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Maternal infection during pregnancy increases risk of neurodevelop-
mental disorders such as schizophrenia and autism spectrum disorder
(ASD) in offspring. In rodents, maternal immune activation (MIA)
yields offspring with schizophrenia- and ASD-like behavioral abnor-
malities. Soluble epoxide hydrolase (sEH) plays a key role in in-
flammation associated with neurodevelopmental disorders. Here we
found higher levels of sEH in the prefrontal cortex (PFC) of juvenile
offspring after MIA. Oxylipin analysis showed decreased levels of
epoxy fatty acids in the PFC of juvenile offspring after MIA, supporting
increased activity of sEH in the PFC of juvenile offspring. Furthermore,
expression of sEH (or EPHX2) mRNA in induced pluripotent stem cell-
derived neurospheres from schizophrenia patients with the 22q11.2
deletion was higher than that of healthy controls. Moreover, the ex-
pression of EPHX2mRNA in postmortembrain samples (Brodmann area
9 and 40) from ASD patients was higher than that of controls. Treat-
ment with 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea
(TPPU), a potent sEH inhibitor, in juvenile offspring from prenatal day
(P) 28 to P56 could prevent cognitive deficits and loss of parvalbumin
(PV) immunoreactivity in the medial PFC of adult offspring after MIA.
In addition, dosing of TPPU to pregnant mothers from E5 to P21 could
prevent cognitive deficits, and social interaction deficits and PV im-
munoreactivity in the medial prefrontal cortex of juvenile offspring
after MIA. These findings suggest that increased activity of sEH in the
PFC plays a key role in the etiology of neurodevelopmental disorders
in offspring after MIA. Therefore, sEH represents a promising prophy-
lactic or therapeutic target for neurodevelopmental disorders in off-
spring after MIA.

epoxy fatty acid | ER stress | iPSCs | maternal infection | prevention

Epidemiological studies implicate prenatal environmental
factors, including maternal immune activation (MIA), in

playing a key role in the etiology of neurodevelopmental disorders
such as schizophrenia and autism spectrum disorder (ASD) (1–7). A
number of studies suggest associations between maternal infections
or inflammatory biomarkers and schizophrenia and ASD (2–4, 7).
For example, there are key epidemiological results supporting as-
sociations between maternal infectious pathogens (i.e., influenza
virus, herpes simplex virus, Toxoplasma gondii, rubella, and bacterial
pathogens) and inflammatory biomarkers (i.e., cytokines and C-
reactive protein) and schizophrenia (2, 7, 8). The Finnish Prenatal
Studies birth cohort showed that elevated maternal levels of C-
reactive protein in early to midgestation was related to an increased
risk of ASD in offspring (9), although maternal midpregnancy levels
of C-reactive protein were related to a decreased risk of ASD (10).
A meta-analysis suggests that maternal infection during pregnancy
increases the risk of ASD in offspring (4). Collectively, MIA during
pregnancy can increase the risk of neurodevelopmental disorders in
offspring. The onset of schizophrenia and ASD is in young adult-
hood and before 3 y of age, respectively. However, the precise

mechanisms underlying MIA-induced increase of the risk for neu-
rodevelopmental disorders remain largely unknown.
Although animal models are limited in their generalizability to

neurodevelopmental disorders, accumulating studies demonstrate the
neurobiological pathways between MIA and neurodevelopmental
disorders (7). A number of studies make use of immune-activating
agents that primarily stimulate the innate immune system, such as
the synthetic double-stranded RNA analog polyriboinosinic-
polyribocytidilic acid [poly(I:C)], a Toll-like receptor 3 agonist
(11–15). Offspring of prenatal rodents exposed to poly(I:C)
mimic schizophrenia (or ASD)-like behavioral abnormalities in
adulthood (or childhood), although the MIA model using poly(I:
C) does not reproduce the full spectrum of immune responses
normally induced by infectious pathogens (7).
Many epoxy fatty acids (EpFAs) are produced from the cor-

