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Abstract Two new algorithms for use in the analysis of pp
collision are developed to identify the flavour of B0 mesons
at production using pions and protons from the hadronization
process. The algorithms are optimized and calibrated on data,
using B0 → D−π+ decays from pp collision data collected
by LHCb at centre-of-mass energies of 7 and 8 TeV . The
tagging power of the new pion algorithm is 60% greater than
the previously available one; the algorithm using protons to
identify the flavour of a B0 meson is the first of its kind.

1 Introduction

Violation of CP symmetry in the B system was observed for
the first time in the interference between mixing and decay
processes [1]. Any measurement of a decay-time-dependent
asymmetry requires the determination of the flavour of the
B meson at production. For B mesons produced in pp
collisions, this information is obtained by means of sev-
eral flavour-tagging algorithms that exploit the correlations
between B flavour and other particles in the event.

Algorithms determining the flavour content of B meson by
using particles associated to its production are called same-
side (SS) taggers. As an example, in the production of B0

mesons from excited charged B mesons decaying via strong
interaction to B0π+, the pion charge identifies the initial
flavour of the B0 meson.1 A charge correlation can also arise
from the hadronization process of the b quark. When a b
and a d quark hadronize as a B0 meson, it is likely that
the corresponding d quark ends up in a charged pion (ud),
or in an antiproton (uud). The B0 meson and the pion or
antiproton are produced in nearby regions of phase space.
Other algorithms used at LHCb, called opposite-side (OS)
taggers [2,3], attempt to identify the flavour of the other b
hadron produced in the same event.

1 The inclusion of charge-conjugate processes is implied throughout
the paper, unless otherwise noted.
� e-mail: marta.calvi@mib.infn.it

A simple cut-based SS algorithm selecting pions was suc-
cessfully used by LHCb for tagging B0 → J/ψK 0

S decays [4]
in the measurement of sin 2β, and an SS kaon tagger [5] based
on a neural network was used to determine the flavour of B0

s
mesons in measurements of the CP-violating phase φs [6–
8]. This paper presents two new SS algorithms exploiting
the charge correlation of pions and protons with B0 mesons,
denoted SSπ and SSp. This is the first time that protons are
used for flavour tagging. The two algorithms are combined
into a single tagger, SScomb. Both algorithms are based on
multivariate selections and are optimized, calibrated and vali-
dated using B0 → D−π+ and B0 → K+π− decays collected
by LHCb in Run 1.

The performance of a flavour-tagging algorithm is mea-
sured by its tagging efficiency εtag, mistag fraction ω, dilution
D, and tagging power εeff , defined as

εtag = R + W

R + W +U
, ω = W

R + W
,

D = 1 − 2ω, εeff = εtagD
2, (1)

where R, W , and U are the numbers of correctly-tagged,
incorrectly-tagged, and untagged B0 signal candidates. The
tagging power determines the sensitivity to the measurement
of a decay-time-dependentCP asymmetry [9], as it quantifies
the effective reduction in the sample size of flavour-tagged
B0 candidates. It is the figure of merit used to optimize the
algorithms. Each algorithm provides a decision on the flavour
of the B0 candidate and an estimate of the probability η that
this decision is incorrect. The probability is used to determine
a weight applied to the B0 candidate, in order to maximize the
tagging power of a sample of B0 mesons in a time-dependent
analysis. The probabilities provided by the two SS taggers are
used to combine their decisions into the SScomb decision,
which can be further combined with the decision of other
taggers [2,3].

The expected relationship between the flavour of charged
and neutral B mesons and the charge of the tagging particle is
reported in Table 1. For a B+ meson the same correlation as
for a B0 meson holds in the case of protons, but with opposite
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Table 1 Expected correlation between the flavour of a B meson and
the hadronization products

B meson Pion Proton Kaon

B0 π+ p K 0

B+ π− p K−

charge in the case of pions. In addition, the tagging kaons
carry the same charge as pions, while they are neutral for a
B0. Since misidentified hadrons affect the tagging efficiency
and the mistag fraction of charged and neutral mesons in
different ways, B+ decays cannot be reliably used for the
tuning and calibration of the SS taggers. As a consequence,
B0 decays are used, and a time-dependent analysis is required
to determine the mistag fraction.

2 Detector

The LHCb detector [10,11] is a single-arm forward spec-
trometer covering the pseudorapidity range 2 < η < 5,
designed for the study of particles containing b or c quarks.
The detector includes a high-precision tracking system con-
sisting of a silicon-strip vertex detector surrounding the pp
interaction region, a large-area silicon-strip detector located
upstream of a dipole magnet with a bending power of about
4 Tm, and three stations of silicon-strip detectors and straw
drift tubes placed downstream of the magnet. Regular rever-
sal of the magnet polarity allows a quantitative assessment of
detector-induced charge asymmetries. The tracking system
provides a measurement of momentum, p, of charged parti-
cles with a relative uncertainty that varies from 0.5% at low
momentum to 1.0% at 200 GeV/c. The minimum distance of
a track to a primary vertex (PV), the impact parameter (IP),
is measured with a resolution of (15+29/pT)μm, where pT

is the component of the momentum transverse to the beam,
in GeV/c.

Particularly relevant for this analysis is the identification
of the different species of charged hadrons, which mainly
relies on the information of two ring-imaging Cherenkov
detectors. The first one covers the low and intermediate
momentum region 2–40 GeV/c over the full spectrometer
angular acceptance of 25–300 mrad. The second Cherenkov
detector covers the high momentum region 15–100 GeV/c
over the angular range 15–120 mrad [12].

Photons, electrons and hadrons are identified by a
calorimeter system consisting of scintillating-pad and
preshower detectors, an electromagnetic calorimeter and a
hadronic calorimeter. Muons are identified by a system com-
posed of alternating layers of iron and multiwire proportional
chambers. The online event selection is performed by a trig-
ger [13], which consists of a hardware stage, based on infor-

mation from the calorimeter and muon systems, followed
by a software stage, which applies a full event reconstruc-
tion. At the hardware trigger stage, events are required to
have a muon with high pT or a hadron, photon or electron
with high transverse energy in the calorimeters. The software
trigger requires a two-, three- or four-track secondary vertex
detached from the PV. A multivariate algorithm [14] is used
for the identification of secondary vertices consistent with
the decay of a b hadron.

Samples of simulated events are used to model the sig-
nal mass and decay-time distributions. In the simulation, pp
collisions are generated using Pythia [15,16] with a spe-
cific LHCb configuration [17]. Decays of hadronic particles
are described by EvtGen [18], in which final-state radia-
tion is generated using Photos [19]. The interaction of the
generated particles with the detector, and its response, are
implemented using the Geant4 toolkit [20,21] as described
in Ref. [22].

3 Development of the same-side taggers

The SSπ and SSp algorithms are developed following similar
strategies. A sample of B0 mesons decaying into the flavour-
specific final state D−π+, with D− candidates reconstructed
in the final state K+π−π−, is selected using requirements
similar to those presented in Ref. [23]. The sample is col-
lected from pp collisions at

√
s = 8 TeV , corresponding to

an integrated luminosity of 2fb−1. Tagging pion or proton
candidates, with their charge correlated with the B0 flavour,
are selected by means of a set of loose selection require-
ments and a multivariate classifier, as described below. The
B0 → D−π+ candidates are separated randomly into three
disjoint subsamples of equal size. The first sample is used
for training the multivariate classifiers, the second is used for
determining the probability of an incorrect tagging decision,
and the third is used to evaluate the calibration of the mistag
probability.

The correctness of a tagging decision is evaluated by
comparing the charge of the tagging particle with the B0

decay flavour as determined by the reconstructed final state.
Those B0 candidates that have oscillated before decaying
enter the training process with an incorrectly assigned pro-
duction flavour. In the training phase the dilution is reduced
by requiring the decay time of the reconstructed B0 mesons
to be smaller than 2.2 ps. This value was optimized with sim-
ulated events and reduces the fraction of oscillated candidates
to about 11%, keeping 66% of the original sample.

