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Abstract 
We present a method for enabling the researcher to create empirically informed, and thus 
realistic, random trajectories between two endpoints. The method used relies on empirical 
distribution functions, which define a dynamic drift expressed in a stepwise joint probability 
surface. We create random discrete time-step trajectories that connect spatiotemporal points 
while maintaining a predefined geometry, often based on real observed trajectory. The 
resulting trajectories can be used a)to generate null models for hypotheses testing, b)as a 
basis for resource selection models, through the integration of spatial context and c)to 
quantify space use intensity.  

1.! Introduction 
Random trajectories have been increasingly used in movement ecology since their 
introduction in the early 1980s (Kareiva and Shigesada 1983), gaining significant popularity 
in the last two decades (Turchin 1998). A wide range of case studies have used the concept, 
addressing multiple questions related to movement and space use. The majority of the 
examples found in the literature, however, share one characteristic: the movement has only 
one restrictive point, the start. Consequently, the simulation is forced to start at a specific 
location, but can then move according to the set conditions in the given space. In the real 
world however, this is not always useful: when studying migration patterns (Codling et al.  
2010), nest borrowing (Waldeck et al. 2008), or fusion of high and low frequency GPS 
points, etc. the ability to specify the ending point is crucial.  Technitis et al. (2015) introduced 
RTG, an algorithm that enables the user to create randomly varying, possible trajectories 
between endpoints, based on principles of Time Geography.  
 
In this paper we substantially extend this algorithm. We present a methodology to connect 
two endpoints by generating empirically informed random trajectories, respecting 
characteristics of the moving object. Our approach is based on core theoretical concepts of 
Time Geography in combination with the Random Walk movement model, and most 
importantly, we use empirical data to inform our modelling process.  

2.! Background 
Space-time prisms (STP) assist us in calculating the points accessible in space, given the time 
budget and the maximum speed of an agent (Kuijpers, et al. 2010). The calculated path space 
(in three dimensions defined by x,y  and t), and more specifically its 2-D spatial projection, 
also known as potential path area (PPA), is a homogenous area within which the trajectory 
lies. The concept of the STP is very intuitive, although it accounts only for the maximum 
speed of the mover, gives no information regarding the preference of the mover within the 
given boundaries, and the result is an area, not an individual trajectory. 
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Bartumeus et al. (2005) highlighted the need for movement ecology to add directional 
persistence into movement modelling, in order to reproduce realistic animal movement, as 
noted previously by others (Kareiva and Shigesada 1983; Bovet and Benhamou 1988).  
Aiming at this gap, Fleming et al. (2014) described a framework that supports the estimation 
of auto-correlated movement processes, which was later used in home range estimation. 
Finally, Technitis et al. (2015) presented an algorithm capable of efficiently generating 
random trajectories between a given origin and destination, with the least bias possible, 
within the bounds of the STP, honoring speed and time-budget limitations. The significant 
assumption of this algorithm is that for each step all space-time reachable points are equally 
probable to be selected. The trajectories derived from this algorithm are all possible, yet not 
all of them realistic, as they ignore typical movement characteristics of the moving object.  
In summary, the direction that movement modeling is taking in ecology seems clear: starting 
from random walk models, these were successively extended by STP principles and point-to-
point constraints. However, what is still missing is the integration of empirically informed 
movement parameters that can lead to realistic trajectories.  

3.! Algorithm 
Our algorithm generates trajectories with given set of movement characteristics between two 
points, in discrete time-steps. The main motivation for creating probable trajectories is that 
these points represent an arbitrary pair of consecutive fixes of a trajectory, typically placed at 
a significant distance due to coarse sampling rate. Both points exert an effect on the agent’s 
movement, though of different nature: the probability based on the starting point(A) 
expresses the ‘local’ decisions of a moving individual, such as the step-length and direction 
used for each relocation, performing a correlated random walk with fixed starting point, that 
assumes no a priori knowledge about the context of the movement (e.g. resource 
distributions).  
 

