can be used as a tool 
for rapid assessment of the relative importance of chemical pro-
cesses that control tropospheric oxidation variations. This infor-
mation can be applied to model evaluation, or to inform areas for 
exploration using more comprehensive, but more expensive, global 
chemistry-climate models. Overall, the modeled sensitivity of 
ProxyOH variations is consistent with the observations in demon-
strating that few terms, mainly H2O and NO, dominate the sen-
sitivity of regional oxidation variations over the remote marine 
troposphere.
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1.6.  Discussion: Advancing Understanding of the Methane 
Lifetime Using ProxyOH. Improved confidence in methane trend 
attribution relies on a better understanding of OH variations 
(62), but OH variations have been difficult to constrain, in part, 
because of nonlinear relationships between OH and its numerous 
underlying drivers. We develop and evaluate an observation-based 
proxy for subhemispheric spatial variations in OH (ProxyOH) over 
the remote marine troposphere. ProxyOH is based on a simplified 
version of steady-state OH chemistry (two production and one 
loss pathway) that accounts for the contribution from key drivers 
to regional spatial variations in OH. By enabling a first-order 
approximation of the influence of individual variables on OH 
spatial variations, ProxyOH serves as a reduced-form model that 
can provide process-based insight into OH fluctuations.

Decomposing the ATom-observed ProxyOH, calculated directly 
from the aircraft observations, suggests that few terms—H2O and, 
to a lesser extent, NO—modulate almost all of the inferred OH 
variations over the remote marine troposphere on regional scales (i.e., 
2-km altitude by 20° latitude bins). Thus production processes con-
trol the sensitivity of OH variations within a regional bin. On larger 
scales (i.e., across bins), the composition of OH reactivity modulates 
the regression slope, relevant for inferring the OH magnitude.

ATom, by design, flew over atmospheric swaths where chemistry 
is relatively pristine and homogeneous. Additional development 
of ProxyOH is needed over more polluted terrestrial regions, where 
higher NOx levels and more complex reactive carbon compounds 
should likely be included among the processes comprising ProxyOH 
(e.g., HONO as a source or OH + NO2 as a sink). Retrieving key 
ProxyOH variables from satellites should also advance understand-
ing of OH, at least on a column basis. For example, H2O is cur-
rently measured directly (63) while NO or JO(1D) may be inferred 
(64–67) using space-based instrumentation. In a similar vein, 
machine learning (ML) has already been applied to approximate 
long-term trends in OH using chemical transport model simula-
tions and satellite retrievals in urban environments over North 
America (43). This analysis found that a similar set of variables to 
those included in ProxyOH contribute most of the variation in 
temporal trends in model OH over several North American cities 
(noting that HCHO was more influential than the CO included 
in ProxyOH in these relatively polluted terrestrial environments). 
While this ML approximation is yet to be evaluated against OH 
observations, these results indicate promise for the rapid develop-
ment of alternative possible formulations for ProxyOH over a range 
of conditions. At the same time, our method could be applied to 
evaluate ML approximations, potentially by mining previous air-
borne observations of OH for in situ constraints on 
environment-specific formulations of ProxyOH (a comprehensive 
compilation of ATHOS OH measurements is available in ref. 34).

Our analysis using in situ observations suggests that future 
column-based applications of ProxyOH should account for the 
vertical and latitudinal distribution of the relationship between 
this proxy and OH, for which we estimated initial slope and inter-
cept values over the remote marine troposphere. A column-based 
proxy should also consider the distribution of temperature and 
pressure in the representation of reaction rate constants. A 
satellite-observed form of ProxyOH, especially in combination with 
HCHO retrievals that map column OH variations (24, 25), could 
offer a spatially expansive dataset for inference of not only the OH 
abundance but also its sensitivity to key drivers of atmospheric 
oxidation. By placing much-needed constraints on the methane 
sink via reaction with tropospheric OH, this knowledge will 
improve confidence in the interpretation of observed methane 
trends as well as future projections under global change.