The signal and background components of the B0 sam-
ple are determined by an unbinned maximum likelihood fit
to the D−π+ mass distribution of the selected candidates
in the region [5.2, 5.5] GeV/c2. The signal is described by
a Johnson’s SU distribution [24], while the combinatorial
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Fig. 1 Mass distribution of B0 → D−π+ candidates with fit projec-
tions overlaid. Data points (black dots) correspond to the B0 candidates
selected in the 2 fb−1 data sample collected at

√
s = 8 TeV . The solid

blue curve represents the total fit function which is the sum of signal
(red dashed) and combinatorial background (green dash-dotted)

background is modelled by the sum of an exponential func-
tion and a constant. All parameters are free to vary in the
fit. A small component of B0 → D−K+ decays (∼1.2% as
estimated from simulation), with the kaon misidentified as a
pion, is neglected in the fit. The number of signal candidates
in the full 2fb−1 sample, estimated by the mass fit and shown
in Fig. 1, is 300 370 ± 674. The fit to the mass distribution
is used to assign event-by-event weights (sWeights), using
the sPlot technique [25]. The weights are subsequently used
to subtract the background contribution when training the
SSπ and SSp classifiers and in the fits to the B0 decay-time
distribution.

The loose selection requirements reduce the multiplicity
of pion (proton) candidates to 2.3 (1.7) per B0 → D−π+
signal candidate, and are reported in Table 2. Only tracks
with hits in all tracking detectors are considered as tagging
candidates. The following observables are used: the χ2/ndf
of the track fit, where ndf is the number of degrees of free-
dom, the track transverse momentum ptrack

T , the ratio between
the track impact parameter with respect to the PV associated
to the B0 meson and the error on this variable IP/σIP, the
ratio between the track impact parameter with respect to any
other PV in the event and its error IPPU/σIPPU , the difference
between the logarithms of the likelihood of the proton and
pion hypothesis log L p − log Lπ , or kaon and pion hypoth-
esis log LK − log Lπ . The likelihoods for the various mass
hypothesis are determined using the track and the Cherenkov
angle information, as described in Ref. [26]. For particles
passing the loose selection criteria the efficiency to identify
a pion is 89% with a kaon misidentification probability of
2%, while the efficiency to identify a proton is 92% with
a pion misidentification probability of 5%. Since mutually
exclusive particle identification criteria are imposed, a given
tagging track is identified either as a pion or as a proton.
If more than one PV is reconstructed in the event, the PV

Table 2 Loose selection requirements for the SSπ and SSp algorithms.
The variables used as input for the BDT classifiers are indicated by �

Variable SSπ SSp

Selection BDT Selection BDT

χ2
track/ndf <3 � <3 –

ptrack
T [GeV/c] >0.4 � >0.4 �

ptrack [GeV/c] – � – �
IP/σIP <4 � <4 �
IPPU/σIPPU >3 – – –

log L p − log Lπ <5 – >5 �
log LK − log Lπ <5 � – –

pB
0

T [GeV/c] – � – –

ptot
T [GeV/c] >3 � >3 �

χ2
B0−track

<100 – <100 –

�Q [GeV/c2] <1.2 � <1.3 �
�η <1.2 � <1.2 �
�φ [rad] <1.1 � <1.2 –

�R – � – �
PVtracks – � – �

associated to the B0 meson is the one which has the smallest
increase in the vertex-fit χ2 when adding the B0 meson to
the PV.

Additional requirements are introduced on the system
formed by the tagging particle and the reconstructed B0

meson. They are applied to the total transverse momentum of
the system ptot

T , the difference between the pseudorapidity of
the B0 candidate and the tagging particle �η, the azimuthal
angle �φ between the B0 candidate and the tagging par-
ticle, and the difference between the invariant mass of the
system and the mass of the B0 and of the tagging particle
�Q = m(B0 + h) − m(B0) − m(h), where h denotes the
hadron, π or p. The vertex formed by the B0 meson and
the tagging particle is required to have the χ2 of vertex fit
χ2
B0−track

, less than 100.
The multivariate classifiers used for the selection of the

tagging particles are boosted decision trees (BDT) [27] using
the AdaBoost [28] method to enhance and to increase the
stability with respect to statistical fluctuations. This choice
has been shown to be optimal with respect to the achievable
tagging power. The classifiers take most of the above observ-
ables as input, as specified in Table 2. In addition the BDTs
use the following variables: the momentum of the tagging
particle ptrack, the transverse momentum of the B0 candidate
pB

0

T , the separation of tagging particle and the B0 candidate

�R = √
�φ2 + �η2, and the number of tracks contributing

to the PV fit PVtracks. The sWeights are used to subtract the
contribution of background B0 candidates in the training of
the classifiers. The charge of the tagging particle determines
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Fig. 2 Distribution of the BDT output of signal (correct-tag decision) and background (wrong-tag decision) tagging particles, for (left) SSπ and
(right) SSp taggers. In case of multiple tagging candidates per B0 candidate, only the candidate with the highest BDT output value is shown
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Fig. 3 Measured average mistag fraction in bins of (left) SSπ and (right) SSp BDT output. The plots are obtained with the test sample of
background-subtracted B0 → D−π+ candidates. The green-shaded area shows the confidence range within ±1σ

the flavour of the B0 candidate. In case of multiple tagging
particle candidates per B0 candidate, the tagging particle with
the highest BDT output value is chosen. The BDT outputs,
αBDT, are shown in Fig. 2. The global separation between
signal and background is small, but enough to provide useful
information to determine the flavour of the B0 candidate, as
shown below.

4 Evaluation and calibration of mistag probability

4.1 The SSπ and SSp taggers

The BDT output is transformed into an estimate of the mistag
probability through linear regression. The decay-time dis-
tribution of all tagged B0 candidates is considered and the
dilution due to mixing is decoupled by means of a full time-
dependent analysis. Tagged B0 candidates are divided into
eight bins of the BDT output and for each bin the probabil-
ity of an incorrect tagging decision is determined from an
unbinned maximum likelihood fit to the distribution of the
measured decay time t of the candidates, using the sWeights.

The probability density function (PDF) for the signal is
described as

S(t, q) = N a(t) e−t ′/τd (1 + q(1 − 2ω) cos(�md t ′))
⊗R(t − t ′), (2)

where t ′ represents the true decay time, N is a normalization
factor, ω is the average mistag fraction in the bin, q is the
mixing state (q = +1 when the flavour at production and
the flavour at decay are the same, q = −1 otherwise), R(t −
t ′) is the decay-time resolution and a(t) is the decay-time
acceptance. The B0 lifetime τd , and the mixing frequency
�md , are fixed in the fit to their known values [29].

Equation 2 is obtained under the assumption of zero width
difference ��d and neglecting the production and detection
asymmetries between B0 and B0. The decay-time resolu-
tion is modelled by a Gaussian function with a fixed width of
50 fs, as determined from simulation. The decay-time accep-
tance a(t), is described by a parametric function based on
cubic splines [30] whose nodes have fixed position and whose
parameters are determined from data. Figure 3 shows the
measured average mistag rate per subsample, interpolated
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with a third-order polynomial that represents η as a function
of αBDT, for the SSπ and SSp taggers.

This polynomial parametrization is then used to determine
the mistag probability η(αBDT) of a B0 candidate. Tagging
particles with η(αBDT) > 0.5 are rejected. With the third
subsample of B0 candidates, it is checked that the estimated
mistag probability corresponds to the true value by measur-
ing the mistag fraction ω with an unbinned likelihood fit
to the decay-time distribution of the B0 candidates. Possi-
ble differences between the mistag probability of B0 and
B0 mesons may arise from the different interaction cross-
sections of hadrons and antihadrons in the detector material
and from differences in detection efficiencies of positive and
negative hadrons. They are taken into account in the decay-
time fit by defining the variables

ω = (ωB0 + ωB0
)/2, �ω = ωB0 − ωB0

, (3)

where ωB0
and ωB0

are the mistag fractions related to B0

and B0. Assuming a linear relation between the measured
and estimated mistag fractions, the calibration functions are
written as

ωB0
(η) = pB

0

0 + pB
0

1 (η − 〈η〉),
ωB0

(η) = pB
0

0 + pB
0

1 (η − 〈η〉),
(4)

where pB
0

i and pB
0

i (with i = 0, 1) are the calibration param-
eters. The average calibration parameters and the differences
between the B0 and B0 parameters are defined as

pi = (pB
0

i + pB
0

i )/2, �pi = pB
0

i − pB
0

i . (5)

The use of the arithmetic mean 〈η〉 of the η distribution aims
at decorrelating p0 and p1. A perfect calibration corresponds
to p0 = 〈η〉 and p1 = 1.

