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M. Ribó72, J. Rico54, J. Rodriguez Garcia58, S. Rügamer63, A. Saggion8,9, T. Saito70,
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D. Tescaro60, M. Teshima58, J. Thaele65, O. Tibolla63, T. Toyama58, A. Treves67,

P. Vogler62, R. M. Wagner58, F. Zandanel66,79, R. Zanin72,

(the MAGIC Collaboration)

M. F. Aller80, E. Angelakis81, D. A. Blinov82, S. G. Djorgovski83, A. J. Drake83,

N. V. Efimova82,84, M. A. Gurwell85, D. C. Homan86, B. Jordan87, E. N. Kopatskaya84,

Y. Y. Kovalev88,81, O. M. Kurtanidze89,90, A. Lähteenmäki91, V. M. Larionov82,84,92,
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36GAHEC, Université de Toulouse, UPS-OMP, IRAP, Toulouse, France

37Department of Astronomy, Stockholm University, SE-106 91 Stockholm, Sweden

38Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino, Italy

39Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526,

Japan

40Istituto Nazionale di Fisica Nucleare, Sezione di Roma “Tor Vergata”, I-00133 Roma, Italy

41Center for Cosmology, Physics and Astronomy Department, University of California, Irvine, CA 92697-

2575, USA

42Funded by contract FIRB-2012-RBFR12PM1F from the Italian Ministry of Education, University and

Research (MIUR)

43Institut für Astro- und Teilchenphysik and Institut für Theoretische Physik, Leopold-Franzens-

Universität Innsbruck, A-6020 Innsbruck, Austria

44Max-Planck-Institut für Kernphysik, D-69029 Heidelberg, Germany

45NYCB Real-Time Computing Inc., Lattingtown, NY 11560-1025, USA

46Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa

252-5210, Japan

47Astronomical Observatory, Jagiellonian University, 30-244 Kraków, Poland
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ABSTRACT

The discovery of rapidly variable Very High Energy (VHE; E > 100 GeV)

γ-ray emission from 4C +21.35 (PKS 1222+216) by MAGIC on 2010 June 17,

triggered by the high activity detected by the Fermi Large Area Telescope (LAT)

in high energy (HE; E > 100 MeV) γ-rays, poses intriguing questions on the

location of the γ-ray emitting region in this flat spectrum radio quasar. We

present multifrequency data of 4C +21.35 collected from centimeter to VHE

during 2010 to investigate the properties of this source and discuss a possible

emission model. The first hint of detection at VHE was observed by MAGIC

on 2010 May 3, soon after a γ-ray flare detected by Fermi-LAT that peaked on

April 29. The same emission mechanism may therefore be responsible for both
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the HE and VHE emission during the 2010 flaring episodes. Two optical peaks

were detected on 2010 April 20 and June 30, close in time but not simultaneous

with the two γ-ray peaks, while no clear connection was observed between the

X-ray and γ-ray emission. An increasing flux density was observed in radio and

mm bands from the beginning of 2009, in accordance with the increasing γ-ray

activity observed by Fermi-LAT, and peaking on 2011 January 27 in the mm

regime (230 GHz). We model the spectral energy distributions (SEDs) of 4C

+21.35 for the two periods of the VHE detection and a quiescent state, using a

one-zone model with the emission coming from a very compact region outside the

broad line region. The three SEDs can be fit with a combination of synchrotron

self-Compton and external Compton emission of seed photons from a dust torus,

changing only the electron distribution parameters between the epochs. The fit of

the optical/UV part of the spectrum for 2010 April 29 seems to favor an inner disk

radius of <6 gravitational radii, as one would expect from a prograde-rotating

Kerr black hole.

Subject headings: galaxies: active – gamma rays: general – quasars: general –

quasars: individual (4C +21.35) – radiation mechanisms: non-thermal

1. Introduction

In the last few years flat spectrum radio quasars (FSRQs) have been established as a

distinct Very High Energy (VHE) γ-ray blazar subclass. So far three FSRQs have been

detected at E > 100 GeV: 3C 279 (Albert et al. 2008), 4C +21.35 (Aleksić et al. 2011), and

PKS 1510−089 (Cortina 2012; Abramowicz et al. 2013). These detections were surprising.

The VHE emission from FSRQs is expected to be absorbed internally, if emitted within the

broad line region (BLR), or externally, for sources located at redshifts where the emission

is strongly attenuated by γγ pair production via interaction with the Extragalactic Back-

ground Light (EBL) photons. In addition, since FSRQs usually have their synchrotron peak

at relatively low frequencies (i.e., infrared/optical bands rather than UV/X-ray), their cor-

responding inverse Compton peak should fall at photon energies less than 1 GeV, and thus

a detection at VHE is not expected.

The FSRQ 4C +21.35 (also known as PKS 1222+21) has a redshift of z = 0.432

(Osterbrock and Pogge 1987) with a peculiar bent large-scale radio structure (Saikia et al.

1993). Very large apparent superluminal motion (βapp ∼ 10–15) has been detected on mil-

liarcsecond scales for sub-components of the jet (Jorstad et al. 2001; Homan et al. 2001).

On the other hand, the ratio of the core-to-extended radio fluxes at GHz frequencies is of
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the order of unity; thus it is formally a “lobe-dominated quasar” (Kharb & Shastri 2004;

Wang et al. 2004).

In GeV γ-rays the source was in a quiescent state from the start of the Fermi Gamma-

ray Space Telescope mission in 2008 August until 2009 September. After this period a

gradually increasing flux was observed, up to an interval of flaring activity in the first half

of 2010. In particular, 4C +21.35 underwent two very strong outbursts in 2010 April and

June, observed by the Large Area Telescope (LAT) on board Fermi and composed of several

major flares characterized by rise and decay timescales of the order of one day (Tanaka et al.

2011). During the second flaring activity, VHE emission from 4C +21.35 was detected with

the MAGIC Cherenkov telescopes on 2010 June 17, with a flux doubling time of about 10

minutes (Aleksić et al. 2011). The simultaneous Fermi-LAT and Major Atmospheric Gamma

Imaging Cherenkov (MAGIC) spectrum, corrected for EBL absorption, can be described by

a single power-law with photon index Γγ = 2.72 ± 0.34 between 3 GeV and 400 GeV,

consistent with emission from a single component in the jet. The absence of a spectral

cut-off for E < 130 GeV constrains the γ-ray emission region to lie outside the BLR, which

would otherwise absorb the ≈ 10-20 GeV photons by γγ → e± production when these γ-

rays pass through the intense circum-nuclear photon fields provided by the BLR itself. At

the same time, the rapid VHE variability observed suggests an extremely compact emission

region, with size R ≤ ctvarδD/(1 + z) ∼ 1015 (δD/80) (tvar/10 minutes) cm where tvar is

the variability timescale and δD is the Doppler factor. If the blob takes up the entire cross

section of the jet, it implies that the emitting region is at a distance r ∼ R/θopen ∼ 5.7 ×

1016(δD/80) (tvar/10 minutes) (θopen/1 deg)−1 cm, where θopen is the half-opening angle of

the jet. Even for a highly relativistic jet with δD ∼ 100, the location of the emission region

should be well within the BLR radius for 4C +21.35, likely RBLR ≈ 2×1017 cm (Tanaka et al.

2011).

Different models have been proposed to explain the unusual behavior of 4C +21.35. A

very narrow jet can preserve variability at the pc scale, but the likelihood of being in the beam

of such a thin jet is small, unless there were many narrow jets, as in a jets-within-jet/mini-

jets scenario (Ghisellini & Tavecchio 2008; Giannios et al. 2009; Tavecchio et al. 2011). An

alternative model is a compact emission region at the pc scale responsible for the emission at

higher energies, with a second zone either inside or outside the BLR to complete the modeling

of the emission at lower energies (Tavecchio et al. 2011). The compact emission sites at the

pc scale could be due to self-collimating jet structures (Nalewajko et al. 2012), where the

magnetic field dominates the energy density, or to turbulent cells (e.g., Nalewajko et al. 2011;

Marscher & Jorstad 2010). Another possibility is that the acceleration of ultra-high energy

cosmic rays protons in the inner jet leads to an outflowing beam of neutrons that deposit

their energy into ultra-relativistic pairs that radiate VHE synchrotron emission at the pc
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scale (Dermer et al. 2012), with associated neutrino production. Even more exotic scenarios

have been proposed, such as photons produced inside the BLR, tunneling through it via

photon to axion-like particle oscillations (Tavecchio et al. 2012).