By offering insight into the sensitivity of OH spatial variations to 
individual OH source and sink terms, ProxyOH serves as a 
process-based, simple model that bridges point measurements and 
global atmospheric chemistry model simulations. Across global mod-
els, the decadal mean OH concentration shows a linear relationship 
with a combination of JO(1D) , specific humidity and the source of 
nitrogen and carbon (13). Here, we demonstrate that an 
observation-based version of this combination of variables, ProxyOH, 
maintains a linear relationship with measured OH concentrations 
over regional scales in the remote marine troposphere. Our 
observation-based results suggest that future evaluation of modeled 
tropospheric oxidation over global background regions, in particular 
over timescales shorter than the methane lifetime (12, 68), should 
target an accurate model representation of variations in H2O and 
NO and their relationships with OH. As a test case of the steady-state 
proxy’s potential to evaluate and interpret global models, we evaluate 
GFDL AM3 chemistry-climate model simulations sampled along 
the ATom flight tracks. The proxy decomposition identified a model 
mismatch in processes modulating OH in the upper-troposphere to 
midtroposphere and points to an underestimate in H2O. Provided 
that diagnostics on the same spatiotemporal scales are available, our 
AM3 evaluation could be extended to additional models, so that 
ProxyOH may be applied to evaluate the representation of remote 
marine tropospheric OH and the species controlling its production 
and loss. A separate model analysis using the ATom data also con-
cluded that intermodel differences in H2O distributions lead to large 
differences in simulated methane loss rates along the ATom flight 
tracks (27). This shortcoming could undermine simulated relation-
ships, for example between lightning and the NOx lifetime, which 
is a crucial component of accurate process-based representations of 
OH (13, 69–71). Probing ProxyOH thus provides insight into the 
sensitivity of OH variations to H2O and NO, which would not have 
been apparent from conventional comparisons of measured and 
modeled H2O or NO distributions.

We identify both H2O and NO as key drivers of [OH] varia-
tions in the remote troposphere. Nevertheless, these two param-
eters do not fully explain the OH variability, and further 
investigation is recommended over a range of pollution regimes 
and environmental conditions. Both H2O and NO are expected 
to respond to climate change and variability, while human activ-
ities like fossil fuel combustion also affect NO distributions. 
Climate studies have emphasized the need for additional con-
straints on H2O vertical profiles because it is a critical feedback 
on the global energy budget in response to anthropogenic climate 
change (52–55). Here, we identify another rationale relevant for 
both climate and air quality: improved representation of the H2O 
spatial distribution would facilitate a better understanding of the 
OH influence on the methane lifetime. Therefore, accurate char-
acterization of regional H2O and NO spatiotemporal distributions 
could advance our understanding of the effect of global change 
on atmospheric oxidation.

2.  Materials and Methods

2.1.  Observations and Model Simulations.
2.1.1.  Aircraft Measurements. ATom deployed the NASA DC-8 aircraft to meas-
ure OH concentrations as well as several key drivers of OH production and loss 
rates: water vapor, actinic fluxes, and reactive carbon and nitrogen. ATom flew 
south along the center of the Pacific basin, following 180°W within ~15° longi-
tude, and north along the center of the Atlantic basin, generally between 15° and 
30°W (SI Appendix, Fig. S16). SI Appendix, Table S5 describes the measurements 
used in our analysis (72–88), which spans ATom-1, 2, 3, and 4, corresponding to 
Northern Hemisphere summer (28 July to 22 August, 2016), winter (26 January 

http://www.pnas.org/lookup/doi/10.1073/pnas.2209735120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2209735120#supplementary-materials


8 of 10   https://doi.org/10.1073/pnas.2209735120� pnas.org

to 22 February, 2017), fall (28 September to 26 October, 2017), and spring  
(24 April to 21 May, 2018).
2.1.2.  Box Model Simulations. To provide further support for our observation-
based proxy, we draw on 60-s average OH simulations along the ATom flight tracks 
from the Framework for 0-D Atmospheric Modeling (F0AM v.4, available at https://
github.com/AirChem/F0AM/; ref. 29 with the Master Chemical Mechanism (MCM) 
version 3.3.1; ref. 89). A subset of MCM v3.3.1 is implemented within F0AM. The 
box model is constrained with the ATom data, including meteorological, radiative, 
and chemical variables following (30). Box model simulations of HOx (OH plus 
hydroperoxyl, HO2) forced by measurements (excluding HOx) along the ATom-1 
and 2 flight tracks show consistency with ATom-1 and 2 observed HOx (24).