A difference in the number of reconstructed and tagged
B0 and B0 mesons arises from several possible sources. Two
of these sources are considered in the fit by introducing an
asymmetry in the detection efficiency of the final state parti-
cles, defined as

Adet = εD
+π−

det − εD
−π+

det

εD
+π−

det + εD
−π+

det

, (6)

and an asymmetry of the tagging efficiencies, defined as

Atag = εB
0

tag − εB
0

tag

εB
0

tag + εB
0

tag

. (7)

With these additional inputs, the PDF becomes

S(t, q) = N a(t) e−t ′/τd (Ccosh + Ccos cos(�md t ′))
⊗R(t − t ′). (8)

The coefficients Ccosh and Ccos are

Ccosh =(1 − r Adet)
(

1 − adsl

2

1 + r

2

)

×
(

(1 + Aprod + Atag)
(1 − d

2
+ d(ω + �ω)

)

+ (1 − Aprod − Atag)
(1 + d

2
− d(ω − �ω)

)(
1 + adsl

2

))
,

Ccos = − r(1 − r Adet)
(

1 − adsl

2

1 + r

2

)

×
(

(1 + Aprod + Atag)
(1 − d

2
+ d(ω + �ω)

)

− (1 − Aprod − Atag)
(1 + d

2
− d(ω − �ω)

)(
1 + adsl

2

))
,

(9)

where r is the B meson flavour at decay (r = +1 for
B0 → D−π+, r = −1 for B0 → D+π−) and d is
the tagging decision (d = +1 for π+ (p), d = −1 for
π− (p)). These coefficients also take into account the pro-

duction asymmetry, Aprod = NB0 −NB0

NB0 +NB0
, and the asymme-

try in mixing, or flavour-specific asymmetry, adsl. These two
asymmetries cannot be distinguished from the tagging and
detection asymmetries and are fixed in the fit. The produc-
tion asymmetry is fixed to the value measured in Ref. [31],
Aprod = (−0.58 ± 0.70)%, while adsl is fixed to the world
average adsl = (−0.15 ± 0.17)% [32]. The effect of their
uncertainties on the calibration parameters is included in the
systematic uncertainty.

The calibration parameters for the two taggers obtained in
the fit to the calibration sample of B0 → D−π+ decays are
reported in Table 3. The correlations between the calibra-
tion parameters are below 10%, except for the asymmetry

Table 3 Calibration parameters
for the SSπ, SSp and SScomb
taggers where the first
uncertainties are statistical and
the second are systematic

SSπ SSp SScomb

〈η〉 0.444 0.461 0.439

p0 0.446 ± 0.003 ± 0.001 0.468 ± 0.004 ± 0.001 0.441 ± 0.003 ± 0.002

p1 1.05 ± 0.05 ± 0.01 1.04 ± 0.08 ± 0.02 0.99 ± 0.04 ± 0.02

�p0 −0.0028 ± 0.0036 ± 0.0016 −0.0218 ± 0.0048 ± 0.0016 −0.0056 ± 0.0036 ± 0.0018

�p1 0.015 ± 0.074 ± 0.014 0.140 ± 0.112 ± 0.019 0.052 ± 0.060 ± 0.017

Atag −0.001 ± 0.007 ± 0.007 0.008 ± 0.009 ± 0.007 0.002 ± 0.007 ± 0.007
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Table 4 Tagging efficiencies and tagging power of the SSπ, SSp and
SScomb algorithms. The SScomb efficiencies are shown splitting the
sample in candidates tagged exclusively by SSπ or SSp, or by both. As
explained in the text, there is a large overlap between the SSπ and SSp
taggers

Tagger Sample εtag [%] εeff [%]

SSπ 71.96 ± 0.23 1.69 ± 0.10

SSp 38.56 ± 0.15 0.53 ± 0.05

SScomb SSπ only 35.91 ± 0.14 0.95 ± 0.08

SSp only 8.75 ± 0.10 0.12 ± 0.02

SSπ and SSp 34.74 ± 0.15 1.04 ± 0.07

Total 79.40 ± 0.23 2.11 ± 0.11

of the tagging efficiencies, which has a correlation of about
16% with �p0 and �p1 and about 64% with Adet. For the
SSπ tagger, Atag, �p0 and �p1 are zero within one stan-
dard deviation, showing no significant difference in tagging
behaviour between B0 and B0 decays. For the SSp tagger,
it is found that �p0 < 0, as a consequence of the higher
interaction cross-section of anti-protons with matter com-
pared to protons. A similar effect is reported for kaon tag-
gers [5]. The fit result of the detection asymmetry is com-
parable for the two taggers (ASSπ

det = (−0.87 ± 0.48)%,

ASSp
det = (−0.66±0.62)%) and in agreement with that found

in Ref. [33]. The systematic uncertainties on the parameters
will be described in Sect. 5.

After calibration, the total tagging power of the sample is
calculated as

εeff =
∑Ntag

i=1 (1 − 2ω(ηi ))
2si

∑N
j=1 s j

(10)

where si is the sWeight of the candidate i , N and Ntag are
the numbers of total and tagged candidates, having mistag
probability ηi , and the average mistag fraction ω(ηi ) is calcu-
lated using Eqs. 3 and 4. Candidates with a mistag probability
larger than 0.5 are considered untagged and are removed from
the sum in the numerator, effectively setting ω(ηi ) = 0.5.
The tagging performances for the SSπ and SSp taggers are
reported in Table 4.

The fit of the decay-time distribution is repeated after
dividing events into bins of predicted mistag probability. The
distribution of η and the dependence of the measured mistag
fraction on η are shown in Fig. 4 with the linear fits superim-
posed, demonstrating the expected linearity. In Figs. 5 and
6 the time-dependent mixing asymmetries A = Nunmix−Nmix

Nunmix+Nmix

are shown for each of the five bins.

4.2 The SScomb tagger

Even though a given tagging particle can be selected by only
one of the SSπ or the SSp taggers, both taggers may find

a candidate track in the same event. About 50% of the can-
didates tagged by SSπ are also tagged by SSp, and 80% of
the candidates tagged by SSp are also tagged by SSπ. When
both taggers provide a decision, they are combined into a sin-
gle decision. Since the correlation between the SSπ and SSp
decisions, and between their mistag probabilities, is found
to be small, it is neglected when combining them using the
following formulae

p(b) =
∏

i

(
1 + di

2
− di (1 − ηi )

)
,

p(b) =
∏

i

(
1 − di

2
+ di (1 − ηi )

)
, (11)

where p(b) and p(b) are the probabilities that the signal B
meson contains a b or a b quark respectively, and di is the
tagging decision of the tagger i = SSπ, SSp. The normalized
probabilities are

P(b) = p(b)

p(b) + p(b)
, P(b) = 1 − P(b). (12)

For P(b) > P(b) the combined tagging decision is d = +1
and the final mistag probability is η = P(b). Otherwise, the
combined tagging decision and the mistag probability are
d = −1 and η = P(b).

The combination procedure, which assumes no correla-
tion, is validated by checking the combined mistag proba-
bility a posteriori. Assuming a linear relation between the
predicted mistag probability and the true mistag fraction,
the calibration parameters in the overlapping sample give
(p0 − 〈η〉) = 0.010 ± 0.005 and (p1 − 1) = 0.01 ± 0.08.
The calibration is repeated on the sample of all B0 candidates
tagged by the SScomb tagger, and the calibration parameters
derived from the unbinned likelihood fit with the PDF of
Eq. 8, reported in Table 3, demonstrate its validity. The per-
formance of SScomb is reported in Table 4. The total tagging
power obtained by the combined algorithm is (2.11±0.11)%,
a relative increase of 25% compared to that provided by the
SSπ tagger alone.

A higher tagging power can be obtained from the combina-
tion of the SScomb tagger with the OS tagger. The OS tagger
is the combination of various OS tagging algorithms using
electrons and muons from semileptonic decays of b hadrons,
kaons fromb → c → s decay chains and the inclusive recon-
struction of a secondary vertex of the decay products of the
opposite side b hadron. The SS and OS taggers are found
to be uncorrelated, so their combination follows the same
procedure as the combination of SSπ and SSp into SScomb.
The calibration of the combined mistag probability is veri-
fied a posteriori with a fit of the decay-time distribution of the
B0 candidates. For B0 → D−π+ decays, the total tagging
efficiency and the total tagging power are (84.48 ± 0.26)%
and (5.14 ± 0.15)%, respectively. On the same sample, the
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Fig. 4 (Top left) distribution of the mistag probability ηSSπ and (top
right) measured mistag fraction ω as a function of ηSSπ. (Bottom left)
distribution of the mistag probability ηSSp and (bottom right) measured

mistag fraction ω as a function of ηSSp. The green-shaded area shows
the 68% confidence range

use of the OS tagger only provides a tagging efficiency and
a tagging power of (37.95 ± 0.15)% and (3.52 ± 0.17)%,
respectively.

