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Abstract 
A common feature of problem solving in real world complex 
domains is detecting moments of high informational 
uncertainty and trying to resolve this informational 
uncertainty. Yet, relatively little is known about these 
important aspects of real world cognition. Expert and novice 
performance is contrasted for relative use of informational 
uncertainty indicator strategies and problem solving strategies 
across two very different complex domains: weather 
forecasting and geoscience planning and data analysis. Strong 
differences across domains were found for problem solving 
but not indicator strategies. The differences between domains 
were exaggerated in experts. Indicators strategies generally 
appeared associated with spatial representations, whereas only 
a few of the uncertainty problem solving strategies did so. 

Keywords: Ill-defined problem solving; uncertainty; 
expertise; spatial reasoning 

Introduction 
A well-worn path in cognitive science is the distinction 
between well-defined and ill-defined problems (Newell & 
Simon, 1972). And yet, a clear definition of "ill-defined" 
remains an illusive anti-prototype definition: problems that 
are NOT well-defined. Problems can be ill-defined in a 
three classic ways: lacking a clear start, lacking a clear end, 
and lacking a clear sense of allowable actions along the way 
from start to goal. Yet, definitions by absence of features are 
not very specific. Cognitive science of problem solving 
could explore the endless variations of ways of NOT being 
well-defined on each of those three dimensions. But to make 
more rapid progress, one heuristic can be to turn to the 
world around us, and explore what kinds of ill-defined tasks 
regularly occur, to focus research attention on that range of 
ill-defined tasks first. 

We have been looking at experts in a variety of highly 
ambiguous yet regularly solvable tasks: submariners trying 
to localize another submarine with passive sonar, weather 
forecasters making a weather forecast, scientists analyzing 
data and planning experiments, and engineers designing 
innovative new products (e.g., Trafton et al., 2006; 
Christensen & Schunn, in press). For experts, each of these 

domains is primarily well-defined in the classic sense: the 
start state is well understood, the set of typical operators are 
well honed, and the goal state is usually clear (although 
there may be more than one possible acceptable goal state). 
And yet, even for experts, these domains included a very 
high level of ambiguity. Problem solving in these domains 
is more heuristic than algorithmic, even for experts. 

A common feature across problem solving in all of these 
domains that is an important source (and sometimes THE 
important source) of ambiguity is informational uncertainty: 
psychological uncertainty about the accuracy of information 
about the current state of the world. That is, unlike in classic 
well-defined problems, the information that defines the 
current state is interpretable in many different ways, even by 
experts. The sources of the informational ambiguity can 
include physical factors (such as measurement error of a 
device), computational factors (such as statistical artifacts of 
smoothing or averaging algorithms), visual input factors 
(such as graphical information displays including only some 
of the relevant dimensions), and cognitive factors (such as 
prior procedural errors or memory retrieval errors). In these 
domains, a core element of expertise is being able to detect 
states with high levels of informational uncertainty and 
being able to resolve that informational uncertainty through 
problem solving. Informational uncertainty is contrasted 
with decision-making uncertainty, which adds uncertainty 
about the consequences of following different choices. 

In this paper, we explore in depth the particular indicators 
of uncertainty that problem solvers tend use to detect 
informational uncertainty and the particular strategies that 
they tend use to resolve uncertainty. Is resolving uncertainty 
primarily a mental reasoning task, using inductive and 
deductive reasoning, as one believe from the focus of most 
texts on higher-level cognition? If it is mental reasoning, is 
the reasoning primarily verbal, or is spatial reasoning a core 
component (Trafton et al., 2006)? Or is the problem solving 
more heavily dependent upon external representations 
(Hutchins, 1995), relying on epistemic markup of 
visualizations (Kirsch & Maglio, 1994), and/or iterative 
search through externally stored data? 
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We use a mixture of verbal protocols and spatial gesture 
analysis to examine whether the elements are primarily 
involving verbal internal representations or spatial internal 
representations. Although many complex domains have rich 
visual-spatial external input, problem solvers can re-
represent information into a variety of forms. To understand 
the nature of cognitive processing at a detailed level, 
verbal/spatial is generally thought of as an important first 
cut at unpacking processing. 

We further use an expert/novice contrast to explore which 
elements require more experience. One naïve assumption 
might be that novices are just generally uncertain, and do 
not have particular strategies for noting cases of 
informational uncertainty. More likely is the possibility that 
experts make more use of knowledge-rich methods of 
detecting and resolving informational uncertainty. But it is 
also possible that experts have discovered some domain-
specific strategies (but not requiring much knowledge) for 
resolving uncertainty that novices do not have at all, or do 
not tend to use very often (Siegler, 1996). 

