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Abstract11

Predator-prey dynamics have been suggested as simplified models of stratocumulus clouds,12

with rain acting as a predator of the clouds. We describe a mathematical and computational13

framework for estimating the parameters of a simplified model from a large eddy simulation14

(LES). In our method, we extract cycles of cloud growth and decay from the LES and then search15

for parameters of the simplified model that lead to similar cycles. We implement our method via16

Markov chain Monte Carlo. Required error models are constructed based on variations of the17

LES cloud cycles. This computational framework allows us to test the robustness of our overall18

approach and various assumptions, which is essential for the simplified model to be useful. Our19

main conclusion is that it is indeed possible to calibrate a predator-prey model so that it becomes20

a reliable, robust, but simplified representation of selected aspects of a LES. In the future, such21

models may then be used as a quantitative tool for investigating important questions in cloud22

microphysics.23

Keywords24

Predator-prey dynamics; Large-eddy simulation; Stratocumulus clouds; Bayesian inversion;25

Markov chain Monte Carlo;26

1 Introduction27

Stratocumulus cloud decks can reach 1000s of km in scale and cover vast stretches of the subtropical28

oceans. These decks consist of a space-filling arrangement of convective cells, with clouds marking29

updraft regions. Depending on the environmental conditions like sea-surface temperature or atmo-30

spheric aerosol, stratocumulus occur in two configurations (Agee, 1984; Wood and Hartmann, 2006;31

Glassmeier and Feingold, 2017)32

(i) wide updraft areas coinciding with cloud cells (“closed-cells’) whose cloud-free boundaries form33

a honeycomb-like pattern;34

(ii) narrow updrafts and cloudy rings that outline a honeycomb-like pattern (“open cells”).35
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Due to its lower cloud fraction, the open-cell configuration is significantly less reflective than the36

closed-cell configuration. Since roughly one fifth of the Earth’s surface is covered by stratocumulus37

cloud decks (Wood, 2012), the radiative effects of stratocumulus have a large impact on the Earth’s38

energy budget. In fact, stratocumulus remain one of the main sources of uncertainty in quantifying39

climate change (Boucher et al., 2013; Myhre et al., 2013; Schneider et al., 2017).40

Stratocumulus, and in particular transitions from closed-cell to open-cell configurations, have41

been studied numerically with a hierarchy of mathematical and computational models. Large eddy42

simulations (LES) resolve the governing equations of moist hydrodynamics down to the cloud scale43

and can faithfully represent the formation of stratocumulus and how they transition between the44

open- and the closed-cell configurations, see, e.g., Feingold et al. (2015). In addition to these45

detailed but computationally expensive models, drastically simplified, low-dimensional models have46

been proposed to capture the spatial configuration of stratocumulus. For example, dynamic cellular47

networks can be used to describe the patterns that are formed within stratocumulus cloud systems48

(Glassmeier and Feingold, 2017). Predator-prey models, where the rain acts as the predator of49

clouds, have been proposed as phenomenological models for stratocumulus (Koren and Feingold,50

2011; Feingold and Koren, 2013; Koren et al., 2017).51

The predator-prey models can reproduce two configurations that are relevant to stratocumulus52

clouds: oscillatory (limit cycle) and stationary solutions for cloud depth. The limit cycles model a53

scenario in which strong rain dissipates the cloud that created it, followed by renewed cloud build-up54

that proceeds until the cloud is again thick enough to produce strong rain, which restarts the whole55

process. A stationary cloud depth represents a situation in which the rain consumes the cloud at56

the same rate as the cloud replenishes.57

We focus on one of the predator-prey models, the nonlinear cloud and rain equation of Koren58

et al. (2017), which we call KTF17 for short. Our primary goal is to build a mathematical and59

computational framework to convert KTF17 into a quantitative tool. We argue that this can be60

done by adopting a Bayesian approach, in which a posterior distribution over the parameters of61

KTF17 is defined based on cloud depth time series of stratocumulus. A natural data source for62

these time series would be observations of stratocumulus in the Earth’s atmosphere, e.g., derived63

from the Geostationary Operational Environmental Satellite-R Series (GOES-R). KTF17 does not64

account for horizontal advection which is usually present in satellite derived observations. Using65

observational data would thus require tracking stratocumulus patches within a larger cloud system66

over time to “remove” advection, see, e.g., Koren and Feingold (2013). To avoid these technicalities,67

we use LES output, generated in the absence of advection, as “data” in place of observations. The68

resulting KTF17 model, with stochastic parameters distributed according to a posterior distribution,69

is thus a quantitative, but simplified representation of selected aspects of cloud systems that are70

realistically represented by LES. Our approach thus connects the extreme ends of the hierarchy of71

cloud models and may be used to obtain new insights into complex cloud and rain interactions. Given72

the example of the predator-prey-based parameterization of Nober and Graf (2005) to represent73

convection, simple predator-prey models, “calibrated” to a LES via a parameter estimation, may74

eventually even prove useful for representing some aspects of cloud systems in climate models. We75

focus, however, on establishing a suitable mathematical and computational framework for the task76

of “calibrating” a predator-prey model with LES data.77

More specifically, we describe how parameters of KTF17 can be estimated from a LES by78

a “Bayesian inversion”. The inversion is based on two distributions: a prior distribution, that79

represents knowledge about the model parameters, without taking the data into account, and a80

likelihood, that describes the probability of the data, given a set of parameters, see, e.g., Reich81

and Cotter (2015); Asch et al. (2017); Tarantola (2005). Jointly, the prior and likelihood define82

a posterior distribution over the parameters that represents our knowledge of the parameters and83
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their uncertainties in view of the data, our prior knowledge and assumed errors.84

Typically, a likelihood is based on a point-wise mismatch of model outputs and data. In our85

context, the “data” are a time series of cloud depth of the LES, i.e., a 2D field that evolves over86

time (note that we refer to simulation outputs as data because we treat them as such). KTF17,87

however, does not have an associated spatial scale. Thus, it is not straightforward to compare88

KTF17 to LES output. We address this issue by using “feature-based” likelihoods (Maclean et al.,89

2017; Morzfeld et al., 2018). The basic idea is that compressing the data into suitable features90

can bridge gaps between drastically simplified models and complex processes. The feature we91

consider is a stochastic representation of cycles of growth and decay in cloud depth, derived from92

the LES, that can be compared directly (point-wise) to limit cycles of KTF17. Required error93

models of the features are constructed based on variations of the cloud cycles extracted from the94

LES. We solve the resulting, feature-based inverse problem numerically by a Markov chain Monte95

Carlo (MCMC) method. This means that we generate a (large) set of physically relevant “samples”96

(model parameters) that lead to KTF17 limit cycles that are comparable to the cloud cycles observed97

in the LES, to within the assumed errors. In particular, we observe an overall good fit in terms of98

the cycle’s periods, amplitudes and average growth and decay times. The Bayesian approach and99