5 Validation and systematic uncertainties

A possible dependence of the calibration parameters of the
SS taggers on properties of the event sample is checked by
repeating the calibration after splitting the data according
to the data-taking conditions (magnet polarity), global event
properties (total number of reconstructed tracks, number of
primary vertices) or according to the kinematic properties
of the B0 meson (transverse momentum, pseudorapidity and
azimuthal angle). The average mistag probability has a weak
dependence on the number of tracks in the event. On the other
hand, it decreases as a function of the transverse momentum
since the number of random tracks decreases at high pBT .
The tagging efficiency is nearly constant for pions, while the
requirement on proton identification reduces the number of
proton candidates at high pBT . A similar dependence is present
versus the pseudorapidity of the B0 meson. Since the average
mistag fraction and the p0 parameter decrease with increas-

ing pB
0

T , the calibration remains valid in all subsamples, with
variations below two standard deviations.

The portability of the mistag calibration, from the training
data sample to other data samples and other B0 decay modes,
is validated using an independent sample of B0 → D−π+
decays collected at

√
s = 7 TeV (corresponding to an inte-

grated luminosity of 1fb−1) and a sample of B0 → K+π−
decays collected at

√
s = 8 TeV (corresponding to an inte-

grated luminosity of 2fb−1). The same selection criteria
and fitting procedure as described above are used for the
B0 → D−π+ validation sample at

√
s = 7 TeV . The cali-

bration parameters for the SSπ, SSp, and SScomb taggers
determined from an unbinned maximum likelihood fit to the
decay-time distribution are compatible with those derived
in the 8 TeV sample. Consistent values of tagging power are
found for all taggers.

The selection criteria and the mass model for the B0 →
K+π− candidates are described in Ref. [34]. The decay-
time acceptance is parametrized using cubic splines with six
nodes, whose positions are fixed and whose coefficients are
free in the fit. The decay-time resolution is described by a
Gaussian function with parameters determined from simula-
tion. The parameters shown in Table 5 demonstrate a good
portability of the mistag calibration, with p0 − 〈η〉 ≈ 0 and
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Fig. 5 Mixing asymmetry in bins of mistag probability using the SSπ tagger

p1 − 1 ≈ 0 as expected. A lower tagging power is measured
in this channel, giving (1.06 ± 0.09)%, (0.42 ± 0.06)%, and
(1.37 ± 0.13)% for SSπ, SSp and SScomb, respectively, as
expected from the lower average pT of the selected B0 can-
didates.

Several sources of systematic uncertainties on the calibra-
tion parameters are studied and the associated uncertainties
are reported in Table 6. Uncertainties related to the mass
model and background unfolding procedure are assessed by
repeating the calibration replacing the sWeights derived in
the fit to the mass distribution of all B0 candidates by the
sWeights derived after restricting the sample to tagged B0

candidates. In a second test, the signal mass model is replaced

by a Hypatia function [35] convolved with a Gaussian func-
tion. The sum in quadrature of the variations of the calibration
parameters observed in the two tests is taken as uncertainty
on the mass model.

Uncertainties related to the decay-time acceptance model
are assessed by changing the number of nodes in the cubic
splines from six to nine and are found to be negligible. A
negligible uncertainty is associated to the decay-time reso-
lution model. The mistag model uncertainties are assessed
by comparing the calibration parameters derived in the nom-
inal fit and those derived in fits with the mistag probability
binned in categories. Five, seven and nine bins are tested and
the largest observed variation of the parameters is taken as
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Fig. 6 Mixing asymmetry in bins of mistag probability using the SSp tagger

Table 5 Calibration parameters for the B0 → K+π− decay sample. Uncertainties are statistical only

Tagger 〈η〉 p0 p1 �p0 �p1 Atag

SSπ 0.456 0.452 ± 0.003 1.06 ± 0.09 0.0053 ± 0.0042 0.047 ± 0.115 −0.009 ± 0.008

SSp 0.467 0.459 ± 0.004 0.80 ± 0.14 −0.0138 ± 0.0051 0.025 ± 0.141 0.008 ± 0.009

SScomb 0.452 0.457 ± 0.003 0.94 ± 0.07 −0.0034 ± 0.0040 0.079 ± 0.086 0.007 ± 0.007

a systematic uncertainty. Differences between the results of
the two implementations of the time-dependent fit are due to
the dependence of the mistag probability on the decay time.
Pseudoexperiments are generated where the mistag proba-
bility has the same dependence on time as in data and are
fitted with the two approaches. The difference in parameters
is similar to or smaller than that observed in data.

Uncertainties related to neglecting ��d and possible CP
violation in the B0 → D−π+ decays in the decay-time fit, are
studied by performing pseudoexperiments in which changes
associated with the parameter under study are incorporated
in the generation and neglected in the subsequent fit. Terms
proportional to the relevant CP parameters are added to the
PDF in Eq. 8 and the values of the parameters are taken from
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Table 6 Systematic
uncertainties on the calibration
parameters of SSπ, SSp and
SScomb taggers. The total
systematic uncertainty is the
squared sum of all contributions.
A dash indicates a value
negligible with respect to the
quoted precision

Tagger Source σ(p0) σ (p1) σ (�p0) σ (�p1) σ (Atag)

SSπ Mass model – – – 0.001 –

Mistag model 0.001 0.01 0.0002 0.007 –

Decay model 0.001 0.01 0.0016 0.012 0.007

Total 0.001 0.01 0.0016 0.014 0.007

SSp Mass model – – 0.0002 0.004 –

Mistag model 0.001 0.02 – 0.014 0.001

Decay model 0.001 0.01 0.0016 0.012 0.007

Total 0.001 0.02 0.0016 0.019 0.007

SScomb Mass model – – 0.0008 0.005 –

Mistag model 0.002 0.02 0.0004 0.010 0.001

Decay model 0.001 0.01 0.0016 0.012 0.007

Total 0.002 0.02 0.0018 0.017 0.007

Table 7 Systematic uncertainties related to the decay-time model. A
dash indicates a value negligible with respect to the quoted precision

Source σ(p0) σ (p1) σ (�p0) σ (�p1) σ (Atag)

�� 0.00013 – – – 0.001

Aprod 0.00002 – – – 0.007

ad
sl – – – – –

CP violation 0.00124 0.01 0.0016 0.012 0.002

Total 0.001 0.01 0.0016 0.012 0.007

Ref. [32]. The associated systematic uncertainties are taken
to be the changes in the calibration parameters with respect
to perfect calibration (p0 = 〈η〉, p1=1), used in the genera-
tion. Uncertainties related to the variation of Aprod and adsl,
which are fixed in the decay-time fit, are evaluated with pseu-
doexperiments where the parameters are varied within their
uncertainties. The uncertainties are determined in the SSπ

configuration and attributed to both taggers. A breakdown of
the systematic uncertainties related to the decay-time model
is shown in Table 7.

6 Conclusion

Two new same-side algorithms are developed to determine
the production flavour of B0 mesons using pions and pro-
tons from the hadronization process. This is the first time
that protons are used to identify the flavour of a B0 meson.
The algorithms are optimized and calibrated on data using
B0 → D−π+ decays. The calibration parameters of the tag-
gers are reported in Table 3. The efficiency and mistag prob-
ability of the taggers depend on the kinematic properties of
the B0 decay mode under study. Estimated mistag proba-
bilities match the true mistag fraction throughout the phase
space. The new SSπ tagger provides a tagging power that
is greater by 60% relative to the previous algorithm using

pions, employed in Ref. [4]. Adding the combination of the
two new algorithms to the existing OS taggers provides a
relative increase of the total tagging power of about 40%.