Understanding problem solving in just one domain 
requires a lot of effort. The result can be quite rich 
descriptively, but the generality can also be suspect. Our 
approach is to analyze data from two different domains. One 
should not really think of this contrast between domains as a 
single unconfounded variable contrast because any two 
domains have many features that are different. Instead, the 
two domains should be thought of as two cases for 
exploring the generality of the obtained picture of problem 
solving with informational uncertainty. 

Methods 

Domains 
MER The first domain is remote planetary science. 
Specifically, it involves data collected at JPL in Pasedena, 
CA of scientists analyzing and planning during the first 90 
days of the Mars Exploration Rover (MER) mission, in 
which two robots crawled around Mars on the basis of 
commands sent daily, and sent back images and other 
instrument data via satellite relay also on a daily basis. The 
scientific goals of the mission roughly involved 
characterizing the geology, geochemistry, and atmospheric 
conditions now and in the past on Mars. In this domain, the 
time pressure for resolving informational uncertainty is low 
(can take months in some cases), and the overall strength of 
prior expectations is low given that this level of detail of 
data from another planet was not previously collected. 
METOC The second domain is Meteorological and 
Oceanographic forecasting (METOC). Specifically, it 
involved weather forecasters making weather forecasts for a 
particular point in time (typically 1 to 7 days in advance) at 
a particular location (typically not the forecasters exact 
location). In this domain, the time pressure for resolving 
informational uncertainty is moderate (should be resolved in 
an hour or so), and the overall strength of prior expectations 

is high given that the participants have made such forecasts 
in very similar locations many times before. 

Participants 
MER The participants were senior and junior scientists in 
the domains of geology, geochemistry, soil science, and 
atmospheric science. Some were employees of the Jet 
Propulsion Lab, but others were visiting from various 
universities and research centers for the duration of the 
nominal 90-day mission. On any given day, approximately 
20 scientists (divided into 5 thematic groups) worked on 
analyzing data and planning the next day’s activities for a 
given Rover. During the day, scientists attended three 
planned full-group meetings, but primarily worked 
informally in various subgroup sizes.  

Expertise was coded into approximate expert/novice 
categories on the basis of age appearance. Unlike some 
other disciplines (e.g., education), researchers in this area 
are rarely second career, and thus age is a reasonable proxy 
of expertise here. Given the very large range (20s to 60s), 
this coding was relatively easy to do. Those scientists in the 
their 40s and older were considered experts, and those 
scientists in the 30s and younger were considered novices. 
METOC The 17 novice participants were 3rd and 4th year 
weather forecasting students at a college that offered a 
degree in weather forecasting. The 6 expert participants 
were military weather forecasters each with over 10 years of 
weather forecasting experience. Note that in both domains, 
the expert groups are beyond the 10-year point associated 
with high levels of expertise. Also note that in neither 
domain are the novices uninformed initiates. Instead, the 
novices understand the basics of the domain, have strong 
identity with the domain, but simply have noticeably less 
experience in the domain than the experts.  

Data Collection 
MER Video cameras were setup in various locations around 
the room on a rotational basis, on tripods at a height of 
approximate 2m, located slightly above 60in touch-screen 
displays. The cameras were frequently in the space, and 
were turned on before scientists entered the space in the 
room according to a sampling schedule that covered early, 
middle, and late days on the mission, producing 
approximately 400 hours of video. Although the scientists 
had signed informed consent forms and were generically 
aware of the video recording, the location of the cameras 
and their omnipresence in the space meant that participants 
were generally unaware of the camera. Fourty snippets of 5 
to 30 minutes of video were sampled to be coded on the 
basis of: 1) two or more individuals having an informal 
conversation about data analysis or mission planning; 2) the 
conversation takes place on camera; and 3) no nearby 
individuals were having another conversation that interfered 
with the audio capture. The conversations were transcribed 
verbatim and segmented at the level of complete thought, 
producing 5878 segments of speech. 

1474



METOC The participants were asked to produce weather 
forecasts as they normally would, but while providing a 
think aloud protocol (Ericsson & Simon, 1993). The 
participants worked on a computer, accessing websites and 
other weather products as they normally would, or using 
equivalent printouts displayed on a wall—both modes are 
common for weather forecasters. The camera was located 
behind them, capturing work on the computer or with the 
wall maps over the shoulder. The think-alouds were 
transcribed verbatim and segmented at the level of complete 
thought, producing 11,582 segments of speech. 