responding olefins by cytochrome P450 enzymes. Epoxyeicosa-
trienoic acids (EETs) and epoxydocosapentaenoic acids (EDPs)
are produced from arachidonic acid and docosahexaenoic acid
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(DHA), respectively. EETs, EDPs, and some other EpFAs have
potent antiinflammatory properties. However, these mediators
are broken down into their corresponding diols by soluble ep-
oxide hydrolase (sEH), and inhibition of sEH enhances the
beneficial effects of EpFAs such as EETs (16–18). Potent anti-
inflammatory effects of EETs and key role of sEH have been
reported in multiple animal models, including pain, obesity,
depression, and Parkinson’s disease (19–27). However, there are
no reports showing the role of sEH in the pathogenesis of neu-
rodevelopmental disorders in offspring after MIA.
The purpose of this study was to examine the role of sEH in

the pathogenesis of neurodevelopmental disorders in offspring
after MIA. First, we examined whether expression of sEH is
altered in the brain regions of juvenile offspring after neonatal
poly(I:C) exposure. Next, we performed oxylipin analysis of brain
regions from juvenile offspring after MIA. Second, using induced

pluripotent stem cells (iPSCs), we examined whether expression
of sEH (or EPHX2) mRNA is altered in the neurospheres from
iPSCs from patients with schizophrenia with the 22q11.2 deletion
since patients with the microdeletion exhibit a spectrum of
cognitive deficits, and ∼30% of them develop typical schizo-
phrenia in adolescence or early adulthood (28, 29). Furthermore,
we measured the expression of EPHX2 mRNA in postmortem
brain samples from ASD patients, as well as age-matched control
subjects. Third, we examined whether 1-trifluoromethoxyphenyl-3-
(1-propionylpiperidin-4-yl)urea (TPPU), a potent sEH inhibitor (22,
30, 31), during juvenile and adolescent stages could prevent be-
havioral abnormalities and reduction of parvalbumin (PV) and
glutamic acid decarboxylase (GAD67) immunoreactivity (IR) in the
medial prefrontal cortex (mPFC) in adult offspring after MIA.
Furthermore, the effects of TPPU on endoplasmic reticulum (ER)
stress in the brain from adult offspring after MIA were also

Fig. 1. Increased expression of sEH and decreased levels of epoxy fatty acids in the brain from juvenile offspring after MIA. (A) Schedule of treatment and
brain collection. (B) Protein expression of sEH in the mouse brain regions from juvenile offspring after prenatal poly(I:C) exposure. Data are shown as mean ±
SEM (n = 7 or 8). (C) Gene expression of Ephx2 mRNA in the mouse brain regions from juvenile offspring after prenatal poly(I:C) exposure. Data are shown as
mean ± SEM (n = 6). (D) Tissue levels of four EpFAs such as 10,11-EpDPE; 11,12-EpETrE; 8,9-EpETrE; and 5,6-EpETrE in the PFC from juvenile offspring after
MIA. The values represent the mean ± SEM. (n = 10 or 11). *P < 0.05, **P < 0.01 compared with control group (two-tailed Student t test). N.S, not significant.
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examined. Finally, we examined whether treatment of TPPU in
pregnant mice from pregnancy to weaning could prevent be-
havioral abnormalities in juvenile offspring after MIA.

Results
Levels of sEH and Eicosanoid Metabolites in the Brain from Juvenile
Offspring After MIA. First, we examined whether expressions of
sEH are altered in the brain regions from juvenile offspring of
mice after neonatal treatment with poly(I:C) (5 mg/kg/d from
E12 to E17) (Fig. 1A). Levels of sEH in the PFC from juvenile
offspring from poly(I:C)-treated mice are significantly higher
than those of saline-treated mice (Fig. 1B). In contrast, there
were no changes of sEH in other brain regions such as striatum
and hippocampus (CA1, CA3, dentate gyrus) (Fig. 1B). Fur-
thermore, expressions of sEH (or Ephx2) mRNA in the PFC, but
not in other regions, from juvenile offspring from poly(I:C)-treated
mice are significantly higher than those of saline-treated mice
(Fig. 1C).
Using oxylipin analysis, we measured tissue levels of eicosa-