Acknowledgements We express our gratitude to our colleagues in the
CERN accelerator departments for the excellent performance of the
LHC. We thank the technical and administrative staff at the LHCb
institutes. We acknowledge support from CERN and from the national
agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China);
CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN
(Italy); FOM and NWO (The Netherlands); MNiSW and NCN (Poland);
MEN/IFA (Romania); MinES and FASO (Russia); MinECo (Spain);
SNSF and SER (Switzerland); NASU (Ukraine); STFC (United King-
dom); NSF (USA). We acknowledge the computing resources that are
provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN
(Italy), SURF (The Netherlands), PIC (Spain), GridPP (United King-
dom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-
HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA).
We are indebted to the communities behind the multiple open source
software packages on which we depend. Individual groups or members
have received support from AvH Foundation (Germany), EPLANET,
Marie Skłodowska-Curie Actions and ERC (European Union), Conseil
Général de Haute-Savoie, Labex ENIGMASS and OCEVU, Région
Auvergne (France), RFBR and Yandex LLC (Russia), GVA, Xunta-
Gal and GENCAT (Spain), Herchel Smith Fund, The Royal Society,
Royal Commission for the Exhibition of 1851 and the Leverhulme Trust
(United Kingdom).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. Particle Data Group, K. A. Olive et al., Review of particle physics.
CP violation in the quark sector (pages 223–234). Chin. Phys. C.
38, 090001 (2014). doi:10.1088/1674-1137/38/9/090001

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1088/1674-1137/38/9/090001


Eur. Phys. J. C (2017) 77 :238 Page 11 of 15 238

2. LHCb collaboration, R. Aaij et al., Opposite-side flavour tagging
of B mesons at the LHCb experiment. Eur. Phys. J. C. 72, 2022
(2012). doi:10.1140/epjc/s10052-012-2022-1. arXiv:1202.4979

3. LHCb collaboration, R. Aaij et al., B flavour tagging using charm
decays at the LHCb experiment. JINST 10, P10005 (2015). doi:10.
1088/1748-0221/10/10/P10005. arXiv:1507.07892

4. LHCb collaboration, R. Aaij et al., Measurement of CP violation
in B0 → J/ψK 0

S decays. Phys. Rev. Lett. 115, 031601 (2015).
doi:10.1103/PhysRevLett.115.031601. arXiv:1503.07089

5. LHCb collaboration, R. Aaij et al., Neural-network-based same
side kaon tagging algorithm calibrated with B0

s → D−
s π+ and

B∗
s2(5840)0 → B+K− decays. JINST 11, P05010 (2016). doi:10.

1088/1748-0221/11/05/P05010. arXiv:1602.07252
6. LHCb collaboration, R. Aaij et al., Precision measurement

of CP violation in B0
s → J/ψK+K− decays. Phys. Rev.

Lett. 114, 041801 (2015). doi:10.1103/PhysRevLett.114.041801.
arXiv:1411.3104

7. LHCb collaboration, R. Aaij et al., Measurement of the CP-
violating phase φs in B̄0

s → J/ψπ+π− decays. Phys. Lett. B. 736,
186 (2014). doi:10.1016/j.physletb.2014.06.079. arXiv:1405.4140

8. LHCb collaboration, R. Aaij et al., Measurement of the CP-
violating phase φs in B̄0

s → D+
s D−

s decays. Phys. Rev.
Lett. 113, 211801 (2014). doi:10.1103/PhysRevLett.113.211801.
arXiv:1409.4619

9. A.J. Bevan, B. Golob, Th. Mannel, S. Prell, B.D. Yabsley (eds.),
The Physics of the B Factories. Eur. Phys. J.C. 74, 3026 (2014).
doi:10.1140/epjc/s10052-014-3026-9. arXiv:1406.6311

10. LHCb collaboration, A.A. Alves Jr. et al., The LHCb detector at
the LHC. JINST 3, S08005 (2008). doi:10.1088/1748-0221/3/08/
S08005

11. LHCb collaboration, R. Aaij et al., LHCb detector perfor-
mance. Int. J. Mod. Phys. A. 30, 1530022 (2015). doi:10.1142/
S0217751X15300227. arXiv:1412.6352

12. M. Adinolfi et al., Performance of the LHCb RICH detector at
the LHC. Eur. Phys. J. C. 73, 2431 (2013). doi:10.1140/epjc/
s10052-013-2431-9. arXiv:1211.6759

13. R. Aaij et al., The LHCb trigger and its performance in 2011.
JINST 8, P04022 (2013). doi:10.1088/1748-0221/8/04/P04022.
arXiv:1211.3055

14. V.V. Gligorov, M. Williams, Efficient, reliable and fast high-level
triggering using a bonsai boosted decision tree. JINST 8, P02013
(2013). doi:10.1088/1748-0221/8/02/P02013. arXiv:1210.6861

15. T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and man-
ual. JHEP 05, 026 (2006). doi:10.1088/1126-6708/2006/05/026.
arXiv:hep-ph/0603175

16. T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA
8.1. Comput. Phys. Commun. 178, 852 (2008). doi:10.1016/j.cpc.
2008.01.036. arXiv:0710.3820

17. I. Belyaev et al., Handling of the generation of primary events in
Gauss, the LHCb simulation framework. J. Phys. Conf. Ser. 331,
032047 (2011). doi:10.1088/1742-6596/331/3/032047

18. D.J. Lange, The EvtGen particle decay simulation package.
Nucl. Instrum. Methods A. 462, 152 (2001). doi:10.1016/
S0168-9002(01)00089-4

19. P. Golonka, Z. Was, PHOTOS Monte Carlo: a precision tool for
QED corrections in Z and W decays. Eur. Phys. J. C. 45, 97 (2006).
doi:10.1140/epjc/s2005-02396-4. arXiv:hep-ph/0506026

20. Geant4 collaboration, J. Allison et al., Geant4 developments and
applications. IEEE Trans. Nucl. Sci. 53, 270 (2006). doi:10.1109/
TNS.2006.869826

21. Geant4 collaboration, S. Agostinelli et al., Geant4: a simulation
toolkit. Nucl. Instrum. Methods A. 506, 250 (2003). doi:10.1016/
S0168-9002(03)01368-8

22. M. Clemencic et al., The LHCb simulation application, Gauss:
design, evolution and experience. J. Phys. Conf. Ser. 331, 032023
(2011). doi:10.1088/1742-6596/331/3/032023

23. LHCb collaboration, R. Aaij et al., Measurement of the B̄0
s meson

lifetime in D+
s π− decays. Phys. Rev. Lett. 113, 172001 (2014).

doi:10.1103/PhysRevLett.113.172001. arXiv:1407.5873
24. N.L. Johnson, Systems of frequency curves generated by methods

of translation. Biometrika 36, 149 (1949). doi:10.1093/biomet/36.
1-2.149

25. M. Pivk, F.R. Le Diberder, sPlot: a statistical tool to unfold data
distributions. Nucl. Instrum. Methods A. 555, 356 (2005). doi:10.
1016/j.nima.2005.08.106. arXiv:physics/0402083

26. A.A. Alves Jr. et al., Performance of the LHCb muon system.
JINST 8, P02022 (2013). doi:10.1088/1748-0221/8/02/P02022.
arXiv:1211.1346

27. L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classifica-
tion and regression trees (Wadsworth international group, Belmont,
1984)

28. R.E. Schapire, Y. Freund, A decision-theoretic generalization of
on-line learning and an application to boosting. J. Comput. Syst.
Sci. 55, 119 (1997). doi:10.1006/jcss.1997.1504

29. Particle Data Group, K.A. Olive et al., Review of particle physics.
Chin. Phys. C. 38, 090001 (2014). doi:10.1088/1674-1137/38/9/
090001 (and 2015 update)

30. C. de Boor, A Practical Guide to Splines, revised edn. (Springer,
New York, 2001)

31. LHCb collaboration, R. Aaij et al., Measurement of the B̄0–B0

and B̄0
s –B0

s production asymmetries in pp collisions at
√
s = 7

TeV. Phys. Lett. B. 739, 218 (2014). doi:10.1016/j.physletb.2014.
10.005. arXiv:1408.0275

32. Heavy Flavor Averaging Group, Y. Amhis et al., Averages of b-
hadron, c-hadron, and τ -lepton properties as of summer 2014.
arXiv:1412.7515. Updated results and plots available at http://
www.slac.stanford.edu/xorg/hfag/

33. LHCb collaboration, R. Aaij et al., Measurement of the
semileptonic CP asymmetry in B0–B̄0 mixing. Phys. Rev.
Lett. 114, 041601 (2015). doi:10.1103/PhysRevLett.114.041601.
arXiv:1409.8586

34. LHCb collaboration, R. Aaij et al., First measurement of time-
dependent CP violation in B0

s → K+K− decays. JHEP 10, 183
(2013). doi:10.1007/JHEP10(2013)183. arXiv:1308.1428

35. D. Martinez-Santos, F. Dupertuis, Mass distributions marginalized
over per-event errors. Nucl. Instrum. Methods A. 764, 150 (2014).
doi:10.1016/j.nima.2014.06.081. arXiv:1312.5000