In this paper, we present the multifrequency data of 4C +21.35 collected from radio

to VHE during 2010, and discuss a possible emission model for this source. A summary of

the complete multiwavelength data of 4C +21.35 presented in this paper and the relative

facilities can be found in Table 1. The paper is organized as follows: in Sections 2 and 3

we briefly report the LAT and MAGIC data analysis and results, respectively. In Section 4

we report the result of Swift optical/UV/X-ray observations. Optical data collected by the

Abastumani, ATOM, Catalina, Crimean, KVA, Steward, and St. Petersburg observatories

are presented in Section 5. In Section 6 we present the radio and mm data collected by

the Medicina, UMRAO, MOJAVE, OVRO, F-GAMMA, Metsähovi, and SMA facilities. In

Section 7 we discuss the light curves behavior and the spectral energy distribution (SED)

modeling of three different epochs, and finally we draw our conclusions in Section 8.

Throughout the paper, a Λ CDM cosmology with H0 = 71 km s−1 Mpc−1, ΩΛ = 0.73,

and Ωm = 0.27 is adopted. The corresponding luminosity distance at z = 0.432 is dL = 2370

Mpc, and 1 arcsec corresponds to a projected size of 5.6 kpc.

2. MAGIC Data and Analysis

The MAGIC experiment is situated in the Observatorio del Roque de los Muchachos

in the Canary Island of La Palma (28◦45′ north, 18◦54′ west), 2200 m above sea level. It

consists of two 17-m Imaging Atmospheric Cherenkov Telescopes and can reach an energy

threshold as low as 50 GeV in standard trigger mode. Details on the performance of the

MAGIC telescope stereo system can be found in Aleksić et al. (2012).

MAGIC observed 4C +21.35 between 2010 May 3 and June 19. In total, 16 hr of good

quality data were collected. The data analysis was performed in the MAGIC Analysis and

Reconstruction Software analysis framework (Moralejo et al. 2009; Lombardi et al. 2011).

On May 3 (MJD 55319), MAGIC obtained an excess with respect to the background of

≈ 78 events in 2.2 hr of observation, which yielded a marginal detection with a signal

significance of 4.4σ using the Equation (17) of Li and Ma (1983). On June 17 (MJD 55364),

MAGIC obtained a γ-ray excess of 190 events in a 30-minute long observation, yielding a

signal significance of 10.2 σ, implying the first significant detection of this source in VHE

γ-rays (Aleksić et al. 2011). The VHE detection on June 17 shows fast variability with a flux

doubling time of 8.6+1.1
−0.9 minutes, which is the fastest time variation ever observed in a FSRQ,
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Table 1: Observatories Contributing to the Presented Data Set of 4C +21.35 at Different

Frequencies.

Waveband Observatory Frequency/Band

Radio SMA 230 GHz

Metsähovi 37 GHz

VLBA (MOJAVE) 15 GHz

OVRO 15 GHz

UMRAO 8.0, 14.5 GHz

Medicina 5, 8 GHz

F-GAMMA 2.6, 4.8, 8.4, 10.5, 14.6, 23.1, 32, 86.2, 142.3 GHz

Optical Abastumani R

ATOM R

Catalina V

Crimean R

KVA R

St. Petersburg R

Steward V

Swift-UVOT v, b, u

UV Swift-UVOT w1, m2, w2

X-rays Swift-XRT 0.3–10 keV

Swift-BAT 15–50 keV

HE γ-rays Fermi-LAT 0.1–300 GeV

VHE γ-rays MAGIC 70 GeV–5 TeV

and among the shortest time scales measured for TeV emitters (see, e.g., Albert et al. 2007;

Aharonian et al. 2007). The observed spectrum covered the energy range from 70 GeV up to

at least 400 GeV and can be fit with a single power-law with photon index Γγ = 3.75± 0.27.

The spectrum corrected for the effect of EBL absorption making use of the EBL model

from Dominguez et al. (2011) can be also described by a single power-law with photon index

Γγ = 2.72 ± 0.34 between 3 GeV and 400 GeV (see Aleksić et al. 2011).

None of the other nights showed a statistically significant excess of signal over the

background. Upper limits at 95% C.L. were calculated above 150 GeV assuming a power-

law with the same photon index measured on June 17 (i.e. Γγ = 3.75) for the nights between

May 5 and June 13. The rest of the nights were not included in the upper limit calculation

due to strong moonlight constraints. The upper limits range between 1.4% Crab units (C.U.)
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(on May 30; MJD 55346) and 12.7% C.U. (on June 12; MJD 55359), as reported in Table 2.

Considering the period from May 5 to June 13 (total time: 12.5 hr) an upper limit of 1.6%

C.U. was estimated.

3. Fermi-LAT

The Fermi-LAT is a γ-ray telescope operating from 20 MeV to above 300 GeV. The

LAT has a large peak effective area (∼ 8000 cm2 for 1 GeV photons), a relative energy

resolution typically ∼10%, and a field of view of about 2.4 sr with an angular resolution

(68% containment angle) better than 1◦ for energies above 1 GeV. Further details about the

LAT are given by Atwood et al. (2009).

Very strong GeV flares from 4C +21.35 were detected by Fermi-LAT in 2010 April and

June, with spectra characterized by a broken power-law with spectral breaks near 1-3 GeV

photon energies and a photon index after the break ∼2.4. In contrast, the quiescent state

observed by the LAT during 2008 August–2009 September has been fit by a single power-law

with photon index Γγ = 2.57 ± 0.07. All details of the LAT analysis for that period were

presented in Tanaka et al. (2011). After the 2010 flaring period, a decreasing γ-ray activity

of 4C +21.35 was observed by Fermi-LAT, and then in mid-2011 the source faded back into

a quiescent state.1 4C +21.35 is found in the first Fermi hard source list (1FHL) as 1FHL

J1224.8+2122 (Ackermann et al. 2013). This object is the most variable source in the 1FHL

catalog.

4. Swift Observations

The Swift satellite (Gehrels et al. 2004) performed 28 observations of 4C +21.35 between

2010 February 12 and June 23. The observations were performed with all three on-board

instruments: the Burst Alert Telescope (BAT; Barthelmy et al. 2005, 15–150 keV), the X-ray

Telescope (XRT; Burrows et al. 2005, 0.2–10.0 keV), and the UltraViolet Optical Telescope

(UVOT; Roming et al. 2005, 170–600 nm).

1http://fermi.gsfc.nasa.gov/FTP/glast/data/lat/catalogs/asp/current/lightcurves/PKSB1222+216 86400.png

http://fermi.gsfc.nasa.gov/FTP/glast/data/lat/catalogs/asp/current/lightcurves/PKSB1222+216_86400.png
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Table 2: Daily Upper Limits Estimated by MAGIC for E >150 GeV Assuming a Spectrum

Slope 3.7

Date Effective Time Integral Limit Integral Limit

(UT) (hr) (cm−2 s−1) above 150 GeV (in MAGIC C.U.)

2010 May 5 0.5 1.2e-11 3.7%

2010 May 6 0.7 1.1e-11 3.3%

2010 May 7 0.8 1.8e-11 5.5%

2010 May 8 1.4 1.7e-11 5.4%

2010 May 30 0.9 4.6e-12 1.4%

2010 May 31 1.0 2.6e-11 8.1%

2010 June 1 1.2 5.1e-12 1.6%

2010 June 2 0.9 1.0e-11 3.7%

2010 June 3 1.1 8.4e-12 2.6%

2010 June 4 1.2 8.0e-12 2.5%

2010 June 6 1.0 1.4e-11 4.3%

2010 June 7 0.6 2.1e-11 6.4%

2010 June 8 0.7 1.3e-11 4.0%

2010 June 9 0.9 2.4e-11 7.3%

2010 June 12 0.6 4.1e-11 12.7%

2010 June 13 0.6 2.5e-11 7.8%
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4.1. Swift/BAT

4C +21.35 is detected in the BAT 70-month catalog, generated from the all-sky sur-

vey in the time period 2004 November–2010 August. The data reduction and extraction

procedure of the 8-channel spectrum is described in Baumgartner et al. (2013). The 14–195

keV spectrum is well described by a power-law with photon index of 1.76+0.25
−0.23 (χ2

red = 0.60,

6 d.o.f.). The resulting unabsorbed 14–195 keV flux is (2.2±0.4)×10−11 erg cm−2 s−1. No

significant variability was observed in the BAT light curve on monthly time scales. Never-

theless, the hard X-ray flux of this source is below the sensitivity of the BAT instrument for

the short exposure times of single Swift observations.

4.2. Swift/XRT

The XRT data were processed with standard procedures (xrtpipeline v0.12.6), fil-

tering, and screening criteria by using the HEASoft package (v6.11). The data were collected

in photon counting mode in all observations, and only XRT event grades 0–12 were selected.

The source count rate was low (< 0.5 counts s−1), thus pile-up correction was not required.