noid metabolites in the PFC, hippocampus, and cerebellum from
juvenile offspring after neonatal poly(I:C) (or saline) exposure (SI
Appendix, Fig. S1 and Tables S1–S3). Tissue levels of 10,11-
EpDPE (10,11-epoxy-4Z,7Z,13Z,16Z,19Z-docosapentaenoic acid),
11,12-EpETrE [(5Z,8Z,14Z)-11,12-epoxyicosa-5,8,14-trienoate],
8,9-EpETrE (8,9-epoxy-5Z,11Z,14Z-eicosatrienoic acid), 5,6-EpE-
TrE [N-((+/−)-5,6-epoxy-8Z,11Z,14Z-eicosatrienoyl)-ethanolamine],
and 6-keto-PGF1α in the PFC from juvenile offspring after MIA
were significantly lower than those of control mice (Fig. 1D and SI
Appendix, Table S1). In contrast, tissue levels of 19,20-DiHDPE
[(4Z,7Z,10Z,13Z,16Z)-19,20-dihydroxydocosa-4,7,10,13,16-pentaenoic
acid] in the PFC from juvenile offspring after MIA were signif-
icantly higher than those of control mice. Lower levels of these
epoxy eicosanoids (10,11-EpDPE; 11,12-EpETrE; 8,9-EpETrE;
5,6-EpETrE) in the PFC from juvenile offspring after MIA
support the increased expression of sEH in this region. Fur-
thermore, tissue levels of thromboxane B2, 19,20-DiHDPE,
EKODE [12,13-epoxy 9-keto-10(trans)-octadecenoic acid], and
9-oxo-ODE (9-oxo-10E,12Z-octadecadienoic acid) in the hip-
pocampus from juvenile offspring after MIA were significantly
higher than those of control mice (SI Appendix, Table S2). In
contrast, there were no changes of eicosanoid metabolites in
the cerebellum between two groups (SI Appendix, Table S3).

Increased Expression of sEH in the Neurospheres from iPSCs from
Patients with Schizophrenia and Postmortem Brain Samples from ASD
Patients. iPSC technologies have provided an unprecedented oppor-
tunity to establish pluripotent stem cells from patients with schizo-
phrenia and differentiate them into a neuronal lineage, enabling an
in vitro recapitulation of the pathogenesis of the disease (32). Pre-
viously, we reported that expression of sEH in the parietal cortex
[Brodmann area (BA) 7] from schizophrenia patients was signifi-
cantly higher than that of controls (22). Therefore, we measured
whether sEH gene expression alters in the neurospheres from iPSCs
from schizophrenia patients with the 22q11.2 deletion (SI Appendix,
Table S4) and healthy controls (33). Expression of EPHX2mRNA in
the neurospheres from iPSCs with schizophrenia patients was sig-
nificantly higher than that of healthy control subjects (Fig. 2A).

Next, we measured expression of EPHX2 mRNA in the post-
mortem brain samples (BA09, BA21, BA40) from ASD patients
and age- and gender-matched controls (SI Appendix, Table S5)
(34). Expression of EPHX2 mRNA in the BA09 and BA40 from
ASD patients was significantly higher than that of controls (Fig. 2
B and D). Expression of EPHX2 mRNA in the BA21 from ASD
patients was slightly higher than that of controls, but statistical
analysis did not reach statistical significance (Fig. 2C). Collec-
tively, it is likely that increased expression of sEH may play a role
in the pathogenesis of schizophrenia and ASD.