Data at 1 Hz time resolution are averaged to 1-min frequency and gap-filled via 
linear interpolation for gaps less than 5 min by correlating with CO for species with 
a correlation coefficient (r ≥ 0.7) for all data within 500 m of aircraft altitude, and 
substituting data below an instrument’s limit of detection (LOD) with 20% of the LOD 
concentration, as in previous box model applications (90). The following reactions 
are added to the F0AM chemical mechanism (MCM v3.3.1): CH4+O(1D), photolysis 
of HO2NO2, and CH3O2+OH (91). Box model simulations are performed for all data 
points where the CO and O3 values are valid (following gap-filling) and where either 
or both NO and NO2 are greater than zero. All flights from all four ATom deployments 
are simulated with the following exceptions: ATom-3 flight 20170928 (for which NO2 
measurements are missing), ATom-3 flights 20171014, 20171025, and 20171027 
(for which photolysis measurements are missing), and ATom-4 flight 20180518 (a 
transit flight during which VOC measurements were not made).

The F0AM simulations are integrated with a 10-min time step to diurnal steady 
state, which occurs when the fractional change in short-lived species through a sim-
ulated solar cycle falls below 0.1%. Photolysis frequencies vary diurnally and are 
scaled to match the measured J-values at the local time of observation. All other 
constraints are held fixed throughout the simulation. A family constraint is imposed 
for NOx, such that NO and NO2 concentrations are allowed to fluctuate diurnally, 
while their sum remains fixed to that measured. A second simulation then adjusts 
the total NOx abundance, such that the resulting simulated NO concentration matches 
the observed NO, which is less susceptible to measurement artifacts than NO2. This 
approach thus imposes an NO constraint while allowing NO and NO2 to undergo 
diurnal variation during the simulation in a realistic manner.
2.1.3.  Data Preparation. For much of our analysis, we spatially subset the 
ATom data, F0AM (Section  2.1.2) and AM3 simulations (Section  2.1.4) into a 
2-km altitude by 20° latitudinal (~2,000 km) grid that spans 0 to 10 km and 
−60° to 60°N, including both ocean basins. We refer to the 0 to 2, 2 to 8, or 8 
to 10-km altitude ranges as the lower, mid-, or upper troposphere and to the 0° 
to 20°, 20° to 40°, or 40° to 60° zonal ranges in either hemisphere as tropical, 
extratropical, or midlatitude, respectively. Referencing the previously calculated 
0.25-km vertical by 6-km horizontal coverage per 30 s of ATom sampling (36), 
our spatial bins integrate approximately 4 min of vertical and 2 h of horizontal 
measurement, in comparison with the hourly timestep of our global model. For 
consistency, we use ATom data between 60°S and 60°N and below 10 km when 
considering larger spatial scales.

Within our domain, we filter the ATom data to exclude air masses with strong 
influence from biomass burning (CO concentration over 150 ppb, 2.2% of valid 
observed points), the stratosphere [water vapor (H2O) mixing ratio below 10 ppm, 
0.7% of valid data], low incident sun (solar zenith angle >80°, 7.0% of valid data) 
or anthropogenic pollution (high concentration outliers in NO, defined as above 
the 75th percentile plus three times the interquartile range in the log-transformed 
distribution for the spatial domain under consideration; 1.2% of valid observa-
tions together or 0 to 10% of each 2 km by 20° latitude bins). We also filter the 
F0AM and AM3 simulations using the same screening criteria applied to their 
respective model diagnostics. Because we are interested in the OH drivers and 
variations, we remove observations with a low signal-to-noise ratio, specifically 
with [OH] below the ATHOS limit-of-detection of 0.018 ppt (9.2% of observed or 
9.0% of modeled points) and in which [NO] is less than its corresponding 2-sigma 
uncertainty (14% of observed points). To avoid interpreting noise as part of the 
observed ProxyOH-[OH] relationship, we do not draw conclusions in air masses 
with very low [OH] or [NO]. Overall, we retain 74.7 to 74.9% of valid observations 
within our domain, depending on the spatial scale considered.
2.1.4.  GFDL AM3 global chemistry-climate model simulations. We evaluate 
hourly fields for the variables that comprise ProxyOH (H2O, NO, HO2, etc.) from 