MCMC implementation further provide information about posterior errors and uncertainties, which100

in turn depend on expected model errors. This allows us to assess, in hindsight, the validity of our101

assumptions about errors and error models. We further carefully test the robustness of our overall102

approach by numerical sensitivity studies. These tests of robustness and of the validity of error103

models are essential to being able to use KTF17 to make precise and definite statements. Finally,104

we illustrate how to use our technique to investigate cloud microphysics questions. Specifically,105

we compute sensitivity of model parameters to temporal changes in the morphology of the cloud106

system. We must emphasize that our results and conclusions with respect to cloud microphysics107

are limited, in part because our study is limited to one particular LES.108

2 Background: the nonlinear cloud and rain equation, the LES and109

feature-based Bayesian inversion110

We use a Bayesian approach to combine information from a LES with a simplified predator-prey111

model of stratocumulus clouds. In this section, we describe the predator-prey model and the LES.112

We then provide background and notation for Bayesian inversion and feature-based Bayesian inver-113

sion.114

2.1 The nonlinear cloud and rain equation (KTF17)115

The coevolution of cloud and rain can be captured, qualitatively, by predator-prey type dynamics116

and, more specifically, by differential equations with a delayed sink term (Koren and Feingold, 2011;117

Feingold and Koren, 2013; Koren et al., 2017). The delay stems from the fact that the predator118

(rain) is produced by the cloud (prey) with a delay that is associated with the time required for119

cloud droplets to coalesce to form larger raindrops. This delay time is a function of the amount of120

cloud water and the cloud drop concentration and is typically on the order of 15 minutes.121

The predator-prey models are capable of reproducing two different dynamical regimes that are122

relevant to stratocumulus clouds. When the predator-prey models exhibit a constant cloud depth,123

the rain consumes the cloud at the same rate as cloud replenishment. When the predator-prey124

models exhibit oscillations (limit cycles), strong rain nearly depletes the cloud and then dissipates125

until the cloud is thick enough to again produce rain.126
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We consider the “nonlinear cloud and rain equation” (Koren et al., 2017), subsequently called127

KTF17:128
dH

dt
=
H0 −H

τ
− α√

N
H2(t− T ). (1)

Here, H (in m) is cloud depth, H0 (in m) is the cloud depth carrying capacity, τ (in days) is the129

characteristic time to reach carrying capacity, T (in days) is the delay associated with the time130

it takes to generate rain and N (in cm−3) is the droplet concentration; the scaling factor α (in131

day−1m−2.5) links the cloud depth, droplet concentration and rain rate (see Koren et al. (2017) for132

further detail).133

In summary, the parameters of the KTF17 model are the delay, the carrying capacity, the134

characteristic time and the scaling factor. For a given set of parameters and initial conditions,135

we solve (1) numerically by a 4th order Runge-Kutta method with time step ∆t = 0.1 min. The136

numerical integration requires that we prescribe the cloud depth H(t) during “negative times” on137

the interval t ∈ [−T, 0] and we assume that H(t) is constant during this interval. The result of a138

numerical solution of KTF17 is a time series of cloud depth.139

We note that KTF17 assumes that droplet concentration be fixed. This is justified when there140

is an approximate balance between replenishment of aerosol particles, which form the nuclei for new141

droplets, and consumption of droplets/particles via coalescence and their removal by rain. Below,142

we use values between N = 16 cm−3 and N = 45 cm−3, which are typical of the drop concentrations143

in clean marine environments associated with open cellular convection and which are also in line144

with the values of N in the LES we consider (see Section 2.2). Nonetheless, droplet concentration145

may not be constant in a stratocumulus cloud system or in an LES ((Yamaguchi et al., 2017)). Thus,146

the fixed droplet concentration may limit the usefulness of the KTF17 model in certain conditions.147

We discuss these issues in more detail below.148

2.2 Description of the LES149

A LES is a detailed model of a cloud system in space (3D) and time. It solves the anelastic150

Navier–Stokes equations on an Eulerian spatial grid, resolving convection and clouds, and in the151

current work, also simulates microphysical processes such as the formation of droplets on suspended152

particles (condensation nuclei), their growth by coalescence, and their removal by rain. We use the153

LES output to estimate the parameters of KTF17, which produces a times series of cloud depth (H154

in (1)). During Bayesian inversion, we will connect KTF17 to the LES by extracting time series of155

cloud depth from the LES (see Section 3.2).156

We use the LES described in Feingold et al. (2015), with modifications. The atmospheric157

conditions derive from a well studied drizzling stratocumulus case, but unlike Feingold et al. (2015),158

the initial concentration of particles on which drops can form is about 100 cm−3 but decreases159

naturally due to droplet coalescence and rain removal processes.160

The spatial domain of the LES is 40 km by 40 km wide and 1.6 km high with a grid spacing161

of 200 m in the horizontal and 10 m in the vertical. The simulation covers a total of 12 hrs with162

a time step of one second. Simulation output is available every one minute. We disregard the first163

4.5 hours of the LES during which the system rapidly transitions from a closed-cell to an open-cell164

state. We thus only consider 7.5 hours, or 450 minutes, of simulation of an open-cell system for the165

Bayesian inversion.166

The KTF17 model describes cloud depth as a function of time, but not any other quantities167

of the LES. For this reason, we consider cloud depth of the LES and disregard most other simu-168

lation outputs with the exception of droplet concentration N and column liquid water path, (see169
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Figure 1: Snapshots, taken every 30 mins, of the 2D cloud depth field of the LES. Examples of
cloud cycles, i.e., an increase in cloud depth, followed by a decrease in cloud depth, are highlighted
by blue and red squares. After Feingold et al. (2015).

Section 3.2). Figure 1 shows snapshots of the cloud depth field over the span of 7 hrs, sampled170

every 30 minutes, which is approximately the decorrelation timescale of the cloud field.171

Figure 1 illustrates that, during the first 3.5 hrs, the system is characterized by a relatively dense172

collection of clouds with high average cloud fraction; a gradual transition to a lower cloud fraction173

then occurs as the cloud system self-organizes into a sparse collection of cloudy rings that outline174

a honeycomb-like pattern of cloud-free cells. We will refer to the first 3.5 hrs of simulation as the175

“dense phase” and to the remaining 4 hrs of simulation as the “sparse phase” (see Section 4.2). The176

droplet concentration falls from about 45 cm−3 down to 16 cm−3 during the course of the 7.5 hrs177

of simulation, as illustrated in Figure 2. We compute the droplet concentration over cloudy parts178

of the domain by averaging N vertically and horizontally over the entire domain and scale this179

average by the average cloud fraction. The consequences for parameter estimation with KTF17,180

which assumes a constant N , will be discussed in detail below.181

2.3 Bayesian inversion182

Bayesian inversion means inferring information about model parameters from data. This is done183

as follows. We denote the model parameters by the vector θθθ and we write the model as M(θθθ).184