123

http://dx.doi.org/10.1140/epjc/s10052-012-2022-1
http://arxiv.org/abs/1202.4979
http://dx.doi.org/10.1088/1748-0221/10/10/P10005
http://dx.doi.org/10.1088/1748-0221/10/10/P10005
http://arxiv.org/abs/1507.07892
http://dx.doi.org/10.1103/PhysRevLett.115.031601
http://arxiv.org/abs/1503.07089
http://dx.doi.org/10.1088/1748-0221/11/05/P05010
http://dx.doi.org/10.1088/1748-0221/11/05/P05010
http://arxiv.org/abs/1602.07252
http://dx.doi.org/10.1103/PhysRevLett.114.041801
http://arxiv.org/abs/1411.3104
http://dx.doi.org/10.1016/j.physletb.2014.06.079
http://arxiv.org/abs/1405.4140
http://dx.doi.org/10.1103/PhysRevLett.113.211801
http://arxiv.org/abs/1409.4619
http://dx.doi.org/10.1140/epjc/s10052-014-3026-9
http://arxiv.org/abs/1406.6311
http://dx.doi.org/10.1088/1748-0221/3/08/S08005
http://dx.doi.org/10.1088/1748-0221/3/08/S08005
http://dx.doi.org/10.1142/S0217751X15300227
http://dx.doi.org/10.1142/S0217751X15300227
http://arxiv.org/abs/1412.6352
http://dx.doi.org/10.1140/epjc/s10052-013-2431-9
http://dx.doi.org/10.1140/epjc/s10052-013-2431-9
http://arxiv.org/abs/1211.6759
http://dx.doi.org/10.1088/1748-0221/8/04/P04022
http://arxiv.org/abs/1211.3055
http://dx.doi.org/10.1088/1748-0221/8/02/P02013
http://arxiv.org/abs/1210.6861
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://arxiv.org/abs/hep-ph/0603175
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://arxiv.org/abs/0710.3820
http://dx.doi.org/10.1088/1742-6596/331/3/032047
http://dx.doi.org/10.1016/S0168-9002(01)00089-4
http://dx.doi.org/10.1016/S0168-9002(01)00089-4
http://dx.doi.org/10.1140/epjc/s2005-02396-4
http://arxiv.org/abs/hep-ph/0506026
http://dx.doi.org/10.1109/TNS.2006.869826
http://dx.doi.org/10.1109/TNS.2006.869826
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1088/1742-6596/331/3/032023
http://dx.doi.org/10.1103/PhysRevLett.113.172001
http://arxiv.org/abs/1407.5873
http://dx.doi.org/10.1093/biomet/36.1-2.149
http://dx.doi.org/10.1093/biomet/36.1-2.149
http://dx.doi.org/10.1016/j.nima.2005.08.106
http://dx.doi.org/10.1016/j.nima.2005.08.106
http://arxiv.org/abs/physics/0402083
http://dx.doi.org/10.1088/1748-0221/8/02/P02022
http://arxiv.org/abs/1211.1346
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1016/j.physletb.2014.10.005
http://dx.doi.org/10.1016/j.physletb.2014.10.005
http://arxiv.org/abs/1408.0275
http://arxiv.org/abs/1412.7515
http://www.slac.stanford.edu/xorg/hfag/
http://www.slac.stanford.edu/xorg/hfag/
http://dx.doi.org/10.1103/PhysRevLett.114.041601
http://arxiv.org/abs/1409.8586
http://dx.doi.org/10.1007/JHEP10(2013)183
http://arxiv.org/abs/1308.1428
http://dx.doi.org/10.1016/j.nima.2014.06.081
http://arxiv.org/abs/1312.5000


238 Page 12 of 15 Eur. Phys. J. C (2017) 77 :238

LHCb Collaboration

R. Aaij40 , B. Adeva39, M. Adinolfi48, Z. Ajaltouni5, S. Akar6, J. Albrecht10, F. Alessio40, M. Alexander53,
S. Ali43, G. Alkhazov31, P. Alvarez Cartelle55, A. A. Alves Jr59, S. Amato2, S. Amerio23, Y. Amhis7, L. An41,
L. Anderlini18, G. Andreassi41, M. Andreotti17,g, J. E. Andrews60, R. B. Appleby56, F. Archilli43, P. d’Argent12,
J. Arnau Romeu6, A. Artamonov37, M. Artuso61, E. Aslanides6, G. Auriemma26, M. Baalouch5, I. Babuschkin56,
S. Bachmann12, J. J. Back50, A. Badalov38, C. Baesso62, S. Baker55, W. Baldini17, R. J. Barlow56, C. Barschel40,
S. Barsuk7, W. Barter40, M. Baszczyk27,l, V. Batozskaya29, B. Batsukh61, V. Battista41, A. Bay41, L. Beaucourt4,
J. Beddow53, F. Bedeschi24, I. Bediaga1, L. J. Bel43, V. Bellee41, N. Belloli21,i, K. Belous37, I. Belyaev32,
E. Ben-Haim8, G. Bencivenni19, S. Benson43, J. Benton48, A. Berezhnoy33, R. Bernet42, A. Bertolin23, F. Betti15,
M.-O. Bettler40, M. van Beuzekom43, Ia. Bezshyiko42, S. Bifani47, P. Billoir8, T. Bird56, A. Birnkraut10, A. Bitadze56,
A. Bizzeti18,u, T. Blake50, F. Blanc41, J. Blouw11†, S. Blusk61, V. Bocci26, T. Boettcher58, A. Bondar36,w,
N. Bondar31,40, W. Bonivento16, I. Bordyuzhin32, A. Borgheresi21,i, S. Borghi56, M. Borisyak35, M. Borsato39,
F. Bossu7, M. Boubdir9, T. J. V. Bowcock54, E. Bowen42, C. Bozzi17,40, S. Braun12, M. Britsch12, T. Britton61,
J. Brodzicka56, E. Buchanan48, C. Burr56, A. Bursche2, J. Buytaert40, S. Cadeddu16, R. Calabrese17,g, M. Calvi21,i,
M. Calvo Gomez38,m, A. Camboni38, P. Campana19, D. Campora Perez40, D. H. Campora Perez40, L. Capriotti56,
A. Carbone15,e, G. Carboni25,j, R. Cardinale20,h, A. Cardini16, P. Carniti21,i, L. Carson52, K. Carvalho Akiba2,
G. Casse54, L. Cassina21,i, L. Castillo Garcia41, M. Cattaneo40, Ch. Cauet10, G. Cavallero20,h, R. Cenci24,t,
M. Charles8, Ph. Charpentier40, G. Chatzikonstantinidis47, M. Chefdeville4, S. Chen56, S. F. Cheung57, V. Chobanova39,
M. Chrzaszcz27,42, X. Cid Vidal39, G. Ciezarek43, P. E. L. Clarke52, M. Clemencic40, H. V. Cliff49, J. Closier40,
V. Coco59, J. Cogan6, E. Cogneras5, V. Cogoni16,40,f, L. Cojocariu30, P. Collins40, A. Comerma-Montells12,
A. Contu40, A. Cook48, G. Coombs40, S. Coquereau38, G. Corti40, M. Corvo17,g, C. M. Costa Sobral50, B. Couturier40,
G. A. Cowan52, D. C. Craik52, A. Crocombe50, M. Cruz Torres62, S. Cunliffe55, R. Currie55, C. D’Ambrosio40,
F. Da Cunha Marinho2, E. Dall’Occo43, J. Dalseno48, P. N. Y. David43, A. Davis59, O. De Aguiar Francisco2,
K. De Bruyn6, S. De Capua56, M. De Cian12, J. M. De Miranda1, L. De Paula2, M. De Serio14,d, P. De Simone19,