Effects of TPPU Treatment During Juvenile and Adolescent Stages on
Cognitive Deficits and Reduction of PV- and GAD67-IR in the mPFC of
Adult Offspring After MIA. Cognitive impairment is the core symp-
tom in patients with schizophrenia (35). Previously, we reported
that juvenile offspring of prenatal poly(I:C)-treated mice showed
cognitive deficits and the reduction of PV-IR in the mPFC (36–
39). Here we examined whether TPPU (15 mg/L) in drinking
water during juvenile and adolescent stages [from prenatal day (P)
28 to P56] could prevent cognitive deficits and reduction of PV-IR
in the mPFC of adult offspring after MIA. In the open field test,
locomotion was unchanged among the four groups (Fig. 3B).
There was no difference among the four groups in training ses-
sions of the novel object recognition test (NORT). However, in
the retention session of NORT, the exploratory preference of the
poly(I:C) + TPPU group was significantly higher than that of the
poly(I:C) + water group (Fig. 3C). There were no changes in
the body weight among the four groups (SI Appendix, Fig. S2).
These findings suggest that TPPU in drinking water from P28 to
P56 could improve cognitive deficits in adult offspring after MIA.
Furthermore, we performed PV and GAD67 immunohisto-

chemistry at adulthood (10 wk) (Fig. 3D). PV-IR in the prelimbic
(PrL), not IL (infralimbic), of mPFC in the offspring of poly(I:
C)-treated mice was significantly lower than that of the saline-
treated group (Fig. 3D). PV-IR in the PrL (not IL) of the mPFC
of the poly(I:C) + TPPU group was significantly higher than that
in the poly(I:C) + control group (Fig. 3D).
GAD67, a key enzyme of γ-aminobutyric acid synthesis, is

reported to be lower in the PFC from schizophrenic patients (40,
41). GAD67-IR in the PrL and IL of mPFC in the offspring of
poly(I:C)-treated mice was significantly lower than that of the
saline-treated group (Fig. 3E). GAD67-IR in the PrL (not IL) of
the mPFC of the poly(I:C) + TPPU group was significantly
higher than that in the poly(I:C) + control group (Fig. 3E).
These findings suggest that TPPU in drinking water from P28 to
P56 could prevent the reduction of PV- and GAD67-IR in the
PrL of the mPFC in adult offspring after MIA.

Role of sEH in ER Stress in the Mouse Brain from Juvenile Offspring
After MIA. It is reported that the sEH inhibitor attenuates acti-
vation of the ER (26, 42–44). In this study, we examined the
effects of TPPU on ER stress in the brain regions from juvenile
offspring after MIA. We found increased levels of three key
sensors in the ER stress-signaling pathway, including PKR-like
ER-resident kinase (PERK), inositol-requiring enzyme 1α
(IRE1α), and activating transcription factor 6 (ATF6) (SI Ap-
pendix, Fig. S3 A and B). Levels of the associated downstream
targets were elevated, suggesting full-scale activation of the ER

Fig. 2. Increased expression of EPHX2 mRNA in the
neurospheres from iPSC of schizophrenia patients
and postmortem brain samples from ASD patients.
(A) Gene expression of EPHX2 mRNA in the neuro-
spheres from iPSC from schizophrenia patients with
the 22q11.2 deletion was significantly higher than
that of healthy controls. Data are shown as mean ±
SD (n = 12). *P < 0.05 compared with control group
(one-tailed Student t test). (B) Gene expression of
EPHX2 mRNA in the BA09 and BA40, but not BA21, from ASD patients was significantly higher than that of controls. Data are shown as mean ± SD; *P < 0.05
and **P < 0.01 compared with control group (one-tailed Student t test).
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stress pathway (26, 43). Accordingly, phosphorylation of eukaryotic
initiation factor 2 subunit α (eIF2α), mediated by phospho-PERK,
was also increased. Phosphorylation of IRE1α led to a significant
rise in total protein levels of spliced X-box–binding protein 1
(Xbp1), as well as levels of the ER chaperone-binding Ig protein
(Bip). Increased phosphorylation of p38 and c-jun NH2-terminal
kinase (JNK) 1/2 was also observed. Pharmacological inhibition by
TPPU significantly attenuated ER stress in the brain regions from
offspring after MIA (SI Appendix, Fig. S3 A and B).