The functionM could, for example, involve solving the KTF17 model numerically to produce time185

series of cloud depth (see below). A priori, one may know a few things about the parameters. For186

example, one may know that certain parameters must be positive to be physically relevant. In the187

Bayesian framework, such “prior knowledge” is expressed as a prior distribution p0(θθθ). Priors are188

often uniform distributions. For example, if bounds on the parameters are known, then the prior189

can be chosen uniformly within the bounds.190

For a given θθθ, the numerical model can be simulated and its output can be compared to data,191

y. Model and data are thus connected by192

y =M(θθθ) + ηηη, (2)
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Figure 2: Droplet concentration N , scaled by average cloud cover, as a function of time. The dashed
vertical line indicates the separation of the dense and sparse phases of the simulation

where ηηη represents discrepancies between the model and data, and is typically assumed to be193

Gaussian distributed with mean zero and covariance matrix R. Equation (2) then defines the194

“likelihood”195

pl(y|θθθ) ∝ exp

(
−1

2
||R−1/2(y−M(θθθ))||2

)
, (3)

where R1/2 is a matrix square root and where the vertical bars denote the Euclidean norm. The196

prior and likelihood jointly define the posterior distribution197

p(θθθ|y) ∝ p0(θθθ) pl(y|θθθ), (4)

which describes our knowledge of the parameters and their uncertainties in view of the data. This198

means, in particular, that a numerical model with parameters distributed according to the poste-199

rior distribution, is “calibrated” to the data in the sense that simulations lead to model outputs200

compatible with the data up to the assumed errors.201

2.4 Feature-based Bayesian inversion202

In many Bayesian inverse problems, the model M is an accurate and detailed representation of203

the physical process that generates that data. For example, atmospheric models used for “data204

assimilation” and global numerical weather prediction, generate the full 3D atmospheric state. In205

this case, Equation (2) directly connects model outputs to measurements of the atmospheric state206

(data). This means that the likelihood (3) is a measure of the “point-wise” model-data mismatch,207

e.g., describing the differences between the observations of the atmospheric states and the predictions208

of the atmospheric model. Below, we will use Bayesian inversion to connect the outputs of a LES209

with a very simple, phenomenological predator-prey model of stratocumulus clouds without an210

associated spatial scale. The more common, point-wise definition of a likelihood is thus not useful211

for our purposes and we use a “feature-based” approach. The idea is that while a simplified model212

may not be able to reproduce the data in their entirety, it may be able to reproduce selected aspects213

of the data, see Morzfeld et al. (2018). The selected aspects that are reproducible by the model214

are called “features”. A feature-based inverse problem thus requires that we define features that are215

comparable in the more usual “point-wise” sense.216
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Specifically, we define FM(θθθ) as a function that extracts the feature from the model and denote217

by fy the feature extracted from the data. Assuming that discrepancies between the model feature218

and the data feature can be accounted for by a random variable, we write219

fy = FM(θθθ) + εεε. (5)

If εεε is Gaussian distributed with mean zero and covariance R (with slight abuse of notation because220

R was used above for another covariance matrix), the feature-based likelihood is221

pl,f (fy|θθθ) ∝ exp

(
−1

2
||R−1/2(fy −FM(θθθ))||2

)
. (6)

We emphasize that the feature-based likelihood is defined by the Euclidian norm of the differences222

of the model feature and the data feature. The feature-based likelihood measures the point-wise223

mismatch of the features of model and data in the same way as the “usual” likelihood measures the224

point-wise mismatch between the model outputs and the data (see above). Assuming that a prior225

p0(θθθ) for the model parameters is given, the feature-based posterior distribution is226

pf (θθθ|fy) ∝ p0(θθθ) exp

(
−1

2
||R−1/2(fy −FM(θθθ))||2

)
. (7)

In summary, a model with parameters distributed according to the feature-based posterior, produces227

features that are compatible with the features extracted from the data, up to the assumed errors.228

We emphasize that the prior has a direct influence on the shape of the posterior distribution, which229

is just the product of prior and likelihood. Since parameter estimates are based on the posterior230

distribution, a different choice of prior will ultimately result in different parameter estimates.231

2.5 Markov chain Monte Carlo for the numerical solution of Bayesian inverse232

problems233

Monte Carlo methods can be used to numerically implement the (feature-based) Bayesian inversion.234

The idea is to draw samples from the posterior distribution in such a way that averages over the235

samples converge to expected values with respect to the posterior distribution when the number of236

samples, Ne goes to infinity, see, e.g., Chorin and Hald (2013). In this sense, the samples, generated237

by the Monte Carlo method, approximate the posterior distribution and can be used for inferences,238

e.g., for computing the posterior mean and covariance matrix.239

We use Markov chain Monte Carlo (MCMC) to draw posterior samples. A MCMC sampler240

operates as follows. A sample is proposed by drawing from a proposal distribution and the proposed241

sample is accepted with a probability that ensures that the stationary distribution of the Markov242

chain is the targeted posterior distribution, see, e.g., Gilks et al. (1996). The various MCMC243

samplers in the literature use different proposal mechanisms to speed up convergence, often by244

exploring specific characteristics of the sampling problem. If one does not know of a particular245

problem structure to exploit, one should use “general purpose” ensemble samplers, e.g., the affine246

invariant MCMC ensemble sampler of Goodman and Weare (2010) or the t-walk of Christen et al.247

(2010). These samplers are known to be effective for low-dimensional, nonlinear/non-Gaussian248

problems and efficient implementations are also available.249

To assess the accuracy of the MCMC solution one computes the integrated auto-correlation time250

(IACT), see, e.g., Sokal (1996); Wolff (2004). The idea is that, while MCMC samples are generally251

not independent, one can estimate an effective number of independent samples by252

Ns,eff =
Ns

IACT
, (8)
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where Ns is the number of samples from the MCMC sampler. The reasoning is that if one has, e.g.,253

106 samples, and one has computed IACTs of a few hundred, then one should expect an accuracy254

that is comparable to that computed with thousands of independent samples.255

3 Feature-based Bayesian inversion of the LES256

The KTF17 model parameters are the carrying capacity H0, the delay T , the characteristic time257

τ and the scaling factor α. We combine these four parameters in the parameter vector θθθ =258

[H0, τ, T, α]T . Our goal is to compute the model parameters θθθ by a feature-based inversion of259

the LES output. As described in Section 2.4, a feature-based inversion requires that we define a260

prior distribution and a feature-based likelihood. We now describe in detail how these distributions261

are constructed. The feature-based posterior follows from these two distributions and is used for262

inferences, numerically implemented by MCMC.263

3.1 Prior distribution264

The prior distribution describes our a priori knowledge of the KTF17 model parameters. We define265

this prior to be a uniform distribution over the set of parameters that are (i) physically relevant266