Coding Details 
From the verbal data, significant moments of uncertainty 
were found. These significant moments were defined as 
moments during which the problem solver explicitly 
expressed some uncertainty about current information and 
proceeded to do some external, mental, or social problem 
solving to resolve it. This coding also noted when the 
moment began, ended, and when the problem solver 
digressed off-topic (those segments were excluded). A 
primary indicator was coded for each significant moment 
(i.e., what led to the detection of that bit of uncertainty?). 
Each problem-solving step was separately coded for 
problem solving strategy, because problem solving in a 
significant moment typically involved many different 
strategies to obtain resolution. There were 31 such moments 
in MER and 82 in METOC. 
Indicator Taxonomy Four indicators of informational 
uncertainty were created in a bottom-up fashion from the 
data. They are listed in Table 1. 

 
Table 1: Taxonomy of indicators used by participants to 

detect informational uncertainty. 
Indicator Definition 

No Pattern Speaker claims that they do not see a 
pattern — no possible alternatives are 
given. 

Ambiguous 
Pattern 

Speaker is unable to distinguish which 
pattern is present; particular alternatives 
are listed 

Atypical 
Pattern 

Speaker claims that pattern present is not 
the normal pattern for a particular 
situation 

Inconsistent 
Pattern 

Speaker claims that data from two 
different sources are contradictory 

 
Uncertainty Problem Solving Taxonomy Thirteen codes 
were developed in an iterative, bottom-up fashion from the 
data to reflect the problem solving steps used by participants 
to address informational uncertainty, as well as our ability to 
reliably code distinctions. Participants would frequently use 
several strategies in resolving a given moment of 
uncertainty. The strategies listed below planning are ones 
more tightly associated with the final resolution of the 
uncertainty, whereas the ones above tend to occur earlier 
during the problem solving. 

 
Table 2: Taxonomy of problem solving strategies used by 

participants to resolve informational uncertainty. 
STRATEGY DEFINITION 
Mark uncertainty Explicitly declaring a case 

unresolvable for now 
Check likely errors Recheck steps for technology or 

human error  
Domain knowledge 
usage 

The use of domain-related 
knowledge to reason 

Mental spatial 
transformation  

Reorienting / moving / molding 
information mentally 

Physical Spatial 
Transformation 

Physical manipulation of real or 
computer objects 

Detailed view / 
more data 

Detailed examination of current or 
new data  

Planning All future-oriented outlines of 
(non-immediate) actions, whether 
they are definite, entertained, or 
conditional 

Focus on reliability 
of sources 

Use a source among multiple 
inconsistent sources—must give 
explicit reasoning for picking one 
source over another. 

Discount data Declare data as unreliable or 
problematic—must give a reason 

Adjust for known 
deviations 

Adjust current image for general 
deviation/irregularity 

Average across 
sources 

Take the middle value between 
two or more data sources 

Bound uncertainty Declare that an instance of 
uncertainty is within a finite range 
in scale or within a finite set of 
possibilities 

Unsupported 
resolution 

Resolution made but no reason 
given 

 
Spatial Gesture Coding In the METOC case, it was 
impossible to observe participants’ gestures given the 
location of the camera and the restricting effect of 
interacting heavily with the computer. However, gestures in 
the MER domain occurred frequently and were generally 
visible to the camera. These gestures were coded for spatial 
content, using a coding scheme developed and validated 
elsewhere (Schunn et al, 2007). In brief, the scheme 
removes non-spatial or ambiguously-spatial gestures such as 
beating, deictic (pointing to an object), iconic (hands 
represent a categorical physical object), and metaphorical 
(hands use space to represent a non-spatial quantity like 
time) gestures. The spatial gestures are coded for the broad 
spatial nature, specifically whether they are 2D display-
based gestures, small 3D gestures, or large 3D gestures. In 
this context, the great majority of gestures were small 3D 
gestures, and thus we simply examine whether a spatial 
gesture occurred or not. 
Reliability All coders were trained to criterion for each 
coding dimension. Two separate coders exhaustively coded 
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all data on all dimensions, and all discrepancies between 
coders were resolved through discussion. All dimensions 
had at least moderate Cohen’s Kappas (i.e., K>.4) for 
interrater reliability. It was to increase the effective 
reliability that each segment was double-coded.  
Analyses We use X2 tests of independence between various 
dimensions to measure the degree of associate between 
variables (e.g., group and strategy), collapsing data across 
individuals, and dropping rows with expected cell values 
below 5. The significant moments do not occur often 
enough per individual to establish reliable measures at the 
per individual level. However, we have examined the data at 
the individual level to make sure the phenomena are not 
driven by the behavior of just a few participants. All figures 
include SE bars to provide an approximate sense of which 
pair-wise differences are statistically significant. 