Data collected in the same day were summed in order to have better statistics. Since the

observation performed on 2010 May 26 was short (∼500 s), it was not considered. Source

events were extracted from a circular region with a radius of 20 pixels (1 pixel = 2.′′36),

while background events were extracted from a circular region with radius of 50 pixels away

from the source region. Ancillary response files were generated with xrtmkarf, and account

for different extraction regions, vignetting and point-spread-function corrections. When the

number of photons collected was smaller than 200 the Cash statistic was used (Cash 1979).

We fit the spectra for all the individual Swift observations with an absorbed power-law

with a neutral hydrogen column density fixed to its Galactic value (NH= 2.09×1020 cm−2;

Kalberla et al. 2005). The X-ray light curve and spectral shape derived from these fits is

discussed in Section 7.1 together with the other multiwavelength data.

4.3. Swift/UVOT

The script that handles the UVOT analysis is uvotgrblc (available within HEASoft).

It determines the aperture corrected magnitude by (1) selecting the aperture size based

on the observed source count-rate and the presence of close field sources; (2) choosing the

background region based on the surface brightness among three annular regions centered on

the main source in the summed images (circular regions around field sources are automati-
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cally excluded); (3) finding field stars to estimate the aperture correction, specific for each

observation; (4) calling the task uvotsource to estimate the photometry.

Since 4C +21.35 is a very bright object in the optical and UV range and lies in a sparsely

populated area of the sky, uvotgrblc selected a circle of 5′′ as the source extraction region

and a full annulus for the background region for all the observations. The typical inner/outer

radii for the background regions were 27′′/35′′ and 35′′/42′′. The UVOT magnitudes during

these observations showed ranges as follows: v = 15.67–15.21, b = 15.65–15.43, u = 14.67–

14.34, w1 = 14.37–14.08, m2 = 14.25–13.90, w2 = 14.16–13.90, with a typical error of 0.06

mag. As discussed in detail in Section 7.1, no significant increase in flux was observed by

UVOT during 2010 February–June, but the sparse coverage does not allow us to draw firm

conclusions.

5. Optical Observations

In this section we briefly describe the programs performing optical observations of 4C

+21.35 and the corresponding data analysis. These optical data are discussed together with

the multiwavelength data in Section 7.1.

5.1. Abastumani, Crimean and St. Petersburg Data

Observational data at optical wavelengths (R-band) were obtained at the 0.7-m reflector

of the Crimean Astrophysical Observatory and 0.4-m LX-200 telescope of the Astronomical

Institute of St. Petersburg State University, both equipped with photo-polarimeters based on

ST-7XME CCDs. A standard technique of bias and dark subtraction and flat-field correction

was used. Photometric calibration was made relative to two nearby standard stars, located

in the same field.

Optical observations in R-band were performed also by the 0.7-m meniscus f/3 telescope

of Abastumani Astrophysical Observatory in Abastumani, Georgia.

5.2. ATOM Data

Optical observations in R filter for this campaign were obtained between 2010 February

and May with the 0.8-m optical telescope ATOM in Namibia (Hauser et al. 2004). ATOM

is operated robotically by the H.E.S.S. collaboration and obtains automatic observations
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of confirmed or potential γ-bright blazars. Data analysis (debiassing, flat fielding, and

photometry with Source-Extractor; Bertin and Arnouts 1996) is conducted automatically

using the pipeline developed by the ATOM Team.

5.3. Catalina Real-Time Transient Survey

The source is monitored by the Catalina Real-Time Transient Survey (CRTS2; Drake et al.

2009; Djorgovski et al. 2011), using the 0.68-m Schmidt telescope at Catalina Station, AZ,

and an unfiltered CCD. The typical cadence is to obtain four exposures separated by 10

minutes in a given night; this may be repeated up to four times per lunation, over a period

of ∼6–7 months each year, while the field is observable. Photometry is obtained using the

standard Source-Extractor package (Bertin and Arnouts 1996), and roughly calibrated to

the V -band in terms of the magnitude zero-point. The light curve, accessible through the

CRTS Web site and spanning ∼6 yr, shows a dramatic increase in optical variability of this

source starting in late 2009.

5.4. KVA Data

The KVA (Kungliga Vetenskaps Akademientelescope) is located on Roque de los Mucha-

chos, La Palma (Canary Islands), and is operated by the Tuorla Observatory, Finland

(http://users.utu.fi/kani/1m). The telescope consists of a 0.6-m f/15 Cassegrain devoted

to polarimetry, and a 0.35-m f/11 SCT auxiliary telescope for multicolor photometry. The

telescope has been successfully operated remotely since autumn 2003. The KVA is used

for optical support observations for MAGIC by making R-band photometric observations,

typically one measurement per night per source. The data were reduced by the Tuorla

Observatory Team as described in K. Nilsson et al. (2014, in preparation).

5.5. Steward Observatory

4C +21.35 was systematically monitored by Steward Observatory during the Fermi ob-

servations, providing spectropolarimetry and spectrophotometry measurements of this object

2http://crts.caltech.edu

http://users.utu.fi/kani/1m
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Fig. 1.— Optical magnitudes in the R-band (top panel; circles: Abastumani, squares:

ATOM, triangles: KVA, pentagons: Crimean and St. Petersburg), V -band (second panel;

circles: CRTS, squares: Steward), percentage of polarized flux (third panel) and polarization

position angle in V -band (bottom panel) are shown. For clarity the errors (typically <5%)

are not shown. The downward arrows indicate the times of the VHE detections by MAGIC.
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in V -band,3 as reported also in Smith et al. (2011). Figure 1 shows the behavior of the ob-

served degree of optical polarization P, and the position angle of the polarization vector Θ

as a function of time. Visual inspection of the plot seems to show that in general periods of

high flux correspond to periods of relatively high polarization degree and only small rotation

of the polarization angle vector. In particular, a marginal increase of polarization degree

but no significant rotation of the polarization angle was observed in 2010 June, during the

period of HE and VHE flaring activity.

Spectrophotometry during 2010–2011 did not show significant changes in the flux of the

broad Mg II λ2800 and Balmer emission lines despite large optical continuum variation. This

indicates that non-thermal emission from the jet has a negligible influence on the BLR lines

fluxes. Smith et al. (2011) suggested that the beaming jet emission intersects only a small

fraction of the volume containing the emission-line gas. A different behavior was observed in

3C 454.3, with a significant increase of the Mg II emission line flux during the optical and γ-

ray flaring activity in 2010 November. This event occurred after a mm flare onset, during an

increase in the optical polarization percentage, and before the emergence of a superluminal

knot from the radio core. This suggests the presence of BLR clouds surrounding the radio

core in 3C 454.3 (Leon-Tavares et al. 2013).

6. Radio and mm observations

In this section we present the radio and mm light curves and spectra of 4C +21.35

collected between 2009 January 1 and 2011 February 28 to investigate their connection with

the γ-ray activity. The data collected between 230 GHz and 5 GHz are reported in Figure

2 and discussed in detail in Section 7.1. In addition we studied the radio structure and jet

kinematics of this source during the MOJAVE monitoring observations.

6.1. SMA Data

The 230 GHz (1.3 mm) light curve was obtained at the Submillimeter Array (SMA)

on Mauna Kea (Hawaii). 4C +21.35 is included in an ongoing monitoring program at the

SMA to determine the fluxes of compact extragalactic radio sources that can be used as

calibrators at mm wavelengths. Details of the observations and data reduction can be found

in Gurwell et al. (2007). Data from this program are updated regularly and are available at

3http://james.as.arizona.edu/∼psmith/Fermi/
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the SMA Web site.4

6.2. F-GAMMA Project

Radio spectra and light curves of 4C +21.35 were obtained within the framework of

a Fermi-related monitoring program of γ-ray blazars (F-GAMMA project; Fuhrmann et al.

2007). The frequency range spans 2.64 GHz to 142 GHz using the Effelsberg 100-m and

IRAM 30-m telescopes. The Effelsberg measurements were conducted with the secondary

focus heterodyne receivers at 2.64, 4.85, 8.35, 10.45, 14.60, 23.05, 32.00, and 43 GHz. The

observations were performed quasi-simultaneously with cross-scans, that is, slewing over the

source position, in azimuth and elevation directions, with adaptive numbers of sub-scans for

reaching the desired sensitivity (for details, see Fuhrmann et al. 2008; Angelakis et al. 2008).