(positive); and (ii) lead to physically relevant limit cycles in KTF17. All parameters that satisfy267

these conditions, receive the same nonzero prior probability while all other parameters receive268

zero prior probability. Thus, a parameter vector θθθ = [H0, τ, T, α]T must satisfy the following four269

conditions in order to receive non-zero prior probability.270

1. All four model parameters must be positive.271

2. The characteristic time to reach carrying capacity is longer than the delay time.272

3. The parameter vector must produce solutions that are limit cycles.273

4. Cloud depth must be positive.274

For condition 3, we rely on the linear stability analysis in Koren et al. (2017). The parameters that275

lead to limit cycles in KTF17 are characterized by the real part of a dimensionless parameter β276

being positive. Here,277

β =
τ

T
W

(
−2

[√
1

µ
+

1

4
− 1

2

]
T

τ
exp

[
T

τ

])
− 1, (9)

where µ =
√
N/(ατH0) and W (·) is the Lambert-W function. In other words, limit cycles occur278

only if Re(β) > 0. Condition 4, i.e., checking for negative cloud depth, requires a simulation. For a279

given θθθ, we solve KTF17 numerically and if we detect negative cloud depth, the parameter vector280

receives zero prior probability. To streamline computations, we check for negative cloud depth after281

checking conditions 1-3.282

The prior is illustrated in terms of a “triangle plot” in the left panels of Figure 3. A triangle283

plot contains histograms of all one and two-dimensional marginals of a given distribution, arranged284

in the form of a triangle; each marginal is normalized so that the integral (area under the graph)285

is equal to one. A triangle plot is, thus, a qualitative tool that illustrates regions in parameter286

space that receive a large probability. Recall that the prior contains the information we have about287

model parameters before the data are taken into account. Per our construction of the prior, this288

means that a triangle plot of the prior illustrates regions in parameter space that lead to physically289

relevant limit cycles of cloud depth.290
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Figure 3: Left: Triangle plot of 105 samples of the prior distribution. Blue indicates a low probability
while red indicates a high probability. Right: 103 limit cycles of KTF17 corresponding to 103

parameter vectors drawn at random from the prior. The cycles are aligned to reach their peak
depths at the same time. Five examples of cloud cycles are highlighted in purple.

Generating the triangle plot requires that we draw samples from the prior which we do via291

“importance sampling” with a proposal distribution that is uniformly distributed over the four-292

dimensional hyper-cube defined by the lower and upper parameter bounds listed in Table 1 (for

H0, m τ, min T , min α, days−1m−2.5

Lower bound 0 0 0 100
Upper bound 4000 288 288 2000
Prior mean 1650 137 43 836
Prior std. dev. 1067 61 27 495

Table 1: Mean and standard deviations computed from 105 samples of the prior.
293

more details about importance sampling, see, e.g., Owen (2013); Chorin and Hald (2013)). The294

samples that constitute the triangle plot can also be used to compute prior means and standard295

deviations, listed in Table 1. We note that the standard deviations are between 40%-60% of the296

corresponding mean values, which indicates that the prior is “broad”, i.e., large parts of the parameter297

space receive non-zero prior probability.298

The “broadness” of the prior is further illustrated in the right panel of Figure 3, which shows one299

period of 103 limit cycles of KTF17 corresponding to 103 prior samples of the prior (see Section 3.2300

for details of how we compute these limit cycles). The limit cycles are arranged so that their maxima301

occur at the same instant. We observe a large variance in the period and amplitude of the cloud302

cycles. This means in particular that, a priori, we do not know the typical period or amplitude of a303

cloud depth cycle. The goal of a Bayesian inversion is to refine the prior distribution to a posterior304

distribution, which reduces variations in the cloud cycles via reducing variance in the parameters;305

the reduction of variance of the parameters is achieved by taking the LES into account.306
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Figure 4: 2D cloud depth field at t = 4 hrs at full resolution (256× 256, left) and spatially averaged
cloud depth (32×32, right). Time series of cloud depth for the locations encircled in red and orange
are shown in Figure 5.

3.2 Feature-based likelihood307

A feature-based likelihood requires that we define features of the model that can be compared308

to features extracted from the data. We now describe how we construct these features and an309

associated Gaussian error model.310

3.2.1 Data feature311

The data-feature is derived from the time varying 2D cloud depth field of the LES which defines312

256 × 256 time series of cloud depth at each grid point (with no advection present). These time313

series, however, are noisy. To reduce the effects of this noise, we spatially average the 2D cloud depth314

field over small, square “tiles” that contain a few grid points. We average cloud depth only over315

regions where cloud exists, which we define by a positive integral of the liquid water content over the316

depth of the cloud (liquid water path), taken from the LES. We considered several tile sizes for the317

averaging and settled on tiles containing 8× 8 grid points (see also Section 4.1). With a horizontal318

grid spacing of 200 m, this results in a “filter” length of about 1,600 m, which is large enough319

to smooth out noise, but retains the main aspects of the cellular structure. The full resolution320

(256× 256) and the spatially averaged (32× 32) cloud depth fields are illustrated in Figure 4.321

The spatial averaging yields 1024 time series of cloud depth, H, over 7.5 hrs. We extract cycles322

of growth and decay from these time series as follows. We first apply a temporal smoothing by323

applying a Gaussian filter with a standard deviation of 10 minutes. We then compute local extrema324

of the filtered time series via finite differencing. Two consecutive local minima define one cycle and325

each cycle (without temporal smoothing) is stored. With this procedure, we extract 297 cycles from326

the LES.327

The procedure of the feature extraction is illustrated in Figure 5. Panels (a) and (b) show H,328

after temporal and spatial smoothing, at the locations encircled in red and orange in Figure 4.329

Also shown are the extracted cycles (without temporal smoothing). The 297 cycles we compute are330

shown in light blue in panel (c); the four cycles, shown in panels (a) and (b), are also shown (in331

thicker purple, pink, brown and yellow lines). We align all cycles so that they reach their peaks at332

the same instant and pad shorter cycles with zeros, so that all cycles have a duration of 270 minutes333

(see also Section 4.1). The feature fy is the average of the 297 cycles, shown as a thick dark blue334

line in panel (c).335
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(a) (b) (c)

Figure 5: (a) Cloud depth time series after temporal smoothing (red) for the location encircled in
red in the right panel of Figure 4. Shown in purple and pink are the two cycles extracted from this
time series (without temporal smoothing). (b) Cloud depth time series after temporal smoothing
(orange) for the location encircled in orange in the right panel of Figure 4. Shown in brown and
yellow are the two cycles extracted from this time series (without temporal smoothing). (c) 297
cycles, extracted from the LES (without temporal smoothing), are shown in light blue. The cloud
cycles from panels (a) and (b) are shown in a thicker purple, pink, brown and yellow lines. The
dark blue line is the average of the 297 cycles.