C. T. Dean53, D. Decamp4, M. Deckenhoff10, L. Del Buono8, M. Demmer10, A. Dendek28, D. Derkach35,
O. Deschamps5, F. Dettori40, B. Dey22, A. Di Canto40, H. Dijkstra40, F. Dordei40, M. Dorigo41, A. Dosil Suárez39,
A. Dovbnya45, K. Dreimanis54, L. Dufour43, G. Dujany56, K. Dungs40, P. Durante40, R. Dzhelyadin37, A. Dziurda40,
A. Dzyuba31, N. Déléage4, S. Easo51, M. Ebert52, U. Egede55, V. Egorychev32, S. Eidelman36,w, S. Eisenhardt52,
U. Eitschberger10, R. Ekelhof10, L. Eklund53, Ch. Elsasser42, S. Ely61, S. Esen12, H. M. Evans49, T. Evans57,
A. Falabella15, N. Farley47, S. Farry54, R. Fay54, D. Fazzini21,i, D. Ferguson52, A. Fernandez Prieto39, F. Ferrari15,40,
F. Ferreira Rodrigues1, M. Ferro-Luzzi40, S. Filippov34, R. A. Fini14, M. Fiore17,g, M. Fiorini17,g, M. Firlej28,
C. Fitzpatrick41, T. Fiutowski28, F. Fleuret7,b, K. Fohl40, M. Fontana16,40, F. Fontanelli20,h, D. C. Forshaw61, R. Forty40,
V. Franco Lima54, M. Frank40, C. Frei40, J. Fu22,q, E. Furfaro25,j, C. Färber40, A. Gallas Torreira39, D. Galli15,e,
S. Gallorini23, S. Gambetta52, M. Gandelman2, P. Gandini57, Y. Gao3, L. M. Garcia Martin68, J. García Pardiñas39,
J. Garra Tico49, L. Garrido38, P. J. Garsed49, D. Gascon38, C. Gaspar40, L. Gavardi10, G. Gazzoni5, D. Gerick12,
E. Gersabeck12, M. Gersabeck56, T. Gershon50, Ph. Ghez4, S. Gianì41, V. Gibson49, O. G. Girard41, L. Giubega30,
K. Gizdov52, V. V. Gligorov8, D. Golubkov32, A. Golutvin40,55, A. Gomes1,a, I. V. Gorelov33, C. Gotti21,i,
M. Grabalosa Gándara5, R. Graciani Diaz38, L. A. Granado Cardoso40, E. Graugés38, E. Graverini42, G. Graziani18,
A. Grecu30, P. Griffith47, L. Grillo21,40,i, B. R. Gruberg Cazon57, O. Grünberg66, E. Gushchin34, Yu. Guz37, T. Gys40,
C. Göbel62, T. Hadavizadeh57, C. Hadjivasiliou5, G. Haefeli41, C. Haen40, S. C. Haines49, S. Hall55, B. Hamilton60,
X. Han12, S. Hansmann-Menzemer12, N. Harnew57, S. T. Harnew48, J. Harrison56, M. Hatch40, J. He63, T. Head41,
A. Heister9, K. Hennessy54, P. Henrard5, L. Henry8, J. A. Hernando Morata39, E. van Herwijnen40, M. Heß66,
A. Hicheur2, D. Hill57, C. Hombach56, P. H. Hopchev41, W. Hulsbergen43, T. Humair55, M. Hushchyn35, N. Hussain57,
D. Hutchcroft54, M. Idzik28, P. Ilten58, R. Jacobsson40, A. Jaeger12, J. Jalocha57, E. Jans43, A. Jawahery60,
F. Jiang3, M. John57, D. Johnson40, C. R. Jones49, C. Joram40, B. Jost40, N. Jurik61, S. Kandybei45, W. Kanso6,
M. Karacson40, J. M. Kariuki48, S. Karodia53, M. Kecke12, M. Kelsey61, I. R. Kenyon47, M. Kenzie49, T. Ketel44,
E. Khairullin35, B. Khanji21,40,i, C. Khurewathanakul41, T. Kirn9, S. Klaver56, K. Klimaszewski29, S. Koliiev46,
M. Kolpin12, I. Komarov41, R. F. Koopman44, P. Koppenburg43, A. Kosmyntseva32, M. Kozeiha5, L. Kravchuk34,
K. Kreplin12, M. Kreps50, P. Krokovny36,w, F. Kruse10, W. Krzemien29, W. Kucewicz27,l, M. Kucharczyk27,
V. Kudryavtsev36,w, A. K. Kuonen41, K. Kurek29, T. Kvaratskheliya32,40, D. Lacarrere40, G. Lafferty56, A. Lai16,
D. Lambert52, G. Lanfranchi19, C. Langenbruch9, T. Latham50, C. Lazzeroni47, R. Le Gac6, J. van Leerdam43,
J.-P. Lees4, A. Leflat33,40, J. Lefrançois7, R. Lefèvre5, F. Lemaitre40, E. Lemos Cid39, O. Leroy6, T. Lesiak27,

123



Eur. Phys. J. C (2017) 77 :238 Page 13 of 15 238

B. Leverington12, Y. Li7, T. Likhomanenko35,67, R. Lindner40, C. Linn40, F. Lionetto42, B. Liu16, X. Liu3,
D. Loh50, I. Longstaff53, J. H. Lopes2, D. Lucchesi23,o, M. Lucio Martinez39, H. Luo52, A. Lupato23, E. Luppi17,g,
O. Lupton57, A. Lusiani24, X. Lyu63, F. Machefert7, F. Maciuc30, O. Maev31, K. Maguire56, S. Malde57,
A. Malinin67, T. Maltsev36, G. Manca7, G. Mancinelli6, P. Manning61, J. Maratas5,v, J. F. Marchand4, U. Marconi15,
C. Marin Benito38, P. Marino24,t, J. Marks12, G. Martellotti26, M. Martin6, M. Martinelli41, D. Martinez Santos39,
F. Martinez Vidal68, D. Martins Tostes2, L. M. Massacrier7, A. Massafferri1, R. Matev40, A. Mathad50, Z. Mathe40,
C. Matteuzzi21, A. Mauri42, B. Maurin41, A. Mazurov47, M. McCann55, J. McCarthy47, A. McNab56, R. McNulty13,
B. Meadows59, F. Meier10, M. Meissner12, D. Melnychuk29, M. Merk43, A. Merli22,q, E. Michielin23, D. A. Milanes65,
M.-N. Minard4, D. S. Mitzel12, A. Mogini8, J. Molina Rodriguez1, I. A. Monroy65, S. Monteil5, M. Morandin23,
P. Morawski28, A. Mordà6, M. J. Morello24,t, J. Moron28, A. B. Morris52, R. Mountain61, F. Muheim52, M. Mulder43,
M. Mussini15, D. Müller56, J. Müller10, K. Müller42, V. Müller10, P. Naik48, T. Nakada41, R. Nandakumar51,
A. Nandi57, I. Nasteva2, M. Needham52, N. Neri22, S. Neubert12, N. Neufeld40, M. Neuner12, A. D. Nguyen41,
T. D. Nguyen41, C. Nguyen-Mau41,n, S. Nieswand9, R. Niet10, N. Nikitin33, T. Nikodem12, A. Novoselov37,
D. P. O’Hanlon50, A. Oblakowska-Mucha28, V. Obraztsov37, S. Ogilvy19, R. Oldeman49, C. J. G. Onderwater69,
J. M. Otalora Goicochea2, A. Otto40, P. Owen42, A. Oyanguren68, P. R. Pais41, A. Palano14,d, F. Palombo22,q,
M. Palutan19, J. Panman40, A. Papanestis51, M. Pappagallo14,d, L. L. Pappalardo17,g, W. Parker60, C. Parkes56,
G. Passaleva18, A. Pastore14,d, G. D. Patel54, M. Patel55, C. Patrignani15,e, A. Pearce51,56, A. Pellegrino43,
G. Penso26, M. Pepe Altarelli40, S. Perazzini40, P. Perret5, L. Pescatore47, K. Petridis48, A. Petrolini20,h, A. Petrov67,
M. Petruzzo22,q, E. Picatoste Olloqui38, B. Pietrzyk4, M. Pikies27, D. Pinci26, A. Pistone20,h, A. Piucci12, S. Playfer52,
M. Plo Casasus39, T. Poikela40, F. Polci8, A. Poluektov36,50, I. Polyakov61, E. Polycarpo2, G. J. Pomery48,
A. Popov37, D. Popov11,40, B. Popovici30, S. Poslavskii37, C. Potterat2, E. Price48, J. D. Price54, J. Prisciandaro39,
A. Pritchard54, C. Prouve48, V. Pugatch46, A. Puig Navarro41, G. Punzi24,p, W. Qian57, R. Quagliani7,48,
B. Rachwal27, J. H. Rademacker48, M. Rama24, M. Ramos Pernas39, M. S. Rangel2, I. Raniuk45, F. Ratnikov35,
G. Raven44, F. Redi55, S. Reichert10, A. C. dos Reis1, C. Remon Alepuz68, V. Renaudin7, S. Ricciardi51,
S. Richards48, M. Rihl40, K. Rinnert54, V. Rives Molina38, P. Robbe7,40, A. B. Rodrigues1, E. Rodrigues59,
J. A. Rodriguez Lopez65, P. Rodriguez Perez56†, A. Rogozhnikov35, S. Roiser40, A. Rollings57, V. Romanovskiy37,
A. Romero Vidal39, J. W. Ronayne13, M. Rotondo19, M. S. Rudolph61, T. Ruf40, P. Ruiz Valls68, J. J. Saborido Silva39,
E. Sadykhov32, N. Sagidova31, B. Saitta16,f, V. Salustino Guimaraes2, C. Sanchez Mayordomo68, B. Sanmartin Sedes39,
R. Santacesaria26, C. Santamarina Rios39, M. Santimaria19, E. Santovetti25,j, A. Sarti19,k, C. Satriano26,s, A. Satta25,
D. M. Saunders48, D. Savrina32,33, S. Schael9, M. Schellenberg10, M. Schiller40, H. Schindler40, M. Schlupp10,
M. Schmelling11, T. Schmelzer10, B. Schmidt40, O. Schneider41, A. Schopper40, K. Schubert10, M. Schubiger41,
M.-H. Schune7, R. Schwemmer40, B. Sciascia19, A. Sciubba26,k, A. Semennikov32, A. Sergi47, N. Serra42,
J. Serrano6, L. Sestini23, P. Seyfert21, M. Shapkin37, I. Shapoval45, Y. Shcheglov31, T. Shears54, L. Shekhtman36,w,
V. Shevchenko67, A. Shires10, B. G. Siddi17,40, R. Silva Coutinho42, L. Silva de Oliveira2, G. Simi23,o, S. Simone14,d,
M. Sirendi49, N. Skidmore48, T. Skwarnicki61, E. Smith55, I. T. Smith52, J. Smith49, M. Smith55, H. Snoek43,
M. D. Sokoloff59, F. J. P. Soler53, B. Souza De Paula2, B. Spaan10, P. Spradlin53, S. Sridharan40, F. Stagni40,
M. Stahl12, S. Stahl40, P. Stefko41, S. Stefkova55, O. Steinkamp42, S. Stemmle12, O. Stenyakin37, S. Stevenson57,
S. Stoica30, S. Stone61, B. Storaci42, S. Stracka24,p, M. Straticiuc30, U. Straumann42, L. Sun59, W. Sutcliffe55,
K. Swientek28, V. Syropoulos44, M. Szczekowski29, T. Szumlak28, S. T’Jampens4, A. Tayduganov6, T. Tekampe10,