Pointing offset correction, gain correction, atmospheric opacity correction, and sensitivity

correction have been applied to the data. The IRAM 30-m observations were carried out

with calibrated cross-scans using the EMIR horizontal and vertical polarization receivers

operating at 86.2 and 142.3 GHz. The opacity-corrected intensities were converted into the

standard temperature scale and finally corrected for small remaining pointing offsets and

systematic gain-elevation effects. The conversion to the standard flux density scale was done

using the instantaneous conversion factors derived from frequently observed primary (Mars,

Uranus) and secondary (W3(OH), K350A, NGC 7027) calibrators. The radio spectra from

2.64 GHz to 43 GHz obtained during five epochs of Effelsberg observations between 2009

January 24 and 2011 April 29 are shown in Figure 3. A significant increase of the flux density

has been observed from 2009 May to September at 43 GHz, while at longer wavelengths

the increase occurs later, likely due to synchrotron self-absorption opacity effects. This

time difference led to a significant radio spectral evolution, possibly related to the activity

observed in γ-rays.

6.3. Metsähovi Data

The 37 GHz observations were made with the 13.7-m diameter Metsähovi radio tele-

scope, which is a radome enclosed paraboloid antenna situated in Finland (24 23’ 38”E, +60

13’ 05”). The measurements were made with a 1 GHz-band dual beam receiver centered

at 36.8 GHz. The HEMPT (high electron mobility pseudomorphic transistor) front end

4http://sma1.sma.hawaii.edu/callist/callist.html. Use of SMA data in publication requires obtaining

permission in advance.
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operates at room temperature. The observations were taken with an ON–ON technique,

alternating the source and the sky in each feed horn. A typical integration time to obtain

one flux density data point is between 1200 and 1400 s. The detection limit of the tele-

scope at 37 GHz is on the order of 0.2 Jy under optimal conditions. Data points with a

signal-to-noise ratio <4 are treated as non-detections. The flux density scale is set by ob-

servations of thermal radio source DR 21. Sources NGC 7027, 3C 274 and 3C 84 are used

as secondary calibrators. A detailed description of the data reduction and analysis is given

in Teräsranta et al. (1998). The error estimate in the flux density includes the contribution

from the measurement rms and the uncertainty of the absolute calibration.

6.4. OVRO Data

As part of an ongoing blazar monitoring program, the Owens Valley Radio Observatory

(OVRO) 40-m radio telescope has observed 4C +21.35 at 15 GHz regularly since the end of

2007 (Richards et al. 2011). This monitoring program includes about 1700 known or likely

γ-ray-loud blazars, including all candidate γ-ray blazar survey (CGRaBS) sources above

declination −20◦. The sources in this program are observed in total intensity twice per week

with a 4 mJy (minimum) and 3% (typical) uncertainty on the flux density. Observations

are performed with a dual-beam (each 2.5 arcmin full-width half-maximum) Dicke-switched

system using cold sky in the off-source beam as the reference. Additionally, the source is

switched between beams to reduce atmospheric variations. The absolute flux density scale is

calibrated using observations of 3C 286, adopting the flux density (3.44 Jy) from Baars et al.

(1977). This results in about a 5% absolute scale uncertainty, which is not reflected in the

plotted errors. 4C +21.35 was variable at 15 GHz during the OVRO monitoring (Figure 2),

with a flux density ranging from 1.01 Jy (at MJD 55094) to 2.13 Jy (at MJD 55423).

6.5. UMRAO Data

UMRAO centimeter band total flux density observations were obtained with the Uni-

versity of Michigan 26-m paraboloid located in Dexter, Michigan, USA. The instrument is

equipped with transistor-based radiometers operating at frequencies centered at 4.8, 8.0,

and 14.5 GHz with bandwidths of 0.68, 0.79, and 1.68 GHz, respectively. Dual horn feed

systems are used at 8 and 14.5 GHz, while at 4.8 GHz a single-horn, mode-switching receiver

is employed. Each observation consisted of a series of 8–16 individual measurements over

approximately a 25–45 minute time period, utilizing an on–off observing technique at 4.8

GHz, and an on–on technique (switching the target source between the two feed horns, which
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Fig. 2.— Radio and mm light curves of 4C +21.35 in units of Jy. The period covered is

between 2009 January 1 (MJD 54837) and 2011 February 28 (MJD 55620). The data are col-

lected (from top to bottom panel) by SMA at 230 GHz (circles), IRAM at 142 GHz (squares)

and 86 GHz (triangles); Metsähovi at 37 GHz (circles) and Effelsberg at 32 GHz (squares);

Effelsberg at 23 GHz (circles) and Medicina a 22 GHz (squares); OVRO (circles), UMRAO

(squares), Effelsberg (triangles) at 15 GHz; Effelsberg (circles) and UMRAO (squares) at 8

GHz; Effelsberg (circles), Medicina (squares), and UMRAO (triangles) at 5 GHz. For clarity

errors are not shown when <5%.
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are closely spaced on the sky) at 8.0 and 14.5 GHz. As part of the observing procedure, drift

scans were made across strong sources to verify the telescope pointing correction curves, and

observations of nearby calibrators (3C 274, 3C 286, and 3C 218) were obtained every 1–2 hr

to correct for temporal changes in the antenna aperture efficiency.

2009 Jan 24

2009 May 1

2009 Sep 28

2010 May 2

2011 Apr 29

Fig. 3.— Radio spectra of 4C +21.35 obtained by Effelsberg on 2009 January 24 (filled

pentagons), 2009 May 1 (filled triangles), 2009 September 28 (open circles), 2010 May 2

(open pentagons), and 2011 April 29 (open triangles) from 2.64 to 43 GHz.

6.6. Medicina Data

We observed 4C +21.35 with the Medicina radio telescope five times between 2010

April 26 and 2010 May 11. We used the new Enhanced Single-dish Control System (ESCS)
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acquisition system, which provides enhanced sensitivity and supports observations with the

cross scan technique. We observed at 22 GHz in the first four epochs, and at 5 GHz in the

last two; the observations on 2010 May 10 were carried out at both frequencies and can be

used for an estimate of the simultaneous spectral index.

At each epoch, the source was observed for about 10 minutes and calibrated with respect

to 3C 286, after correcting the data for atmospheric opacity. The observing conditions varied

from epoch to epoch, resulting in different noise levels and significance of the detections.

However, after flagging bad scans, we always obtained a highly significant (≫ 5σ) detection.

The relative uncertainty on the estimated flux density at 22 GHz varies between 4% and

15%, while at 5 GHz it is around 3%.

Fig. 4.— Plot of angular separation from core vs. epoch for fitted Gaussian jet components

in 4C +21.35. Color symbols indicate robust components for which kinematic fits were

obtained (dotted and solid lines). The solid lines indicate vector motion fits to the data

points assuming no acceleration, while the dotted lines indicate accelerated motion fits.

Thick lines are used for components whose fitted motion is along a radial direction from

the core, while the thin lines indicate non-radial motions. Unfilled black circles indicate

non-robust components. The component identification numbers are located next to the last

epoch of each robust component.
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6.7. MOJAVE Data

4C +21.35 is part of the Monitoring of Jets in Active Galactic Nuclei with VLBA

Experiments (MOJAVE) sample, allowing us to investigate at 15 GHz the radio structure

and jet kinematics of this source over a long period. The data were processed using the

standard procedures described in the AIPS cookbook5 (for details see Lister et al. (2009)).

The radio properties of 4C +21.35 strongly indicate that it has a relativistic jet beamed

very closely along our line of sight. The kiloparsec scale radio morphology from Very Large

Array images (Cooper et al. 2007; Saikia et al. 1993) consists of a bright jet starting out to

the north-east of a bright core, and gradually curving to the east, terminating in a hotspot

located approximately 60 kpc from the core. Surrounding the core is a circular halo of

diffuse radio emission ∼100 kpc in diameter, which is consistent with a large radio lobe

being viewed end-on. On parsec scales, 4C +21.35 displays a compact radio jet at an initial

position angle of ∼ 0◦ that curves roughly 7◦ to the east over 10 mas. However, there is

also a more distant feature at position angle −6◦ from the optically thick core. Multi-epoch

Very Long Baseline Array (VLBA) observations by the MOJAVE survey, using data from

1996 until 2011 May (for details of the fitting method see Lister et al. 2013) show that this

outermost feature (id = 1) has an apparent superluminal motion of 8.4c, and is moving

to the east (Figure 4). Several other jet features closer in have faster speeds, all close to

17c, and are also accelerating to the east. There are two components (ids=6,7) with even

faster speeds of 20c and 27c (Table 3), that have trajectories curving to the west. These

kinematic observations suggest complex three dimensional trajectories, perhaps having a

helical form, which are being investigated in further detail by the MOJAVE collaboration.