3.2.2 Model feature336

The model-feature is defined as one limit cycle of KTF17. The limit cycle and the time needed to337

reach it depend on the value of the model parameters and the initial condition. During the feature-338

based Bayesian inversion, implemented by an MCMC sampler (see below), the initial conditions are339

fixed, but we need to find limit cycles corresponding to different parameter values (all with non-zero340

prior probability).341

To robustly compute limit cycles we use the following iterative scheme. We first solve KTF17342

numerically for one day (the initial condition is H(t) = 0.1 m for t ≤ 0) and approximate the time343

derivative of H(t) by finite differences to find the extrema of the cloud depth time series. The344

time instances of two consecutive local minima define one cycle of growth and decay (note that the345

data feature is defined in the same way). To check if a limit cycle is reached, we compare the root346

mean square error (RMSE) between the last two cycles and, if RMSE is less than 1 m, we stop the347

numerical solution and conclude that the system has reached its limit cycle. Otherwise, we continue348

the numerical solution of KTF17 for an additional day and, again, find local extrema to define cloud349

cycles and compute RMSE of the last two cycles. We repeat this process until two consecutive cycles350

are characterized by an RMSE of less than 1 m. The model-feature is then defined to be the last351

cycle of the cloud depth time series.352

We align the peaks of the model- and data features and modify the model-feature to have the353

same duration (270 mins) as the data feature. Specifically, if the model feature has a shorter354

duration than the data feature, we pad the model feature with zeros (symmetrically before and355

after its peak). If the model feature is longer than the data feature, we truncate it (symmetrically356

before and after its peak).357

Finally, we note that we are not aware of a proof that KTF17 has only one limit cycle for a358

given set of parameters with non-zero prior probability. Extensive numerical experiments, however,359

suggest that this is indeed the case. In particular, we performed a large number of simulations for360

several parameter vectors, drawn from the prior, starting at different initial conditions conditions361

0 < H(0) < 500 m (with H(t) = H(0) for t < 0) and, for each parameter vector, found only one362

limit cycle, independent of the initial conditions.363
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3.2.3 Gaussian error model364

To finish the construction of the feature-based likelihood we need to define the errors εεε in Equa-365

tion (5). As is customary, we assume a Gaussian distribution with a mean of zero. The covariance366

matrix that defines the error model is computed based on the variations of the 297 cloud cycles367

extracted from the LES. Specifically, we define the covariance P as the sample covariance of the368

297 cycles and then choose the covariance R of εεε in (5) as369

R = P + σ2I, (10)

where I is the identity matrix and σ = 100 m. Note that P, R and I are matrices of size 270× 270,370

because each (padded) cloud cycle has a duration of 270 mins and the time step is one minute. We371

use an additive “inflation” of the covariance P because the padding leads to small variances at the372

beginning and end of the 270 min time interval. We will assess, in hindsight, our assumptions about373

errors in the features as well as how the padding with zeros affects the results in Section 4.374

Each element of Equation (5) is now defined, which implies the feature-based likelihood by (6).375

Together with the prior, the feature-based likelihood defines the feature-based posterior, which can376

be written as377

pf (θθθ|fy) ∝

{
0 if p0(θθθ) = 0,

exp
(
−1

2 ||R
−1/2(fy −FM(θθθ))||2

)
otherwise, (11)

where R, fy and FM(θθθ) are as above.378

3.3 Numerical solution by MCMC379

We use the python implementation of the t-walk (see https://www.cimat.mx/ jac/twalk/) and the380

python implementation “emcee” of the affine invariant ensemble sampler (Foreman-Mackey et al.,381

2013). Below we only show results obtained by emcee, but results obtained by the t-walk are382

qualitatively and quantitatively similar. The emcee sampler requires an ensemble of Ne “walkers”,383

where384

Ne ≥ 2× (number of model parameters) = 8. (12)

We chose an ensemble size of Ne = 20, because larger ensemble sizes are preferable (Foreman-385

Mackey et al., 2013). The initial ensemble is generated as follows. We draw 103 samples from the386

prior distribution and, for each one, evaluate (7), which is proportional to the posterior probability.387

The 20 samples with the highest values, which also correspond to the samples with the highest388

posterior probabilities, are the initial ensemble used in emcee.389

Our code can be found at www.https://github.com/lunderman/LMGF and can generate 105390

samples in about 10 hrs and 106 samples in about 4 days (on a single core). For the results391

shown below, we discard the first Ndiscard samples as “burn-in”, where Ndiscard = 5 ·max IACT, and392

max IACT is the largest IACT of the four parameters. Based on 2 ·106 samples, we compute IACTs393

of a few hundred (see below), which indicates that the number of samples we generate is sufficiently394

large (accuracy comparable to thousands of independent samples).395

4 Results and discussion396

We perform the feature-based inversion, as described above, using a constant droplet concentration397

of N = 25 cm−3, which is the time-average of N during the 7.5 hrs of simulation considered. In this398

context, it is important to realize that the effect of a varying N over the range encountered in the399

LES has a minor effect. The reason is that Equation (1) implies that changes in N result in a scaling400
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Figure 6: Left: Triangle plot of the posterior distribution (2 · 106 samples). Right: Shown in green
are the limit cycles of KTF17 corresponding to 104 parameter vectors drawn at random from the
posterior. The LES feature (average of 297 LES cloud cycles) is shown as a dark blue line. The
light blue shaded region represents two sample standard deviations of the cloud cycles at each time
instant (representing variations in the cloud cycles extracted from the LES).

of α with the square root of N , but all other parameters are independent of the value of N . In401

particular, if α0 is estimated by assuming N = N0, then setting N → N1 results in α1 = α
√
N1/N0.402

The results of the feature-based inversion, based on an MCMC chain with 2 · 106 samples, are403

illustrated in Figure 6. The left panel shows a triangle plot of the posterior samples, obtained via404

the MCMC, and the right panel shows 104 limit cycles of KTF17, corresponding to 104 parameter405

vectors drawn at random from the posterior. Also shown are the LES feature and the variations in406

the cloud cycles extracted from the LES. This figure should be compared to Figure 3, which shows407

the same information before the Bayesian inversion, i.e., based on the prior distribution. We note408

that the posterior distribution is more sharply peaked than the prior (note the different axes in the409

triangle plots of Figures 3 and 6), which indicates that the LES derived feature indeed constrains410

all four parameters of KTF17.411

The sharpening of the prior to a feature-based posterior distribution can also be seen by com-412

puting the sample mean and sample standard deviations, listed in Table 2. We note a shift in the

H0, m τ, min T , min α, days−1m−2.5

Prior Posterior Prior Posterior Prior Posterior Prior Posterior
Mean 1650 2063 137 120 43 33 836 548
Std. 1067 722 61 48 27 7 495 176
MAP - 2062 - 131 - 36 - 450

Table 2: Mean and standard deviations of the prior and posterior distributions. The MAP of the
posterior is also listed. Posterior quantities are computed from a MCMC chain with 2 ·106 samples;
prior quantities are computed from 105 samples of the prior.