Results 

Indicators of Informational Uncertainty 
What indicators were commonly used in each of the two 

domains? Figure 1 shows that: 1) all strategies were used in 
both domains, 2) No Pattern is rarely used to identify 
significant moments of uncertainty, and 3) that the two 
contexts had considerable variability in strategy use, 
X2(2)=8.84, p<.02. In the highly novel situation with a slow 
data acquisition rate, ambiguity of information was the most 
common source. In the more common situation with high 
data acquisition from multiple sources, inconsistent 
information was the most common source. 

 
Figure 1: Indicator strategy use by domain. 

 
Figure 2 show expert/novice differences in the reliance on 

particular uncertainty indicators within each domain. In both 
domains, the distribution of indicator use between experts 
and novices was quite similar (within the statistical 
resolution of the data). In other words, expertise did not 
influence how uncertainty was detected, either at the level 
of which strategies were used at all, or roughly how often 

each strategy was used, at least over the range of expertise 
examined here. 

 

 
Figure 2: Expert/Novice relative use of informational 
uncertainty indicator strategies within each domain. 

 
To understand the role of spatial mental representations in 

uncertainty detection, we examined the percentage of 
indicator segments overlapped with spatial gestures in the 
MER domain. Overall, indicator segments contained spatial 
gestures (of any kind, although almost exclusively small, 3d 
gestures) 26% of the time, well above the overall rate 11% 
at which speech segments had spatial gestures (p<.01). 
Moreover, the three regularly occurring indicators all had 
approximately equally high rates of co-occurring spatial 
gestures (varying between 20% to 33%). 

Problem Solving Strategies 
Overall, all strategies did occur in the data. The most 
common strategies were: More data, Domain knowledge 
usage, Adjust for known deviations, Planning, Mental 
spatial transformation, and Focus on reliability of sources. 
Several strategies were used rarely (in less than 3% of 
problem solving steps): Bound uncertainty, Average across 
sources, Check likely errors, Discount data, Mark 
uncertainty, Physical Spatial Transformation.  
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The relative use of all of the more common strategies did 
differ by domain, X2(5)= 218.23, p<.0001. Figure 3 shows 
the frequency of problem solving strategy use in each 
domain for the six most common strategies. In METOC, 
there was relatively more use of examining additional data, 
adjusting for known deviations, using mental spatial 
transformations, and focusing on the reliability of sources. 
By contrast, in MER, there was relatively more use of 
domain knowledge and planning. While the differences 
might reflect the individual vs. group nature of the data 
collection methods, the differences are easily 
understandable in terms of the nature of the two domains. In 
METOC, many different data sources for a given problem 
exist (e.g., different weather models, close time points, 
related dimensions), making for easy examination of 
additional data and allowing for the heuristic of using 
reliability of different sources. In MER, data trickles in at a 
slower rate, and thus working from first-principles domain 
knowledge and planning additional data collection are more 
relevant operators for resolving informational uncertainty. 

 
Figure 3: Relative frequency of the most common 
uncertainty problem solving strategies by domain. 

 
Within each domain, there were also small but 

statistically significant effects of expertise levels (see Figure 
4). In the MER domain (X2(3)=10.12, p<.02), the experts do 
more bounding of uncertainty and less planning. In the 
METOC domain (X2(3)=17.07, p<.001), experts make more 
use of domain knowledge and mental spatial 
transformations, but do less examining of additional data. 
Of the six common strategies that differed in use across 
domains, it is interesting that 1) four of them also had 
expert/novice differences, and 2) the direction of difference 
is for experts across domains to differ more from one 
another than do novices. In other words, with practice in a 
domain, experts come to learn which general problem 
solving strategies are particularly useful in that domain 
(Lemaire & Siegler, 1995; Schunn, McGregor, & Saner, 
2006). 
 