The linear fractional polarization and electric vector direction of the core feature changed

between 2009 December and 2010 July, but remained relatively constant from 2010 July to

December (Figure 5). There is evidence for a new bright jet feature in the core region as

of 2009 November. The electric vector directions of the moving features further down the

jet were remarkably uniform with time, pointing in a direction roughly perpendicular to the

motion vector of the outermost moving features. On the other hand, there was no evidence

at 15 GHz of a bright superluminal knot ejection during the 2010 γ-ray flaring period.
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Table 3. Kinematic Fit Properties of Jet Components

〈S〉 〈R〉 〈ϑ〉 φ |〈ϑ〉 − φ| µ βapp µ̇⊥ µ̇‖ ∆α ∆δ

I.D. N (mJy) (mas) (deg) (deg) (deg) (µas yr−1) (c) (µas yr−2) (µas yr−2) Tej Tmid (µas) (µas)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

1 24 14 13.5 354.1 11.5±1.4 17.4±1.4b 320.4±9.3 8.41±0.24 0.049±0.017 −0.038±0.021 · · · 2003.84 199 245

2 17 20 7.4 7.4 15.7±1.2 8.2±1.2b 581±17a 15.26±0.43 0.092±0.019 −0.007±0.026 · · · 2002.49 179 269

3 13 74 3.7 2.7 10.19±0.27 7.48±0.30b 640.6±8.4a 16.82±0.22 0.0730±0.0055 0.005±0.015 · · · 2000.88 29 93

4 25 101 5.3 4.3 9.71±0.39 5.41±0.46b 638.9±5.1a 16.77±0.13 0.0576±0.0053 0.0094±0.0063 · · · 2003.84 114 136

5 20 71 5.2 359.5 5.73±0.21 6.22±0.23b 631.2±5.8a 16.57±0.15 0.0743±0.0034 −0.0225±0.0082 · · · 2005.26 43 109

6 16 24 5.1 355.8 353.19±0.99 2.6±1.1 779±15 20.45±0.40 −0.040±0.020 0.012±0.025 2001.53±0.14 2006.84 153 171

7 14 19 4.1 4.5 2.96±0.94 1.5±1.1 1013±39a 26.6±1.0 −0.105±0.033 0.312±0.078 · · · 2008.10 136 323

9 10 8 2.1 0.9 0.16±0.87 0.71±0.92 632±45 16.6±1.2 0.012±0.038 0.23±0.15 2006.55±0.25 2009.26 36 168

10 9 26 1.1 4.3 6.9±2.6 2.6±2.7 444±35 11.67±0.92 · · · · · · 2007.82±0.20 2009.93 49 87

11 9 27 7.5 357.8 17.7±2.3 19.9±2.3b 615±23 16.15±0.60 · · · · · · · · · 2009.93 61 56

12 7 99 0.4 8.4 18.7±4.5 10.3±4.5 96±19 2.52±0.49 · · · · · · · · · 2010.55 6 26

aComponent shows significant accelerated motion.

bComponent shows significant non-radial motion.

Note. — The kinematic fit values are derived from the acceleration fit for components with significant acceleration, and from the vector motion fit otherwise. Columns are as

follows: (1) component number, (2) number of fitted epochs, (3) mean flux density at 15 GHz in mJy, (4) mean distance from core component in mas, (5) mean position angle with

respect to the core component in degrees, (6) position angle of velocity vector in degrees, (7) offset between mean position angle and velocity vector position angle in degrees, (8)

angular proper motion in microarcseconds per year, (9) fitted speed in units of the speed of light, (10) angular acceleration perpendicular to velocity direction in microarcseconds

per year per year, (11) angular acceleration parallel to velocity direction in microarcseconds per year per year, (12) fitted ejection date, (13) date of reference (middle) epoch used

for fit, (14) right ascension error of individual epoch positions in µas, (15) declination error of individual epoch positions in µas.
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Fig. 5.— Total intensity and linear polarization images of 4C +21.35 observed by VLBA

at 15 GHz in different epochs as part of the MOJAVE program. Naturally-weighted total

intensity images are shown by black contours, the contours are in successive powers of two

times the base contour level of 0.2 mJy beam−1. Electric polarization vectors direction is

indicated by blue sticks, their length is proportional to the polarized intensity.

7. Discussion

7.1. Light Curves Behavior and Correlation

The multifrequency light curve of 4C +21.35 in Figure 6 shows the Fermi-LAT, Swift

(XRT; UVOT, u and m2 filters), optical R-band (Abastumani, ATOM, Crimean, KVA,

St. Petersburg), and radio from 15 GHz to 37 GHz (Effelsberg, Medicina, Metsähovi, OVRO,

UMRAO) data collected during 2010 April 9–August 4 (MJD 55295–55412). In addition the

γ-ray and X-ray photon indices observed by Fermi-LAT and Swift-XRT are reported in

the second and fourth panels. The Fermi-LAT light curve shows two distinct γ-ray flaring

episodes, peaking on 2010 April 29 (MJD 55315) and June 18 (MJD 55365), together with

other peaks of lesser brightness. The two major γ-ray peaks detected by Fermi-LAT occurred

very close in time to the VHE detections by MAGIC, on May 3 and June 17. This indicates

that the same emission mechanism may be responsible for both the HE and VHE emission

during these flaring episodes, in agreement also with the fact that the combined HE and

VHE spectrum in 2010 June 17, corrected for the EBL absorption, can be described by

a single power-law (Aleksić et al. 2011). It is also worth noting that during the two VHE

detections the photon index estimated in the LAT energy range is quite flat (Γγ ∼2), favoring

5http://www.aips.nrao.edu



26

(E > 100 MeV)

(0.3-10 keV)

Fig. 6.— Multifrequency light curves of 4C +21.35 between 2010 April 9 and August 4

(MJD 55295–55412). The data sets were collected (from top to bottom) by Fermi-LAT

(Tanaka et al. 2011, E > 100 MeV; in units of 10−6 photons cm−2 s−1; taken from), Swift-

XRT (0.3–10 keV; in units of 10−12 erg cm−2 s−1), Swift-UVOT (m2 filter; in units of mJy),

Swift-UVOT (U filter, open circles; in units of mJy), Abastumani, ATOM, Crimean, KVA,

St. Petersburg (R-band, filled triangles; in units of mJy), Effelsberg, Medicina, Metsähovi,

OVRO, UMRAO (15 GHz: filled circles, 23 GHz: open squares, 37 GHz: open triangles; in

units of Jy). The downward arrows indicate the times of the VHE detections by MAGIC.

For clarity the m2, u, R and 15 GHz bands errors (typically 5% or less) and the γ-rays errors

are not shown.
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Fig. 7.— Discrete cross correlation function between the γ-ray and R-band light curves of

4C +21.35.

the detection of γ-ray emission up to hundreds of GeV.

During 2010 February–June, Swift/XRT observed 4C +21.35 with a 0.3–10 keV flux

in the range (2.6–7.7)×10−12 erg cm−2 s−1, with the photon index changing in the range

1.4–2.2. The photon index remained constant during the 2010 April and June γ-ray flaring

periods (see Figure 6). The very small variability amplitude observed in X-rays (∼3) with

respect to the MeV–GeV energy range (∼70) could indicate that the low-energy segment of

the electron energy distribution responsible for the production of the X-ray photons varies

much less than the high-energy electron tail involved in the production of the observed γ-

ray emission. A small variability amplitude was observed in UV during 2010. This could

be due to the fact that the UV part of the spectrum is dominated by the accretion disk

emission that dilutes the jet emission. It is worth noting that a peak of the UV emission

was detected on June 18, but the small increase observed makes it unlikely that the change

of the accretion rate is the main driver of the simultaneous activity observed at the higher

energies by MAGIC and Fermi-LAT.

The R-band light curve is quite well sampled and shows variable flux density over time,

but no dramatic increase of the activity. Two optical peaks were observed on 2010 April

20 (MJD 55306) and 2010 June 30 (MJD 55377), close in time but not simultaneous with

the two γ-ray peaks. For the second flaring event, the lack of strictly simultaneous ground-
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Fig. 8.— Comparison between γ-ray and R-band light curves. We superimpose γ-ray (black

triangles) and R-band (red empty circles) light curves normalizing γ-ray and R flux values

over the whole observing period to the respective peak flux values.

based optical observations was covered by the UVOT observations that seems to indicate a

relatively high activity at MJD 55367 (June 20). Correlations between the γ-ray and optical

light curves of 4C +21.35 were investigated by computing the discrete cross correlation

function (DCCF), following Edelson and Krolik (1988) and White and Peterson (1994) (see

Figure 7; positive lag means that γ-ray flux variations occur before those in R-band; the

DCCF value ranges from –1 to +1). Although the overall R-band flux was higher during the
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period of γ-ray activity (see Figure 8) the DCCF shows no clear evidence for correlations on

the timescale of the rapid flares (∼days), with a maximum correlation of 0.4 for a time-lag

of ∼35 days. A similar conclusion was reached by Smith et al. (2011) from a comparison

of a LAT light curve during this epoch with the Steward Observatory V -band observations

also used in this paper. In particular, overall correlation between the γ-ray band with the

R-band was observed for 4C 21+35 during the 2010 γ-ray flaring activity, but on short time

scales some differences are evident (see Figure 8). A complex connection between the optical

and γ-ray emission has been already observed in several FSRQs and low-synchrotron-peaked

BL Lac objects. In some cases a clear optical/γ correlation with no lags was observed (e.g.,

3C 279; Abdo et al. 2010a). But sometimes no correlation was found between these two

energy bands (e.g., BL Lacertae; Abdo et al. 2011), and in other occasions, an optical and

NIR flare with no significant counterpart in γ-rays was observed (e.g., PKS 0208−512 and

PKS 0537−441; Chatterjee et al. 2013; D’Ammando et al. 2013).