413

sample mean and a reduction in sample standard deviations from the prior to posterior distribution.414

Table 2 further lists the maximum a posteriori (MAP) estimates, i.e., the sample with the largest415
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posterior probability 1. We note that the MAP and mean are not equal, which indicates that the416

posterior distribution is not nearly Gaussian. In this context, it is also important to realize that the417

posterior mean is not a posterior sample, i.e., its posterior probability can be zero (because it may418

not satisfy all four prior constraints). For this reason, the MAP may be a more useful estimate of419

the KTF17 parameters than the posterior mean.420

The left panel of Figure 6 illustrates that cycles of KTF17, obtained by numerical solution of421

KTF17 with parameters sampled from the posterior, are well within the variations of the cloud422

cycles extracted from the LES. This indicates that our error model and the error covariance matrix423

R are reasonable. Here, we tuned, to some extent, the additive inflation defined by σ in (10). Recall424

that error models are notoriously difficult to come by because error models represent “what we do425

not know” about the system. Our approach here is to introduce a tunable covariance inflation factor,426

σ, that is selected so that the posterior uncertainties, as illustrated by the trajectory ensemble in427

the right panel of Figure 6, are reasonable, and within the expected uncertainties, derived directly428

from the LES.429

We can use the results of the feature-based inversion to investigate if the cycles of KTF17 have430

similar properties as the cycles extracted from the LES. Specifically, we can consider the period,431

amplitude, and growth and decay times of the KTF17 and LES derived cycles. Here, the period432

is the duration of the cloud cycle (without zero padding); the amplitude is the difference between433

the maximum and minimum cloud depth reached during a cycle 2. The cycle growth time describes434

how long it takes a cloud to build up to its maximum cloud depth, and the decay time describes435

how long it takes to decay from maximum cloud depth to its minimum (equivalently, the decay time436

is equal to the period minus the growth time). These four properties are computed for each cloud437

cycle extracted from the LES and for 104 KTF17 limit cycles, defined by parameters that are drawn438

from the posterior distribution. The means and standard deviations of the four cycle properties439

are listed in Table 3. We note that the mean of each cycle property, computed from KTF17, is

Period, min Amplitude , m Growth time, min Decay time, min
LES KTF17 LES KTF17 LES KTF17 LES KTF17

Mean 137 119 619 591 69 66 69 55
Std. Dev. 23 26 142 102 23 15 19 12

Table 3: Mean and standard deviations of cloud cycle properties of the LES and KTF17. LES
results are computed from 297 cycles and KTF17 results are computed from 104 simulations with
parameters drawn from the posterior distribution.

440

within one standard deviation of the mean of the corresponding property computed from the LES.441

Moreover, the standard deviations of the LES and KTF17 cycle properties are also comparable,442

which suggests an overall good “fit” of KTF17 to the LES in terms of these cycle properties.443

To report on the statistical accuracy of the MCMC solution, we list the IACTs, estimated from444

the 2 · 106 samples, of all four parameters in Table 4. The IACTs are less than 103, which indicates445

that the number of samples is sufficient to accurately compute posterior means, standard deviations446

1It is important to remember that marginal distributions, shown in the form of histograms in the triangle plots, are
not “projections” of the multivariate probability distribution. For this reason, the maxima of the posterior marginals
(histograms) do not correspond to the mode of the multivariate posterior distribution (MAP).

2We emphasize that the blue line, shown in Figure 6, is the average of the LES cycles, but taking into account
the zero padding, and stitching the cloud cycles together at their maximum value. This means that the maximum
value of the blue line in Figure 6 equals the average maximum cloud depth over all cycles, which is different from
the average amplitude in Table 3. The same reasoning explains why the average amplitude of KTF17, reported in
Table 3, is different from what one might expect by visually taking the average of the green lines in Figure 6.
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H0, m τ, min T , min α, days−1m−2.5

620 326 539 665

Table 4: Integrated autocorrelation times (computed from the 2 · 106 samples).

and the MAP, with an effective sample size in the thousands.447

4.1 Robustness of the LES feature448

The computational framework we describe, and in particular the construction of the LES feature,449

relies on several assumptions and modeling choices. The Bayesian approach and MCMC implemen-450

tation allow us to investigate, numerically, the validity of our assumptions and choices. We already451

described the effects of the error model and our choice of additive covariance inflation (see Figure 6).452

We now investigate the robustness of the LES feature to two other modeling choices: the spatial453

smoothing and the zero-padding of the cloud cycles (see Section 3.2.1).454

4.1.1 Robustness to spatial smoothing455

While it is difficult to determine the precise amount of spatial smoothing, it is clear that (i) smooth-456

ing is necessary, or else the cloud depth time series are too noisy; and (ii) that there is a maximum457

amount of smoothing that should not be exceeded, or else the effects of cloud entities are averaged458

out. We investigate this issue by performing the feature-based Bayesian inversion for three spatial459

averages over “tiles” consisting of 4×4, 8×8 and 16×16 grid points respectively. With each spatial460

averaging, we compute the data-feature and perform the Bayesian inversion via MCMC, generating461

2 · 106 samples in each configuration. In all three cases, the prior distribution is the same as above,462

because the prior is independent of the definition of features, or, equivalently, the likelihood. We also463

keep all other aspects (covariance inflation, temporal smoothing etc.), that define the data-feature,464

as above.465

Table 5 lists the posterior mean, standard deviation and MAP estimates for three spatial smooth-466

ings, computed from three MCMC runs with 2 ·106 samples. We note that the parameter estimates

H0, m τ, min T , min α, days−1m−2.5

Tile width 4 8 16 4 8 16 4 8 16 4 8 16
Mean 2344 2063 1776 114 120 141 29 33 41 560 548 458
Std. 989 722 544 48 48 49 7 7 6 183 176 83
MAP 2147 2062 2215 119 131 188 34 36 42 453 450 414

Table 5: Posterior means, standard deviations, and MAP estimates for the four parameters of
KTF17 and for the three configurations which differ in their spatial smoothing of the LES cloud
depth field. Posterior means, the MAP, and standard deviations are computed from the MCMC
chain with 2 · 106 samples.