 

 
Figure 4: Expert/Novice relative use of uncertainty problem 

solving strategies in each domain. 
 

While the common indicator strategies all had a clear 
spatial component, the common problem solving strategies 
varied significantly in terms of apparent degree of use of 
spatial representations. Of the five strategies that occurred 
often enough in the MER domain to assess degree of spatial 
representations (collapsing across expertise levels), only two 
strategies had spatial gestures significantly above the 18% 
of segments base rate overall during significant uncertain 
moments: mental spatial transformations (70%, 
X2(1)=16.12, p<.001) and planning (33%, X2(1)=4.71, 
p<.05). The other strategies co-occurred with spatial 
gestures somewhat below the overall base-rate: Bound 
Uncertainty (8%), More data (15%), and Domain 
knowledge usage (15%).  

General Discussion 
What is the nature of problem solving in complex domains? 
In this paper, we have focused on one element that 
contributes to the complexity of problem solving: 
informational uncertainty. Rather than focusing on 
traditional distinctions among cognitive processes (e.g., 
analogies, spatial reasoning, categorization, deductive 
reasoning, etc.), we take a strategies perspective (Siegler, 
1996)—people solve tasks using a large variety of different 
strategies that are a rich interplay of more basic cognitive 
elements, and that choices in behavior and learning takes 
place at the level of these strategies. 

Becoming Uncertain 
We highlight four different strategies used by experts and 
novices in two different domains to identify significant 
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elements of uncertainty. The relative use these indicator 
strategies differed significantly across domains, likely 
reflecting the relative abundance of information provided—
multiple sources likely inflates the use of inconsistency and 
novelty the occurrence of ambiguity.  

The relative use of these indicator strategies did not differ 
significantly by expertise levels. However, the statistical 
power of the expertise contrasts for indicator strategies was 
not high. If the trends that were observed are to be believed, 
they are consistent with the notion that experts more 
strongly use the strategies that are particularly useful in a 
given domain. 

Interestingly, the three most common strategies were 
significantly associated with spatial representations. The 
degree of association was above base-rates, but far from 
100%. Measuring spatial representations using spatial 
gestures may result in an undercount of the level of spatial 
representation. However, level of spatial gestures for the 
indicator strategies was well below the highest level of 
spatial gesturing in one of the problem solving strategies, 
and thus is not likely just a conservative measure issue. 
More likely is that these indicators are not exclusively 
spatial, but rather a rich mixture of spatial and verbal 
reasoning. A related caveat is the spatial gestures may 
reflect communicative functions of gesture rather than 
purely a mirror of internal representation (McNeil, 1992). 
But this caveat simply reflects the general indirect nature of 
measures of internal representations. 

Becoming Certain 
How do problem solvers resolve informational uncertainty? 
Our analyses suggest that in complex real world settings, 
problem solvers use a rich array of strategies rather than any 
particular basic cognitive tool, like induction, deduction, 
analogy, categorization, or spatial reasoning. The same set 
of strategies applies across very different domains, although, 
again, the distribution of strategy use varies significantly by 
domain. While the number of variables that differ across the 
two domains observed here are much too great to 
convincingly argue for any particular factors underlying the 
differences in strategy base-rates by domain, we provide one 
possible explanation: the relative density of additional 
information to explore immediately. When the information 
is dense, one can spend considerable time exploring it for 
converging evidence, or use heuristics that focus on 
particular sources or average (mentally) across sources. 
When information is less dense, one must make guess based 
on domain knowledge or plan for additional data collection. 
Interestingly, the domain differences were exaggerated 
among experts (versus novices), suggesting a functional 
rather than coincidental difference by domain. 

Some of our previous research in these domains heavily 
emphasized the role of spatial reasoning in resolving 
uncertainty. Indeed, we found that spatial reasoning goes up 
immediately following even minor moments of uncertainty 
(Schunn et al, 2007), especially in experts (Trafton et al., 
2006). The current, more complete analysis of uncertainty 

resolution problem solving suggests a more nuanced 
picture: spatial reasoning is certainly an element, but it 
appears to be just one tool among many, and that several of 
these other strategies appear not to be especially spatial in 
nature. But not all of the observed strategies occurred often 
enough to determine their spatial/verbal status, and future 
work should examine those strategies in detail. 

Finally, the current work has examined just two different 
domains. Future work should examine a broader array of 
domains to understand what general features of domains 
influence the choice of uncertainty indicator and uncertainty 
problem solving strategies. 
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