the National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid 
Dynamics Laboratory AM3 chemistry-climate model (14, 92, 93). AM3 has 48 
vertical levels on a cubed sphere grid with approximately 2° by 2° horizontal 
resolution (14). Our base configuration, described previously (94–96), nudges 
the horizontal wind fields to the National Centers for Environmental Prediction 
Global Forecast System with a nudging strength that falls off with pressure (97). 
Global NO emissions total 44.7, 44.9 and 45.2 Tg N yr−1, and CO emissions 
total 1221, 1223 and 1226 Tg yr−1 for the ATom years 2016, 2017, and 2018, 
respectively. MEGAN-simulated isoprene emissions are included in AM3, totaling 
418, 395 and 394 (98, 99) Tg C yr−1 globally for 2016, 2017, and 2018, respec-
tively. The anthropogenic and biomass burning emissions are drawn from the 
Representative Concentration Pathway 8.5 scenario (RCP 8.5; ref. 56) for the years 
spanning the ATom campaign (2016 to 2018) by interpolating between 2010 and 
2020 values following (14). The global biomass burning emissions total 5.2 to 5.3 
Tg N yr−1 for NO and 437 to 438 Tg CO yr−1 for each year overlapping with ATom.

We compare the model with ATom by sampling the grid cells containing the 
corresponding observed latitude, longitude, altitude, and time for each observed 
data point and evaluate AM3 using the normalized mean bias (Eq. 4), in which 
i,obs and i,mod represent a 10-s average observation from ATom and the colo-
cated hourly average model diagnostic from AM3, respectively. The AM3 JO(1D) 
photolysis rates were previously shown to be consistent with CAFS observations 
over the tropical and northern Pacific ATom-1 flight tracks (100).

	 [4]

2.2.  Bayesian Mixed-Effects Model. Mixed-effects models are an extension of 
linear regression. For predictor variables, they combine a fixed effect (i.e., ProxyOH) 
and random effect (a grouping variable or source of nonindependence; here, 
the arbitrary spatial bin selection). Previous atmospheric chemistry research has 
applied some form of mixed-effect model for applications such as mapping high-
resolution urban pollution (101) or for cluster analysis of surface ozone episodes 
(102). For our project, it would be challenging to incorporate observational uncer-
tainty using a frequentist (e.g., maximum likelihood) approach. Instead, we fit the 
mixed-effects model using a Bayesian regression, which incorporates measure-
ment uncertainty while assessing the predictive strength and significance of fit. 
The model fits distributions of ProxyOH and [OH] that are sampled from the ATom 
observations combined with information regarding the instruments’ uncertainty 
distributions. The true gas concentrations, and the ProxyOH derived from them, 
are considered to be unobserved but implicit (“latent”) variables and are desig-
nated using the subscript true. Each true concentration is drawn from a normal 
distribution with mean and SD corresponding to the measured concentration and 
uncertainty (i.e., P([X]true|[X]Obs, σx); uncertainties listed in SI Appendix, Table S6). 
SI Appendix, Fig.  S17 illustrates the parameter relationships for the Bayesian 
mixed-effects model through a directed acyclic graph.

This approach was implemented in R using MCMC with the Just Another 
Gibbs Sampler (JAGS) packages rjags (103, 104) and runjags (105). We used 
three parallel chains of MCMC samplers, discarding the first 1,000 iterations as 
a burn-in and another 500 iterations to adapt before retaining the final 1,000 
iterations to be analyzed for the posterior distribution. The model begins by 
using uninformative prior values (SI Appendix, Table S7), noting that the choice 
of prior does not affect the ultimate posterior distributions. We performed pos-
terior predictive checks for the fit, mean, and SD to assess that the model choice 
and likelihood distribution are appropriate, finding that each fall within ±0.01 
of 0.5 for ProxyOH (with ideal values falling as close as possible to 0.5; ref. 106). 
The MCMC chains for the ProxyOH-[OH] slope and intercept parameters converge, 
as indicated by a Gelman–Rubin diagnostic between 1.000 and 1.005 for each 
spatial bin (a Gelman–Rubin diagnostic below 1.1 indicates convergence; ref. 
107). We combine the posterior distributions across the three chains for 3,000 
total values, per aircraft observation, to develop 95% credible intervals for the 
slope and intercept of the linear fit between the proxy and [OH].

Data, Materials, and Software Availability. Model simulations and analysis 
code have been deposited in Zenodo (https://zenodo.org/record/7512701) (108). 
All other study data are included in the article and/or supporting information.

Normalizedmeanbias (%)=

∑
�

xi,mod−xi,obs

�

∑
�

xi,obs

� .

https://github.com/AirChem/F0AM/
https://github.com/AirChem/F0AM/
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http://www.pnas.org/lookup/doi/10.1073/pnas.2209735120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2209735120%23supplementary-materials
https://zenodo.org/record/7512701
http://www.pnas.org/lookup/doi/10.1073/pnas.2209735120#supplementary-materials
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