467

for the three configurations are within a standard deviation of each other, independently of which468

standard deviation one choses to use. The only exception is the parameter T , where the estimates469

for the 16× 16 case are within two standard deviations of the 4× 4 or 8× 8 scenario. A smoothing470

over 16× 16 grid points may, therefore, be labeled as excessive.471

Nonetheless, averaging over tiles of size 4×4 or 8×8 gives nearly identical results, which indicates472

some robustness of our approach with respect to spatial smoothing. We emphasize, however, that473
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a significantly larger amount of smoothing (tiles consisting of more than 16× 16 grid points) does474

not lead to reasonable parameter estimates because the effects of cloud entities are averaged out.475

4.1.2 Robustness to padding of LES cycles476

In the construction of the LES feature, cycles are aligned at their peaks of cloud depth. The cycles477

are then “padded with zeros” so that all cycles have the same duration (270 min). The LES feature478

is simply the average of the padded cycles. Below, we call this construction “Version (a)”. We now479

investigate the consistency of the parameter estimation results when we choose another method to480

derive the LES feature that does not make use of zero padding.481

In “Version (b)”, we again align all cloud cycles at their peaks, but rather than padding with482

zeros, we average only those cycles that “exist”, i.e., which have non-zero cloud depth at a given time483

instant. We further exclude all instances where less than 10 cycles exist. The error covariance of εεε484

for Version (b) is computed in the same way as in Version (a). Figure 7 illustrates the LES feature of485

versions (a) and (b). Note that the duration of the average in Version (b) is shorter than in Version486

(a) because we only consider instances when at least 10 cycles are non-zero and longer cycles occur487

less frequently. We further note that near the peak, these two versions are equal because, at peak488

times, zero padding in Version (a) has no effect and no cycles are excluded in Version (b) because489

more than 10 cycles exist.490

We perform a feature-based Bayesian inversion for LES features constructed using versions (a)491

and (b) and, as before, generate 2 · 106 samples by MCMC. Results are shown in Table 6.

H0, m τ, min T , min α, days−1m−2.5

Version (a) Version (b) V. (a) V. (b) V. (a) V. (b) V. (a) V. (b)
Mean 2063 2008 120 126 33 35 548 526
Std. 722 684 48 50 7 9 176 180
MAP 2062 2321 131 164 36 38 450 430

Table 6: Posterior means, standard deviations and MAP estimates for the four parameters of KTF17
and for the two configurations which differ in their calculation of the LES feature. Version (a) and
Version (b) correspond to the two LES features shown in Figure 7. Posterior means, the MAP and
standard deviations are computed from the MCMC chain with 2 · 106 samples.

492

We note that the parameter estimates resulting from versions (a) and (b) are not significantly493

different. The reason is that most KTF17 cycles occur between 50 and 200 minutes (see Figure 6),494

i.e., when the two LES features of versions (a) and (b) are similar. The similarities between these495

two posterior distributions can also be seen in the marginal distributions in Figure 8. The left panel496

shows a triangle plot of the posterior distribution of Version (a) and the left panel shows a triangle497

plot of the posterior distribution of Version (b). In both panels, the plots on the diagonals show the498

one-dimensional marginal distributions of both posteriors in black (Version (a)) and blue (Version499

(b)). In summary, the similarity in the parameter estimates and posterior distributions of Versions500

(a) and (b) suggests that estimation framework we describe is robust to small changes in the details501

of how one calculates the data feature.502

4.2 Studying changes in cloud system morphology503

The Bayesian inversion and the KTF17 model will prove useful if one can map meteorological504

conditions to changes in the parameters of KTF17. We illustrate how to do this with a simple505

example in which we start to investigate the effects of large-scale changes within the cloud field on506
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(a) (b)

Figure 7: Padding vs. no padding 

Figure 7: Cloud cycles and data feature of Version (a) (left) and Version (b) (right). Light blue:
LES cycles. Thick blue: LES feature.

Figure 8

Figure 8: Left: triangle plot of the posterior distribution of Version (a). Right: triangle plot of the
posterior distribution of Version (b). The diagonal plots of each panel show the one-dimensional
marginals of both distributions (in black for Version (a), in blue for Version (b)). All plots are based
on 2 · 106 MCMC samples.

the parameters of KTF17. We base this investigation on only one LES, which represents one cloud507

system and, for that reason, our results and conclusion are limited.508

We note that the cloud system undergoes a change in its morphology from a relatively dense509

cloud configuration with a higher average cloud fraction to a sparse coverage with a lower average510

cloud fraction (see Figure 1). During this transition, the droplet concentration also decreases (see511

Figure 2). The transition occurs roughly at the 3.5 hour mark and aligns with a change in the512

thickness of the boundary layer, whose thickness increases until about 3.5 hours, and then decreases.513

To investigate the effects of the morphological change in the macro-structure of the cloud system514

on the parameters of KTF17, we perform two feature-based inversions as follows. We separate515

the cloud cycles, extracted from the LES, into two groups: cycles occurring before and after the516

transition from the dense to the sparse cloud cover, i.e., before or after 3.5 hr. For example, the517

cloud cycles shown in purple and brown in panels (a) and (b) of Figure 5 occur before the transition518

(dense phase), but the cycles shown in pink and yellow occur after the transition (sparse phase).519

In this way, we obtain 166 cycles during the dense phase and 131 during the sparse phase, shown520

along with their averages (using zero-padding) in Figure 9.521
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Fig.9: Dense (left) vs sparse (right) 

(a) (b)

Figure 9: Cloud cycles and data feature for the dense (a) and sparse phases (b). Light blue: LES
cycles. Thick blue: LES feature.

We compute data-features separately for the dense and sparse phases using the techniques522

described above (using the default spatial smoothing over tiles consisting of 8 × 8 grid points and523

Version (a), i.e., zero padding of the cycles). In this way, we define feature-based likelihoods for524

the dense and sparse phases. We use the same prior for the dense and sparse phases to define525

two posterior distributions. We assign the time average of the droplet concentration in Figure 2,526

computed separately over the dense and sparse phases, as the values used for N in the Bayesian527

inversion. Specifically, we chose N = 31 cm−3 for the dense phase and N = 20 cm−3 for the sparse528

phase. As before, we use the MCMC sampler to draw 2·106 samples from the posterior distributions529

associated with the dense and sparse phases.530

Table 7 lists parameter estimation results for the two dense and sparse phases. We note that

H0, m τ, min T , min α, days−1m−2.5

Dense Sparse Dense Sparse Dense Sparse Dense Sparse
Mean. 2028 1886 122 110 36 32 525 535
Std. 615 616 45 44 6 7 117 166
MAP 2112 2408 130 165 36 36 483 405

Table 7: Maximum a posterior (MAP) estimate, posterior mean and posterior standard deviation
for the dense and sparse phases, computed from MCMC chains with 2 · 106 samples.