An increasing flux density was observed in radio and mm bands from the beginning of

2009 (see Figure 2) contemporaneous with the increasing γ-ray activity observed by Fermi-

LAT, reaching the peak of flux density at 230 GHz on 2011 January 27 (MJD 55588).

Interestingly, the peak of the 23 GHz and 37 GHz was observed on 2010 May 10 (MJD

55326) and June 18 (MJD 55365), respectively, close in time with the major γ-ray flares.

The same activity was also observed at 8 GHz and 5 GHz, with the emission peak delayed

likely due to synchrotron self-absorption opacity effects. However, the sparse coverage does

not allow us to obtain conclusive evidence. A significant spectral evolution was also observed

in radio (see Figure 3), with the spectrum changed from steep on 2009 January 24 (αr =

0.3) to inverted (αr = –0.2) on 2011 April 29 (see Section 6.2).

7.2. SED Modeling

7.2.1. Data Selection

We have built three quasi-simultaneous SEDs from the data discussed above, shown in

Figure 9. These SEDs include the flaring states of 2010 June 17 (red circles) and 2010 April

29 (green squares), and a quiescent state, integrated in time from 2008 August 4 to 2008

September 12 (blue diamonds). For the three SEDs we used the LAT spectra calculated

over 2010 June 17, 2010 April 23–May 2, 2008 August 4–2009 September 12 (taken from

Tanaka et al. 2011; Aleksić et al. 2011), and the Swift data collected on 2010 June 20, 2010

April 23, and 2009 April 10, respectively. The MAGIC data collected on 2010 May 3 and June

17 are included for the two flaring states. These data have been corrected for EBL absorption

using the model of Finke et al. (2010). This model is nearly identical in the energy range
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Fig. 9.— Spectral energy distribution of 4C +21.35 in three epochs: 2010 June 17 (red cir-

cles), 2010 April 29 (green squares), and 2008 August 4–2009 September 12 (blue diamonds).

Dashed magenta lines indicate the dust torus and accretion disk emission components. The

MAGIC data have been corrected for EBL absorption using the model of Finke et al. (2010).

Empty symbols refer to non-EBL-corrected data, filled symbols to EBL-corrected ones.
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covered by MAGIC to the model of Dominguez et al. (2011) used in Aleksić et al. (2011). We

also included the radio and R-band observations nearest to the LAT γ-ray peak for the two

flaring states (2010 April 28 and June 22, respectively), and the Swift observation performed

on 2009 April 19 for the quiescent state. Finally we report in the SEDs the average Swift

BAT 70-month spectrum, the Planck spectrum collected in 2009 December (Ade et al. 2013),

and the Spitzer data from Malmrose et al. (2011).

Farina et al. (2012) estimate the black hole (BH) mass for 4C +21.35 as MBH ∼ 6×108 M⊙,

using broad emission line measurements from over 100 optical spectra from a variety of

sources. This value agrees with values found by Shen et al. (2011) and Shaw et al. (2012)

with an Sloan Digital Sky Survey (SDSS) spectrum, but significantly greater than the value

found by Wang et al. (2004) and used by Tanaka et al. (2011), MBH ∼ 1.5 ×108M⊙. It is

worth noting that the measurement by Wang et al. (2004) relies on the H-β broad line and

the continuum luminosity-BLR radius relation from Kaspi et al. (2000). That relation was

obtained from reverberation mapping of a small number of active galactic nuclei using a

cosmology with a decelerating universe, which is now known to be incorrect. We use the

more precise value from Farina et al. (2012) in our SED modeling.

7.2.2. Model

We model the SED of the three epochs using a one-zone leptonic model. We began

our modeling efforts by attempting to model the IR data from Malmrose et al. (2011) with

a blackbody dust torus. The results for the luminosity (Ldust) and temperature (Tdust)

of the blackbody were similar to the ones found by Malmrose et al. (2011). The optical

emission clearly appears to be dominated by thermal disk emission, rather than nonthermal

synchrotron emission from the jet, otherwise the optical spectrum would appear much softer.

Therefore, we next modeled the optical data in the low-state with a Shakura–Sunyaev multi-

temperature disk (Shakura & Sunyaev 1973), assuming MBH ∼ 6×108 M⊙. We note that

the disk fit to the low-state data is insensitive to the inner radius of the disk, Rin, as seen

in a close up of this part of the SED in Figure 10. Parameters for the dust torus, accretion

disk, and all other modeling parameters can be found in Table 4. Tavecchio et al. (2011) use

an isotropically emitting blackbody spectrum to fit the blue bump and obtain a value for the

disk luminosity over twice the value presented here. We use a Shakura–Sunyaev disk, which

does not emit isotropically, and which we assume emits as the cosine of the disk inclination

angle. With this distribution, for a face-on disk, the flux will be twice that from an isotropic

distribution for a given luminosity (e.g., Castignani et al. 2013). This is the cause of most

of the discrepancy, with the remaining discrepancy due to the different contributions from
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nonthermal synchrotron emission.

Although several possibilities have been suggested for the origin of γ-ray emission from

4C+21.35 (see Section 1), FSRQ-type blazars such as 4C +21.35 are expected to have their γ-

rays originate from the external Compton (EC), rather than synchrotron self-Compton (SSC)

mechanism (e.g., Ghisellini et al. 1998). Therefore we next attempt to fit the SED in the high

state of 2010 June 17 (MJD 55364) with a combination of synchrotron, SSC, and EC emission

from a jet blob moving at a highly relativistic speed. We assume an emitting size of R′
b = 1015

cm in the comoving frame, consistent with the rapid variability timescale of 10 minutes. The

dust torus and disk emission are not varied between flaring and quiescent states. For the

nonthermal jet emission we choose a variability timescale of 10 minutes, consistent with the

variability observed by MAGIC (Aleksić et al. 2011). The MAGIC detection of the source out

to & 300 GeV also implies the primary emitting region must be outside the BLR, otherwise

γγ absorption by broad-line photons would not allow such high-energy γ-ray photons to

escape (Tanaka et al. 2011; Aleksić et al. 2011), so we chose a large jet distance from the

BH, r, outside the BLR radius of RBLR ≈ 2×1017 cm (Tanaka et al. 2011). Outside the BLR,

the seed photon source is expected to be from the dust torus, which is what we use as the EC

seed photon source. For the purposes of calculating the geometry of Compton scattering, we

assume the dust torus is a one-dimensional ring with radius Rdust, aligned orthogonal to the

jet, where we choose Rdust to be roughly consistent with the value of the dust sublimation

radius calculated by Nenkova et al. (2008). This is necessary since our calculations use the

full angle-dependent Compton cross section, accurate in the Thomson through Klein-Nishina

(KN) regimes. The adopted synchrotron component is self-absorbed below 1012 Hz. We treat

the radio points as upper limits, since their slow variability compared to the optical and γ-

ray emission and flat spectrum (in flux density Fν) imply they are probably the result of

a superposition of several self-absorbed jet components (Konigl 1981), and not the result

of the same emitting region that produces the rest of the SED. The electron distribution

was assumed to be a broken power-law between electron Lorentz factors γmin and γmax with

power-law index p1 for γ < γbrk and p2 for γ > γbrk. Further details on the model and its

parameters can be found in Finke et al. (2008) and Dermer et al. (2009).

The result of this fit to the 2010 June 17 (MJD 55364) SED is shown in Figure 9.

