
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Learning to Capture, Understand, and Generate Large-Scale 3D Scenes

Permalink
https://escholarship.org/uc/item/9jr4v4t0

Author
Zhang, Xiaoshuai

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9jr4v4t0
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Learning to Capture, Understand, and Generate Large-Scale 3D Scenes

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Xiaoshuai Zhang

Committee in charge:

Professor Hao Su, Chair
Professor Nikolay Atanasov
Professor Ravi Ramamoorthi
Professor Rose Yu

2024



Copyright

Xiaoshuai Zhang, 2024

All rights reserved.



The Dissertation of Xiaoshuai Zhang is approved, and it is acceptable in

quality and form for publication on microfilm and electronically.

University of California San Diego

2024

iii



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Learning to Capture, Understand, and Generate Large-Scale 3D Scenes . . . 1
1.2 Challenges in Large-Scale 3D Scene Capturing and Understanding . . . . . . 2

1.2.1 Data Acquisition and Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Representation and Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Semantic Understanding and Interaction . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Overview of Techniques and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1 Fast and Scalable Radiance Field Reconstruction for Indoor Scenes 4
1.3.2 Compact and Efficient 3D Scene Representation with Local Radiance

Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 Large-Scale Consistent 2D-3D Pre-Training with Dense and Sparse

Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.4 Fast 3D Scene Generation by Lifting Panorama Images from 2D

Diffusion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Fast and Scalable Radiance Field Reconstruction for Indoor Scenes . . 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Sparse Volumes for Radiance Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Reconstructing Local Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Fusing Volumes for Global Reconstruction . . . . . . . . . . . . . . . . . . . . . 17
2.3.4 Training and optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Model Analysis and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iv



Chapter 3 Compact and Efficient 3D Scene Representation with Local Radiance
Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Scene Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.3 Instance Label Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.4 Efficient Nerflet Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.1 Novel View Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.2 2D Panoptic Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.3 Scene Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.4 3D Panoptic Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Model Analysis and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7 Conclusion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Chapter 4 Large-Scale Consistent 2D-3D Pre-Training with Dense and Sparse
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.1 2D Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.2 3D Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.3 2D-3D Consensus with 2D Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4.4 Key Point Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6.1 3D Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.6.2 2D Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6.3 Cross-Modality Scene Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Model Analysis and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.7.1 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.7.2 Feature Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.7.3 Cross-Modality Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.7.4 Effect of Data Amount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.7.5 Backbone Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.7.6 Effect of NeRF Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.8 Conclusions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Chapter 5 Fast 3D Scene Generation by Lifting Panorama Images from 2D Diffu-
sion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

v



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Panorama Image Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.2 Navigable 3D Scene from a Single Panorama Image . . . . . . . . . . . . . 96

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4.1 3D Scene Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4.2 Geometry Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Conclusion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

vi



LIST OF FIGURES

Figure 2.1. Overview of NeRFusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.2. Illustration of the NeRFusion architecture . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.3. Illustration of GRU Fusion Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 2.4. Qualitative comparisons on novel view synthesis . . . . . . . . . . . . . . . . . . 25

Figure 2.5. Effect of fine-tuning NeRFusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.6. Effect of input view numbers on NeRFusion. . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.1. Illustration of the nerflet method and applications . . . . . . . . . . . . . . . . 32

Figure 3.2. Illustration of information maintained by a nerflet vs. a NeRF . . . . . 37

Figure 3.3. Illustration of sampling and blending for nerflets . . . . . . . . . . . . . . . . . 39

Figure 3.4. Novel view synthesis results with nerflets on KITTI-360 scenes . . . . . 49

Figure 3.5. Novel view semantic synthesis results with nerflets on KITTI-360 scenes 50

Figure 3.6. Novel view synthesis results with nerflets on ScanNet scenes . . . . . . . . 51

Figure 3.7. Scene editing results with nerflets on KITTI-360 scenes . . . . . . . . . . . 52

Figure 3.8. Scene editing results comparison on ScanNet scenes . . . . . . . . . . . . . . . 53

Figure 3.9. Panoptic label prediction results with nerflets on a ScanNet scene . . 54

Figure 3.10. Visualization of nerflets on KITTI-360 scenes . . . . . . . . . . . . . . . . . . . . 54

Figure 3.11. Comparison of reference panoptic segmentation and our prediction on
ScanNet scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 4.1. Overview of ConDense applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 4.2. Illustration of the ConDense pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 4.3. Illustration of key point prediction in ConDense . . . . . . . . . . . . . . . . . 71

Figure 4.4. Visualization of 2D dense features from ConDense . . . . . . . . . . . . . . 84

Figure 4.5. Visualization of query of different data modalities with ConDense . 85

vii



Figure 5.1. Overview of the Pano3D pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 5.2. Image-conditioned panorama image generation results . . . . . . . . . . . . 96