M. Teklishyn7, G. Tellarini17,g, F. Teubert40, E. Thomas40, J. van Tilburg43, M. J. Tilley55, V. Tisserand4,
M. Tobin41, S. Tolk49, L. Tomassetti17,g, D. Tonelli40, S. Topp-Joergensen57, F. Toriello61, E. Tournefier4,
S. Tourneur41, K. Trabelsi41, M. Traill53, M. T. Tran41, M. Tresch42, A. Trisovic40, A. Tsaregorodtsev6, P. Tsopelas43,
A. Tully49, N. Tuning43, A. Ukleja29, A. Ustyuzhanin35, U. Uwer12, C. Vacca16,f, V. Vagnoni15,40, A. Valassi40,
S. Valat40, G. Valenti15, A. Vallier7, R. Vazquez Gomez19, P. Vazquez Regueiro39, S. Vecchi17, M. van Veghel43,
J. J. Velthuis48, M. Veltri18,r, G. Veneziano41, A. Venkateswaran61, M. Vernet5, M. Vesterinen12, B. Viaud7,
D. Vieira1, M. Vieites Diaz39, X. Vilasis-Cardona38,m, V. Volkov33, A. Vollhardt42, B. Voneki40, A. Vorobyev31,
V. Vorobyev36,w, C. Voß66, J. A. de Vries43, C. Vázquez Sierra39, R. Waldi66, C. Wallace50, R. Wallace13, J. Walsh24,
J. Wang61, D. R. Ward49, H. M. Wark54, N. K. Watson47, D. Websdale55, A. Weiden42, M. Whitehead40, J. Wicht50,
G. Wilkinson40,57, M. Wilkinson61, M. Williams40, M. P. Williams47, M. Williams58, T. Williams47, F. F. Wilson51,
J. Wimberley60, J. Wishahi10, W. Wislicki29, M. Witek27, G. Wormser7, S. A. Wotton49, K. Wraight53, K. Wyllie40,
Y. Xie64, Z. Xu41, Z. Yang3, H. Yin64, J. Yu64, X. Yuan36,w, O. Yushchenko37, K. A. Zarebski47, M. Zavertyaev11,c,
L. Zhang3, Y. Zhang7, A. Zhelezov12, Y. Zheng63, A. Zhokhov32, X. Zhu3, V. Zhukov9, S. Zucchelli15

123



238 Page 14 of 15 Eur. Phys. J. C (2017) 77 :238

1 Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2 Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3 Center for High Energy Physics, Tsinghua University, Beijing, China
4 LAPP, Université Savoie Mont-Blanc, CNRS/IN2P3, Annecy-Le-Vieux, France
5 Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
6 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
7 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
8 LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
9 I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany

10 Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
11 Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
12 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
13 School of Physics, University College Dublin, Dublin, Ireland
14 Sezione INFN di Bari, Bari, Italy
15 Sezione INFN di Bologna, Bologna, Italy
16 Sezione INFN di Cagliari, Cagliari, Italy
17 Sezione INFN di Ferrara, Ferrara, Italy
18 Sezione INFN di Firenze, Firence, Italy
19 Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
20 Sezione INFN di Genova, Genoa, Italy
21 Sezione INFN di Milano-Bicocca, Milano, Italy
22 Sezione INFN di Milano, Milano, Italy
23 Sezione INFN di Padova, Padua, Italy
24 Sezione INFN di Pisa, Pisa, Italy
25 Sezione INFN di Roma Tor Vergata, Rome, Italy
26 Sezione INFN di Roma La Sapienza, Rome, Italy
27 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
28 Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Kraków, Poland
29 National Center for Nuclear Research (NCBJ), Warsaw, Poland
30 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
31 Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
32 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
33 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
34 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
35 Yandex School of Data Analysis, Moscow, Russia
36 Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
37 Institute for High Energy Physics (IHEP), Protvino, Russia
38 ICCUB, Universitat de Barcelona, Barcelona, Spain
39 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
40 European Organization for Nuclear Research (CERN), Geneva, Switzerland
41 Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
42 Physik-Institut, Universität Zürich, Zurich, Switzerland
43 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
44 Nikhef National Institute for Subatomic Physics, VU University Amsterdam, Amsterdam, The Netherlands
45 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
46 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kiev, Ukraine
47 University of Birmingham, Birmingham, UK
48 H.H. Wills Physics Laboratory, University of Bristol, Bristol, UK
49 Cavendish Laboratory, University of Cambridge, Cambridge, UK
50 Department of Physics, University of Warwick, Coventry, UK
51 STFC Rutherford Appleton Laboratory, Didcot, UK
52 School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
53 School of Physics and Astronomy, University of Glasgow, Glasgow, UK

123



Eur. Phys. J. C (2017) 77 :238 Page 15 of 15 238

54 Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK
55 Imperial College London, London, UK
56 School of Physics and Astronomy, University of Manchester, Manchester, UK
57 Department of Physics, University of Oxford, Oxford, UK
58 Massachusetts Institute of Technology, Cambridge, MA, USA
59 University of Cincinnati, Cincinnati, OH, USA
60 University of Maryland, College Park, MD, USA
61 Syracuse University, Syracuse, NY, USA
62 Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to2

63 University of Chinese Academy of Sciences, Beijing, China, associated to3

64 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China associated to3

65 Departamento de Fisica, Universidad Nacional de Colombia, Bogotá, Colombia, associated to8

66 Institut für Physik, Universität Rostock, Rostock, Germany, associated to12

67 National Research Centre Kurchatov Institute, Moscow, Russia, associated to32

68 Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia-CSIC, Valencia, Spain, associated to38

69 Van Swinderen Institute, University of Groningen, Groningen, The Netherlands, associated to43

a Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
b Laboratoire Leprince-Ringuet, Palaiseau, France
c P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
d Università di Bari, Bari, Italy
e Università di Bologna, Bologna, Italy
f Università di Cagliari, Cagliari, Italy
g Università di Ferrara, Ferrara, Italy
h Università di Genova, Genova, Italy
i Università di Milano Bicocca, Milano, Italy
j Università di Roma Tor Vergata, Roma, Italy

k Università di Roma La Sapienza, Roma, Italy
l AGH-University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications,
Kraków, Poland

m LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
n Hanoi University of Science, Hanoi, Viet Nam
o Università di Padova, Padova, Italy
p Università di Pisa, Pisa, Italy
q Università degli Studi di Milano, Milano, Italy
r Università di Urbino, Urbino, Italy
s Università della Basilicata, Potenza, Italy
t Scuola Normale Superiore, Pisa, Italy
u Università di Modena e Reggio Emilia, Modena, Italy
v Iligan Institute of Technology (IIT), Iligan, Philippines
w Novosibirsk State University, Novosibirsk, Russia

†Deceased

123


	New algorithms for identifying the flavour of B 0 mesons using pions and protons
	Abstract 
	1 Introduction
	2 Detector
	3 Development of the same-side taggers
	4 Evaluation and calibration of mistag probability
	4.1 The SSπ and SSp taggers
	4.2 The SScomb tagger

	5 Validation and systematic uncertainties
	6 Conclusion
	Acknowledgements
	References