We note that there is some degeneracy in the choice of the model parameters, hence the

set of parameter values describing the observational data are not unique. However, we do

demonstrate that a one-zone model can adequately describe the data. To account for the

highest speeds derived by the jet kinematics analysis of the MOJAVE data (see Section 6.7)

at least some portion of the jet must be viewed within ∼4◦ of the line of sight. To avoid

the extreme KN regime for Compton scattering, we found that the jet needs to be highly

aligned, with the jet angle with respect to the line of sight θ ≈ 0◦ (δD ≈ 2Γ), where δD is
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the Doppler factor. This is because the energy at which the extreme KN regime begins is

at ǫKN ≈ (δD/Γ)ǫ0, where ǫ0 is the seed photon energy. Such a small jet’s angle does not

disagree with the high apparent speeds estimated on the scales of a few parsecs if the complex

three dimensional trajectories observed by MOJAVE are taken into consideration. In fact,

there is evidence for a bend in the jet on the parsec scale in the VLBA images, where the

emission in this model originates (see Section 6.7). The model does not provide a good fit

to the XRT data in this SED, with the model being dominated by synchrotron emission for

the soft X-rays, while the XRT spectral index is ΓX < 2 indicating it is dominated by some

sort of Compton scattering, either SSC or EC (EC in the case of our model fit). However,

the XRT data were not strictly simultaneous with the rest of the SED, particularly the LAT

data (with a gap of 6 and 3 days between the X-ray and γ-ray data, respectively). As can

be seen in Figure 6, the XRT photon index alternates between ΓX < 2, implying Compton

scattering dominates in this waveband, and ΓX > 2, implying synchrotron dominates. If

the primary emitting region makes up the majority of the jet cross section, this model fit

gives a jet half-opening angle of θopen ∼ R′
b/r ∼ 10−4 rad ∼ 0.◦007, where R′

b is the comoving

radius of the blob. Such a small opening angle is highly unlikely and inconsistent with radio

observations (Figure 5), so this model implies that the overwhelming majority of the source’s

emission is coming from a very small fraction of the jet’s cross section. We also calculated

the jet power in electrons (Pj,e) and Poynting flux (Pj,B) for this model fit, assuming a two-

sided jet (Finke et al. 2008), finding that the source has almost 100 times as much power in

electrons as in Poynting flux. The model fit to the 2010 June 17 (MJD 55364) flaring SED

is similar to the “case A” fit to the same SED data by Tavecchio et al. (2011). They also

found a jet where the electron energy density dominates over the magnetic energy density,

although in their case it is even more dominant, with Pj,e ∼ 104Pj,B. Tavecchio et al. (2011)

also provide two other fits to the same SED with two zone models: a “case B” where there is

an additional contribution from a larger blob outside the BLR; and a “case C” where there

is a contribution from a larger blob inside the BLR. Neither of these two-zone fits solves the

problem of having an extremely small, bright blob at a large distance from the BH, although

they do provide fits much closer to equipartition between electrons and Poynting flux. The

UV data for the 2010 June 17 flaring SED requires an inner disk radius Rin < 6Rg, with the

best fit found for Rin = 3Rg (Rg is the gravitational radius). We discuss the implications of

this below.

First, however, we discuss the fit to the other bright flare, on 2010 April 29. This SED

is quite similar to the 2010 June 17 one, and we found we could fit this SED with only minor

changes in the electron distribution, keeping the other parameters the same. Specifically,

this required lowering γbrk from 1 × 103 to 6 × 102 and γmax from 4 × 104 to 2 × 104. This

resulted in a slightly lower Pj,e, as seen in Table 4. For this flaring state, the lower γmax
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yields a better fit for the XRT data. The UV data for this state also are more consistent

with an inner disk radius Rin = 3Rg.

Finally, we turn to the “quiescent state” SED, derived by integrating LAT data from

2008 August 4 to 2009 September 12 in addition to multifrequency data in the same period.

We again find a good fit changing only the electron distribution parameters from the flaring

states, while keeping the rest of the parameters the same. Here we varied the electron break

to γbrk = 26, and changed the normalization, keeping all other parameters the same as the fit

to the 2010 June 17 flaring state. This provides a good fit to the SED, although it presents

some peculiarities. In this model, the synchrotron peak would be observed at frequency

νpk ≈ mec
2/h γ2

brkB/BcritδD/(1 + z) ≈ 7.4 × 1010 Hz, if this part of the spectrum is not

highly synchrotron self-absorbed. Instead the peak is at ∼ 1012 Hz, at the self-absorption

frequency, where the model flux is about an order of magnitude below the data. This is not

strictly a problem, since the observed radio emission is probably from a much larger region of

the jet, but it does seem strange to have such a low synchrotron peak frequency. For the fit to

the quiescent state, the model underpredicts the softest XRT flux, rather than overpredicting

it as the model for the 2010 June 17 flare did. Again, this could be due to variability during

this rather long quiescent time period. It is also possible that the X-ray emission originates

from a different region, maybe even from an accretion disk corona, particularly since the

accretion disk is so prominent. There have been many instances in FSRQs where the X-ray

continuum has been characterized by very distinct variability properties compared to optical

and γ-ray flares (e.g., Abdo et al. 2010a; Marscher et al. 2010).

7.2.3. Accretion Disk Emission

For both the flaring state models, we find that a good fit to the UV data from Swift-

UVOT requires an inner disk radius Rin < 6Rg, where 6Rg is the value one would expect

for the innermost stable circular orbit around a nonrotating Schwarzschild BH. Indeed, our

fits favor Rin = 3Rg (see Figure 10), the value one would expect for a maximally (prograde)

rotating Kerr BH. This is because, as seen in the figure, a larger Rin will not fit the UV data

points. We also performed fits with the color correction of Chiang (2002). This requires

a slightly higher disk luminosity (Ldisk = 2 × 1046 erg s−1), but our results for the inner

disk radius remain unchanged. This is of interest since one would expect a BH spin at

or near the maximum value if the jet is generated from the Blandford–Znajek mechanism

(Blandford & Znajek 1977). It is also inconsistent with the scenario of Garofalo et al. (2010),

where the jets in powerful FR II sources (and presumably FSRQs) are produced by BHs

with retrograde spin, requiring that Rin > 6Rg, while jets in less powerful FR I sources (and
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Fig. 10.— Similar to Figure 9, but zoomed in on the optical portion of the spectrum, which

in our model originates mainly from disk emission. Model disk emission for several inner

disk radii are shown (dashed curves), while the synchrotron from the model fit of 2010 April

29 is shown as the dot-dashed curve. The total (synchrotron + disk) emission is shown as

the solid curves. Models with large inner disk radii do not provide an adequate fit to the

UV data of 2010 April 29.
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presumably BL Lac objects) are produced by BHs with prograde spin. However, there are

some caveats regarding the fit of the optical/UV data. The results depend on the BH mass,

although the results for this seem to converge to around 6–8×108 M⊙. We also note that if

the BH mass were as low as the one found by Wang et al. (2004), MBH = 1.5 × 108 M⊙, we

would not be able to fit the blue bump for this source with a value of the disk luminosity

Ldisk that is less than the Eddington luminosity. The UV data are often subject to heavy

extinction, which could lead to large uncertainty. If the synchrotron component was less

steep it could also potentially have a greater contribution to the UV region, masking a larger

Rin. But in this case the synchrotron emission would over-predict the longer wavelength

optical data, so this is unlikely. Finally, the disk model we use is rather simple. It does

not include a general relativistic effects such as gravitational Doppler shifts or light bending

(Li et al. 2005).

Are our modeling results consistent with the observed optical spectra of 4C+21.35?

Estimates for the luminosity of the broad Hβ line range from LHβ = 2.1 × 1043 erg s−1

(Fan et al. 2006; Tanaka et al. 2011) to the values found from the SDSS spectrum, LHβ =

6.3 × 1043 erg s−1 as measured by Shen et al. (2011) and LHβ = 5.5 × 1043 erg s−1 by

Shaw et al. (2012). Farina et al. (2012) find the line to be quite variable by systematically

studying a variety of spectra at different epochs, and their values range from LHβ = 3.7×1043

erg s−1 to LHβ = 6.2 × 1043 erg s−1. Values for the luminosity at 5100 Å are fairly constant

if one is careful to exclude the nonthermal component. From the same spectrum, Shen et al.

(2011) find L5100 = 3.8 × 1045 erg s−1 and Shaw et al. (2012) find L5100 = 3.5 × 1045 erg

s−1. The estimates by Farina et al. (2012) varies considerably, but their lowest value, with

presumably the least amount of contribution from the nonthermal emission, is L5100 =

3.5×1045 erg s−1. Greene & Ho (2005) found a tight correlation between L5100 and LHβ , and

all the values here, which are around LHβ/L5100 ≈ 0.01, are consistent with their correlation.

If the total BLR luminosity is LBLR = 25.3 × LHβ (Tanaka et al. 2011), then, using a value

LHβ = 5 × 1043 erg s−1 that is consistent with the recent measurements (Shen et al. 2011;

Shaw et al. 2012; Farina et al. 2012) one gets LBLR = 1.3 × 1045 erg s−1. Thus, using the

disk luminosity for our model, one gets ξBLR
∼= LBLR/Ldisk ≈ 0.08, a fairly standard value.