 
Figure 1. Workflow of generating the relocation of the next point of a trajectory.  
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On the other hand the probability based on the ending point(B), is a gravitational-type 
reminder, that the mover should head towards the desired endpoint. Depending on the time 
left and the current location this force is adjusted and acts as a dynamic drift parameter, 
applying the necessary bias towards the destination. The model can be described by a mean-
reverting Ornstein-Uhlenback process in which “individuals [are] drifting randomly but 
attracted to an average point” (Smouse et al. 2010).  The intensity of the attraction becomes 
higher, as time is running out, ensuring that the mover is within reach of the destination at 
any point in time. The flow of the methodology has three steps. First we pre-process the 
recorded data and calculate the summary statistics of the movement characteristics. Next, 
starting from the origin, Figure 1.i, we calculate for each time step the probability surface 
based on the movement characteristics extracted. Then, we calculate the attraction to the 
destination for the entire study area (Figure 1.ii) given the remaining number of steps to the 
end point, resulting in a probability surface for each time step. The number of time-steps(n) is 
the quotient of the duration of the walk and the simulation time interval set by the user. The 
last step is to combine the two surfaces into a joint probability (Figure 1.iii) out of which we 
sample the next location of the individual. The procedure is repeated over all time-steps, 
generating in a new trajectory. 

4.! Results and Discussion 
The proposed algorithm was evaluated in depth on both synthetic and real data. We show an 
example using synthetic data, where we created three template trajectories using a correlated 
random walk, out of which our algorithm derived the empirical distributions of movement 
characteristics. 

 
Figure 2. Sample of the results generated (gray) out of three initial datasets (black). 
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Each template resembles a different behavior of a potential animal, namely migration, 
foraging and opportunistic behavior. Figure 2 shows the simulated trajectories in gray and the 
created trajectories in black. While these illustrations suggest in a visual way that the 
simulated trajectories indeed resemble the original ones in their characteristics (though each 
takes a different path, as expected), we also conducted an in-depth statistical evaluation to 
establish that the empirical distributions of the generated trajectories on average match those 
of the original templates. The next step for this work is to optimize the algorithm’s 
performance and incorporate the context’s effect on the mover’s behaviour. 
 

Acknowledgements 
This research represents part of the PhD project of the first author. Funding by the Swiss 
State Secretariat for Education, Research and Innovation (SERI) through project CASIMO 
(C09.0167) is gratefully acknowledged. 
 

References 
Bartumeus F, da Luz M G E, Viswanathan G M and Catalan J, 2005, “Animal Search Strategies: A Quantitative 

Random-Walk Analysis.” Ecology 86 (11): 3078–3087. 
Bovet P and Benhamou S, 1988, “Spatial Analysis of Animals’ Movements Using a Correlated Random Walk 

Model.” Journal of Theoretical Biology 131: 419–433. doi:10.1016/S0022-5193(88)80038-9. 
Codling E, Bearon R , and Thorn G J, 2010, “Diffusion about the Mean Drift Location in a Biased Random 

Walk.” Ecology 91 (10): 3106–3113. http://.ncbi.nlm.nih.gov/pubmed/21058570. 
Fleming C, Calabrese J, Mueller T, Olson K, Leimgruber P and Fagan W F, 2014, “Non-Markovian Maximum 

Likelihood Estimation of Autocorrelated Movement Processes.” Methods in Ecology and Evolution 5 (5): 
462–472. doi:10.1111/2041-210X.12176. 

Kareiva P M, and Shigesada N, 1983, “Analyzing Insect Movement as a Correlated Random Walk.” Oecologia 
56 (2-3): 234–238. doi:10.1007/BF00379695. 

Kuijpers B, Grimson B and Othman W, 2010, “An Analytic Solution to the Alibi Query in the Space–time 
Prisms Model for Moving Object Data.” International Journal of Geographical Information Science 25 
(2): 1–13. doi: 10.1080/13658810902967397. 

Smouse P E, Focardi S, Moorcroft P R, Kie J K, Forester J D and Morales J M, 2010, “Stochastic Modelling of 
Animal Movement.” Philosophical Transactions of the Royal Society of London. Series B, Biological 
Sciences 365 (1550): 2201–2211. doi:10.1098/rstb.2010.0078. 

Technitis G, Othman W, Safi K and Weibel R, 2015, “From A to B, Randomly: A Point-to-Point Random 
Trajectory Generator for Animal Movement.” International Journal of Geographical Information Science 
8816 (November): 1–24. doi:10.1080/136588100240930. 

Turchin P, 1998, Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in 
Animals and Plants. Sinauer. 

Waldeck P, Andersson M, Kilpi M and Öst M, 2008 “Spatial Relatedness and Brood Parasitism in a Female-
Philopatric Bird Population.” Behavioral Ecology 19 (1): 67–73. doi:10.1093/beheco/arm113. 

 
 
 
 
 
 
 
 
 

GIScience 2016 Short Paper Proceedings

295