531

the parameter estimates (posterior mean and MAP) are within one standard deviation of each532

other. Furthermore, the parameter estimates listed in Table 7 are comparable with the parameters533

in Table 5, which are estimated based on all cloud cycles extracted from the LES (i.e., cycles in534

dense and sparse configurations). Similarities and differences in the parameter estimates can also535

be illustrated by triangle plots of the two posterior distributions, shown in Figure 10. The left panel536

shows the posterior distribution associated with the dense phase; the right panel shows the posterior537

distribution associated with the sparse phase. It is apparent that the posterior distributions are538

quite similar, but it is also apparent that there are differences, especially in the delay T and the539

scaling factor α.540

It is difficult to determine whether or not the differences in the parameter estimates are sig-541

nificant. Taking into account the standard deviations as an indicator of uncertainty, one may be542

tempted to conclude that the differences are not significant. One can study this further by compar-543

ing the differences in parameter estimates induced by the dense and sparse phases, with differences544

induced by variations in the smoothing or paddings. Figure 11 illustrates this point and shows 1D545
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Figure 10: Dense (N = 31cm^-3) vs Sparse (N = 20cm^-3)

Figure 10: Left: triangle plot of the posterior distribution associated with the dense phase. Right:
triangle plot of the posterior distribution associated with the sparse phase. The diagonal plots of
each panel show the one-dimensional marginals of both distributions (in black for the dense, in blue
for the sparse phase). All plots are based on 2 · 106 MCMC samples.

Figure 11: Marginal posterior distributions over the four parameters. Left to right: H0, τ, T and α.
Green: 8×8 spatial smoothing, zero padding, all cycles. Blue: 4×4 spatial smoothing, zero padding,
all cycles. Red: 8 × 8spatial smoothing, no padding, all cycles. Orange: 8 × 8 spatial smoothing,
zero padding, dense cycles. Purple: 8× 8 spatial smoothing, zero padding, sparse cycles.

posterior marginals over the four parameters for five of the cases considered. Three of the cases546

(green, blue and red in Figure 11) indicate uncertainty in parameter estimates induced by variations547

in the numerical setup. Variation in the posterior distributions indicates the variability one should548

expect due to different choices in the numerics. We then overlay the posterior distributions defined549

by only the dense or only the sparse phase cycles (orange and purple in Figure 11). The variation of550

these distributions indicates variability in the parameter estimates caused by changes in the large551

scale structure of the cloud system. We note, as before, the largest differences in the delay T and552

the scaling factor α.553

One can further investigate how differences in the parameter estimates propagate to character-554

istics of the cloud cycles, such as their period, amplitude, and growth and decay times (see above555

for definitions). We compute the period, amplitude, and growth and decay times based on the LES556

for three cases (i) using all cycles; (ii) using only cycles of the dense phase; (iii) using only cycles557

of the sparse phase. We then repeat this procedure for the KTF17 model with parameters drawn558

from the posterior distributions corresponding to the above three cases. Figure 12 illustrates this559

point. Here we plot the average and standard deviation of the cloud cycle properties for the LES560

(left) and KTF17 (right) for the three cases; all quantities are scaled by the associated mean value561
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Figure 12: Mean and standard deviation of the period, amplitude, growth time and decay time of
cloud cycles. Left: LES. Right: KTF17. Blue diamond – all cycles. Orange circle – dense cycles.
Green square– sparse cycles. All quantities are scaled by the average values computed from all
cycles of the LES.

of the LES case (i). We note that the properties of the LES do not change dramatically when562

moving from dense to sparse phases. Moreover, the cycle properties of KTF17 are comparable with563

those of the LES, but we observe a larger spread in the amplitude. Since the cycle properties do564

not change much during the transition from the dense to the sparse phase, one might expect that565

parameters of the KTF17 model should also be largely unaffected by this transition. Taking also the566

similarities in the parameter estimates and posterior distributions into account, one might conclude567

that the cycles of cloud patches within a cloud system may not necessarily be affected by changes568

in the macro-structure of the cloud system. This conclusion, however, is based on a single LES,569

which represents a case study with specific large-scale and thermodynamic boundary conditions. It570

is conceivable that KTF17 parameters will be sensitive to these boundary conditions.571

5 Summary and conclusions572

Stratocumulus clouds are an important part of the Earth system and have a large effect on Earth’s573

overall radiative balance and climate. For these reasons, stratocumulus cloud systems are studied574

computationally by a hierarchy of models ranging from simplified, phenomenological models to cloud575

resolving simulations of the atmosphere. We described a conceptual and computational strategy576

for turning a simplified, phenomenological model into a quantitative tool. Specifically, we use the577

nonlinear rain equation (KTF17) and estimate its parameters from the outputs of a large eddy578

simulation (LES).579

The main technical difficulty for such a parameter estimation is that the phenomenological model580

and the LES operate in vastly different regimes in terms of what the two models are actually capable581

of. In particular, the LES has temporal and spatial scales, whereas KTF17 has no associated spatial582

scale. We overcame these difficulties by realizing that the KTF17 model produces cycles of cloud583

growth and decay that are comparable to cycles within the LES. We use cycles of growth and decay584

to define “features” and base the parameter estimation on these features. This includes deriving585

error models for the features which in turn allows us to formulate the parameter estimation problem586

within the Bayesian framework. The resulting Bayesian inverse problem is solved numerically by a587
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Markov chain Monte Carlo method, which allows us to assess posterior uncertainties.588

We carefully studied the validity of our assumptions and modeling choices. The error model,589

which is notoriously difficult to construct because it represents “what we do not know”, was set up to590

have one tunable parameter (defining an additive covariance inflation). This parameter is tuned so591

that posterior uncertainties are reasonable and match the variability in the cycles derived from the592

LES. In addition, we investigated the robustness of our approach to the details of the construction593

of the features (spatial smoothing of the LES cloud depth fields and zero-padding of resulting594

cloud cycles). Stringent tests of this type are necessary to show that the estimated parameters are595

precise enough for drawing conclusions. Our numerical experiments indeed suggest that the KTF17596

model, with parameters distributed according to the feature-based posterior distribution, is robustly597

capable of representing cloud cycle properties of a LES.598

As an illustration of how one may use a simplified model as a quantitative tool, we investigated599

the sensitivity of the KTF17 parameters to morphological changes within the cloud system simulated600

by the LES. The system evolves from relatively dense cloud configuration to a sparse coverage (see601

Figure 1). The KTF17 parameters do not change significantly during the morphological transition602

of the system, which suggests that cycles of cloud growth and decay of cloud patches may be603

independent of the large-scale behavior of the system. This result, however, is conditional on the604

one LES we considered and it is likely that the KTF17 parameters are indeed sensitive to changes605

in other meteorological conditions, e.g., in the boundary conditions. Future work will explore this606

idea with a range of LES in different meteorological conditions.607
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