Effect of TPPU in Drinking Water on Cognitive and Social Interaction
Deficits and in Juvenile Offspring of Prenatal Mice Exposed to Poly(I:
C). The pregnant mice were administrated with vehicle or TPPU
(15 mg/L in drinking water) from E12 to 3-wk-old mice (P21).
Subsequently, normal drinking water was given to all male off-
spring for an additional 2 wk (from 3 to 5 wk old). Behavioral
tests were performed at 4–5 wk of age (Fig. 4A). There were no
differences of locomotion among the four groups (Fig. 4B). Two-
way ANOVA analysis of NORT data in the training session
revealed no significant interaction among four groups (Fig. 4C).
In the retention session of NORT, two-way ANOVA analysis
revealed a significant effect among four groups (Fig. 4C).

Exploratory preference of poly(I:C) + water group was signifi-
cantly lower than that of saline + water group or poly(I:C) +
TPPU group (Fig. 4C).
In the three-chamber social interaction test, TPPU in drinking

water significantly improved social interaction deficits in juvenile
offspring after MIA (Fig. 4D). Furthermore, TPPU in drinking
water significantly attenuated reduction of PV-IR in the PrL in
the mPFC of juvenile offspring after MIA (Fig. 4E).

Discussion
The present results demonstrate a key role of sEH in the path-
ogenesis of neurodevelopmental disorders in offspring after
MIA. The major findings of the present study are as follows:
First, expression of sEH protein in the PFC from juvenile off-
spring after MIA was higher than that of control group. Oxylipin
analysis showed lower levels of EpFAs in the PFC from juvenile
offspring after MIA, supporting higher levels of sEH in this re-
gion. Second, we found higher expression of EPHX2 mRNA in
the neurospheres from iPSC of schizophrenia patients compared
with healthy controls. In addition, we found higher expression of
EPHX2 mRNA in the postmortem brain samples from ASD
patients compared with control group. Third, TPPU in drinking

Fig. 3. Effects of TPPU on behavioral abnormalities
and the reduction of PV-IR and GAD67-IR in the mPFC
of adult offspring afterMIA. (A) Schedule of treatment
and brain collection. Saline or poly(I:C) (5 mg/kg/d for
6 d) was administered i.p. to pregnant mice. Vehicle
or TPPU (15 mg/L) in drinking water was adminis-
tered to juvenile offspring from P28 to P56. Sub-
sequently, all mice received normal water. Locomotion
and NORT were performed when the mice were 10 wk
old. Brain for immunohistochemistry was collected at
P72. (B) Locomotion test. (C ) NORT. (D) PV immu-
nohistochemistry. (E) GAD67 immunohistochemistry.
*P < 0.05, **P < 0.01, and ***P < 0.001 compared
with poly(I:C) + vehicle group. IL: infralimbic of me-
dial prefrontal cortex. N.S, not significant. PrL, pre-
limbic of medial prefrontal cortex. Detailed statistical
analysis data are in SI Appendix, Table S6.
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water during the juvenile and adolescent stages of offspring after
MIA prevented cognitive deficits and reduction of PV-IR and
GAD67-IR in the PrL of the mPFC at adulthood after MIA.
Furthermore, TPPU in drinking water during the juvenile and
adolescent stages of offspring after MIA significantly attenuated
ER stress in the PFC from adult offspring after MIA. Finally,
TPPU in drinking water in poly(I:C)-treated pregnant mice from
pregnancy (E12) to weaning (P21) could prevent the onset of
cognitive deficits and social interaction deficits and reduction of PV-
IR in the mPFC in juvenile offspring after MIA. Collectively, these
findings suggest that sEH plays a key role in the pathogenesis of
neurodevelopmental disorders such as schizophrenia and ASD and
that sEH inhibitors may prove to be promising prophylactic or
therapeutic drugs for these disorders.
In this study, we found increased expression of sEH protein in