Our model fit gives a value of the fraction of the disk radiation reprocessed in the dust torus

ξdust ∼= Ldust/Ldisk = 0.34, again a fairly standard value (e.g., Sikora et al. 2009).

7.2.4. Jet and Accretion Power

Our model fits give a total accretion power of Pacc = Ldisk/ηdisk = 1.9 × 1047 erg s−1. If

the bolometric isotropic equivalent luminosity from the 2010 June 17 flare is Liso = 1048 erg
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s−1 (Tanaka et al. 2011) then the radiative efficiency of the flare is

ηj <
Liso

2Γ2(Pj,e + Pj,B)
≈ 0.7 (1)

(Finke et al. 2008; Sikora et al. 2009; Tanaka et al. 2011, where the factor of 2 takes into

account the two-sided jet), which implies a highly radiatively efficient jet. The estimate for

the total jet power, Pj = Pj,e+Pj,B+Pj,p, is a lower limit because it does not include a contri-

bution from protons in the jet (Pj,p), which are likely to be present (e.g., Sikora & Madejski

2000; Sikora et al. 2009). The jet power contributes a fraction of the total accretion power

of

Pj,e + Pj,B

Pacc
= 2.3 × 10−3 , (2)

although again note that this is a lower limit due to the uncertainty of the proton content.

In fact, requiring that Pj/Pacc < 1 gives a constraint on the power in protons in the jet

Pj,p . 440Pj,e. A low Pj/Pacc is at odds with the conclusions of Tanaka et al. (2011) who

estimate a much higher Pj/Pacc. The difference is due to their assuming a smaller Γ and ηj
than our derived values.

It is interesting to explore the possibility that the flare occurs inside the BLR, and the

break in the LAT spectrum is due to γγ absorption of γ-rays with He II Ly photons (contin-

uum and lines) (Poutanen & Stern 2010; Stern & Poutanen 2011). Following Tanaka et al.

(2011), we find that

LHe IILy
∼= 0.1LH ILyα

∼= 4.5LHβ
∼= 2.2 × 1044 erg s−1 (3)

where we have used the value for LHβ discussed above. Assuming the typical radius for the

He II emission is at a radius RHe II
∼= 0.5RBLR, i.e., at 1017 cm, we find that the spectral

break one expects from γγ absorption with He II Ly photons is

∆Γ ∼
τT (5 GeV)

4
∼=

σTLHe IILy

16πc EHe IILy RHe II

∼= 1.2 , (4)

significantly larger than the ∆Γ ∼= 0.5 found in the LAT spectrum for 4C +21.35. The uncer-

tainty in broad emission line luminosities seems to make this approximation a rough estimate.

We note that a disk wind model for the BLR (Murray et al. 1995; Chiang & Murray 1996;

Murray & Chiang 1996) would lower the γγ opacity of the BLR, relative to a spherical shell

geometry. We tested this possibility, however, and found that the γγ opacity remains ex-

tremely high, so it is still highly unlikely that MAGIC-detected γ-ray photons could escape

the BLR.
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Table 4: Model Parameters for the SED Shown in Figure 9. A black hole mass of 6× 108 M⊙

was considered.
Parameter Symbol 2010 June 17 2010 April 29 Quiescent State

Gravitational radius (cm) Rg 8.8 × 1013 8.8 × 1013 8.8 × 1013

Eddington luminosity (erg s−1) LEdd 7.8 × 1046 7.8 × 1046 7.8 × 1046

Disk Eddington ratio Ldisk/LEdd 0.2 0.2 0.2

Disk accretion efficiency ηdisk 1/12 1/12 1/12

Inner disk radius (Rg) Rin 3 3 3

Outer disk radius (Rg) Rout 3× 104 3× 104 3× 104

Bulk Lorentz factor Γ 40 40 40

Doppler factor δD 80 80 80

Magnetic field B (G) 0.7 0.7 0.7

Variability timescale tv (s) 6×102 6×102 6×102

Comoving radius of blob R′

b (cm) 1.0×1015 1.0×1015 1.0×1015

Jet height (cm) r 8.8 × 1018 8.8 × 1018 8.8 × 1018

Low-energy electron spectral index p1 2.0 2.0 2.0

High-energy electron spectral index p2 3.5 3.5 3.5

Minimum electron Lorentz factor γ′

min
1.0 1.0 1.0

Break electron Lorentz factor γ′

brk
1.0 × 103 6.0 × 102 26

Maximum electron Lorentz factor γ′

max 4.0 × 104 2.0 × 104 4.0 × 104

Dust torus luminosity (erg s−1) Ldust 5.5 × 1045 5.5 × 1045 5.5 × 1045

Dust torus temperature (K) Tdust 1.1 × 103 1.1 × 103 1.1 × 103

Dust torus radius (cm) Rdust 1.8 × 1019 1.8 × 1019 1.8 × 1019

Jet power in magnetic field (erg s−1) Pj,B 5.9 × 1042 5.9 × 1042 5.9 × 1042

Jet power in electrons (erg s−1) Pj,e 4.3 × 1044 4.0 × 1044 1.9 × 1044
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8. Conclusions

4C +21.35 was detected at VHE by MAGIC on 2010 June 17 during a period of high

γ-ray activity detected by Fermi-LAT. The relatively hard spectrum of the combined HE

and VHE spectrum (Γ = 2.7 ± 0.3), with no evidence of a cutoff, together with the very

rapid variability (∼10 minutes) observed by MAGIC challenge standard emission models.

We presented multiwavelength observations of the FSRQ 4C +21.35 collected from radio to

VHE during 2009–2010. The first hint of a signal at VHE by MAGIC was found on May 3,

during a further period of γ-ray activity observed by Fermi, suggesting a common origin for

both the HE and VHE emission during the 2010 April and June episodes.

During 2010 February–June only moderate flux variability was observed in X-rays (a

factor of ∼3), with the photon index changing in the range 1.4–2.2 but with no correlation

between flux and photon index. A low variability amplitude was observed in UV in the same

period, suggesting that the UV is dominated by the accretion disk emission that dilutes the

jet emission. It is worth noting that the peak of the UV emission was detected on June 18,

but the small increase observed makes it unlikely that the change of the accretion rate is the

main driver of the HE and VHE high activity detected by Fermi and MAGIC. The optical

light curve shows variable flux density, but no dramatic increase of the activity. Two optical

peaks were observed on 2010 April 20 (MJD 55306) and 2010 June 30 (MJD 55377), close

in time but not simultaneous with the γ-ray peaks.

Based on the 15 GHz MOJAVE data, there is no evidence for the ejection of super-

luminal knots associated with either of the flares in 2010 April and June. However, Marscher et al.

(2012) detected the ejection of a superluminal knot with 43 GHz imaging at a time some-

where between 2010 April 29 and June 3 (MJD 55315-55350), close in time with the first

2010 γ-ray flare (see their Figure 3). We also noted that this knot could be associated with

the γ-ray outburst at around 2010 May 24 (MJD 55340). If the flare occurred at the 43 GHz

core, our model implies that the 43 GHz core is about 3 pc from the central BH.

Based on our SED modeling (Section 7.2), we reach the following conclusions:

1. The γ-ray flares in 2010 April and June cannot have originated from inside the BLR, at

least not without invoking some unusual particle transport mechanism (Dermer et al.

2012; Tavecchio et al. 2012).

2. There is some evidence for a rapidly-spinning prograde BH based on the optical emis-

sion.

3. The two flaring states and the quiescent state can be modeled by varying only the

electron distribution for the source.
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The last result, modeling the source by varying only the electron distribution, has

also been found for the blazar PKS 0537−441 (D’Ammando et al. 2013). This conclusion is

much stronger for PKS 0537−441, since the optical continuum of PKS 0537−441 is not disk-

dominated, making its modeling more constraining. Nonetheless, there are clearly sources for

which a change in the electron distribution is not sufficient to explain the difference between

flaring and quiescent states. For example, to model a strong optical-near infrared flare from

PKS 0208−512 with no counterpart in γ-rays required changing the magnetic field strength

(Chatterjee et al. 2013).

Rotation in polarization angles coincident with flares has been observed before in the

blazars BL Lac (Marscher et al. 2008), PKS 1510−089 (Marscher et al. 2010; Orienti et al.

2013), and 3C 279 (Abdo et al. 2010a). They could be caused by a sudden realignment in

the magnetic field due to shock compression, or a curved trajectory taken by the flaring

region. A slight increase of the degree of optical polarization but no significant rotation of

the polarization angle was observed at the time of the 2010 June HE and VHE flare.

The object 4C +21.35 continues to challenge our understanding of blazar emission mech-

anisms and the location of the emitting region. Multi-wavelength observations have com-

plemented previous LAT and MAGIC observations to give a more complete picture for this

source, although many outstanding questions remain.
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