the PFC of juvenile offspring after prenatal poly(I:C) exposure,
although expression of sEH in other regions (striatum and hip-
pocampus) remained the same. Thus, it seems that increases in
the sEH in the PFC might play a role in the behavioral and

biochemical abnormalities seen in juvenile offspring after MIA.
Previously, we reported increased levels of sEH in the parietal
cortex from schizophrenia patients compared with controls (22).
In this study, we found higher levels of EPHX2 mRNA in the
neurospheres from iPSC from schizophrenia patients and in the
postmortem brain samples from ASD patients. These findings
suggest that increased metabolism of EpFAs in the corre-
sponding diols by increased sEH may play a role in the patho-
genesis of schizophrenia and ASD, although further detailed
studies on how prenatal poly(I:C) exposure induces abnormali-
ties in the eicosanoid metabolism by sEH and behavioral ab-
normalities in juveniles and adults are needed.
Tissue levels of EpFAs were significantly lower in the PFC

from juvenile offspring after MIA than in those of control mice,
supporting an increased activity of sEH in the PFC. The EpFAs
such as 11,12-EpETrE, 8,9-EpETrE, and 5,6-EpETrE are me-
tabolized to its corresponding diol, dihydroxyeicosatrienoic acid,
by sEH (Fig. 1D). It is known that EETs such as EpETrE are
important components of many intracellular signaling pathways

Fig. 4. Effects of TPPU on behavioral abnormalities
and the reduction of PV-IR in the mPFC of juvenile
offspring after MIA. (A) Schedule of treatment and
brain collection. Saline or poly(I:C) (5 mg/kg/d for 6 d)
was administered i.p. into pregnant mice. Vehicle or
TPPU (15 mg/L) in drinking water was administered to
pregnant mice from E12 to P21. Subsequently, all mice
received normal water. Locomotion and NORT were
performed after P28. Brain tissue for immunohisto-
chemistry was collected after behavioral tests. (B) Lo-
comotion test. (C) NORT. (D) Three-chamber social
interaction test. (E) PV immunohistochemistry. De-
creased PV-IR in the PrL of mPFC of juvenile offspring
after prenatal poly(I:C) exposure was significantly at-
tenuated by TPPU in drinking water. Data are shown as
mean ± SEM (n = 6–8). *P < 0.05, **P < 0.01, and
***P < 0.001, compared with poly(I:C) + vehicle group.
IL, infralimbic of medial prefrontal cortex. N.S, not sig-
nificant. PrL, prelimbic of medial prefrontal cortex.
Detailed statistical analysis data are in SI Appendix,
Table S6.
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in both cardiac and extracardiac tissues (45) and that EETs and
some other EpFAs possess potent antiinflammatory properties
(23, 46). Although the precise mechanisms underlying the re-
lationship between EpETrEs and sEH in the PFC from juvenile
offspring after MIA are currently unclear, it seems that increased
metabolism of 10,12-EpETrE, 8,9-EpETrE, and 5,6-EpETrE by
increased levels of sEH in the PFC may be involved in behavioral
abnormalities of offspring after MIA. By contrast, we found in-
creased levels of EKODE in the hippocampus of juvenile off-
spring after MIA although levels of sEH were not altered.
Although the reasons underlying this discrepancy are currently
unknown, it seems that multiple pathways may contribute to
formation and degradation of EKODE in the hippocampus.
Further detailed study on the metabolism of EKODE in neu-
rodevelopmental disorders is needed (SI Appendix, Supplemen-
tary Information Text).
In conclusion, these findings suggest that increased sEH and

subsequent decreased EpFAs might play a key role in the eti-
ology of neurodevelopmental disorders in offspring after MIA.

Therefore, sEH inhibitors appear to be prophylactic or therapeutic
drugs for MIA-related neurodevelopmental disorders such as
schizophrenia and ASD.

Materials and Methods
Details of the experimental protocols, including animals, materials, MIA
model, Western blot analysis, RT-PCR, oxylipin analysis, human iPSCs, im-
munohistochemistry, and statistical analysis are given in SI Appendix.
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