Figure 5.3. Overview of the Pano3D reconstruction pipeline . . . . . . . . . . . . . . . . . . 97

Figure 5.4. Text-conditioned 3D scene generation results . . . . . . . . . . . . . . . . . . . . . 101

Figure 5.5. Image-conditioned 3D scene generation results . . . . . . . . . . . . . . . . . . . 102

viii



LIST OF TABLES

Table 2.1. Quantitative comparisons on the ScanNet dataset . . . . . . . . . . . . . . . . . 23

Table 2.2. Quantitative comparisons on the NeRF Synthetic dataset . . . . . . . . . . 24

Table 2.3. Comparison of few-shot novel view synthesis on the DTU dataset . . . 26

Table 2.4. Comparison on geometry reconstruction on DTU dataset . . . . . . . . . . . 28

Table 3.1. Novel view color and semantic synthesis results on the KITTI-360
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table 3.2. Novel view synthesis results on the ScanNet dataset . . . . . . . . . . . . . . . 48

Table 3.3. Panoptic segmentation results of nerflets on ScanNet 3D point clouds 48

Table 3.4. Ablation study on regularization terms . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 3.5. Ablation study on number of nerflets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 3.6. Ablation study on top-k evaluation on nerflets . . . . . . . . . . . . . . . . . . . . 55

Table 4.1. Quantitative evaluation of NeRF quality on the ConDense pre-training
datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 4.2. 3D classification results of ConDense on ScanObjectNN and Model-
Net40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table 4.3. 3D segmentation results of ConDense on ScanNet and S3DIS . . . . . 78

Table 4.4. 3D detection results of ConDense on ScanNet . . . . . . . . . . . . . . . . . . . 78

Table 4.5. 2D classification and segmentation results of ConDense on various
datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Table 4.6. 2D retrieval results of ConDense on MVImgNet and ReaEstate10k . 80

Table 4.7. Depth estimation results of ConDense with frozen features . . . . . . . . . 81

Table 4.8. Stereo depth estimation results of ConDense on DTU . . . . . . . . . . . . . 81

Table 4.9. 3D scene retrieval and 3D scene duplicate detection results of Con-
Dense on various datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Table 4.10. Ablation study on the ConDense pre-training pipeline . . . . . . . . . . . . 83

ix



Table 4.11. Study on the amount of training data for ConDense on the 3D
classification task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Table 4.12. Study on the amount of training data for ConDense on the 3D
segmentation task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Table 4.13. Performance with different backbones for the ConDense pipeline . . . 86

Table 4.14. Ablation study on NeRF quality in the pre-training dataset. . . . . . . . . 87

Table 5.1. Quantitative analysis of novel view synthesis quality . . . . . . . . . . . . . . . 100

Table 5.2. Quantitative analysis of geometry accuracy of generated 3D scenes . . 100

x



ACKNOWLEDGEMENTS

I am deeply grateful to my PhD advisor, Professor Hao Su, for his unwavering

guidance and support throughout my doctoral journey. His profound insights and dedication

have not only shaped this dissertation but also significantly contributed to my growth

as a researcher. Professor Su’s commitment to pushing the boundaries of knowledge

and his openness to exploring new ideas have inspired me to pursue academic excellence

with courage and curiosity. I am truly thankful for the opportunity to learn from such a

remarkable scholar.

In addition, I extend my heartfelt gratitude to Professor Leonidas Guibas, whose

unparalleled knowledge and unique perspectives have greatly enriched my research during

my time at Stanford and Google Research. His ability to connect contemporary challenges

with traditional graphics and learning methods, even those from decades ago, has pro-

vided invaluable insights that have deepened my understanding of the field. Despite his

demanding schedule, Professor Guibas has always made time for thoughtful discussions,

and his wisdom has played a crucial role in shaping my research journey.

My sincere thanks go out to all my labmates who accompanied me throughout this

painstaking yet rewarding journey, including (in alphabetical order): Rui Chen, Jiayuan

Gu, Songfang Han, Zhiao Huang, Zhiwei Jia, Zhan Ling, Fangchen Liu, Isabella Liu,

Yulin Liu, Tongzhou Mu, Yuzhe Qin, Ruoxi Shi, Fanbo Xiang, and Xiaodi Yuan. Special

thanks are due to Minghua Liu and Xinyue Wei. Your camaraderie, encouragement,

and willingness to share knowledge have made the challenges easier to overcome and the

successes more meaningful. The countless discussions, late-night Zoom brainstorming

sessions, and shared experiences have not only contributed to my growth as a researcher

but also created memories I will cherish for a lifetime. I am truly grateful to have been

part of such a supportive and inspiring community.

I also wish to express my profound gratitude to the brilliant minds I had the

privilege of working with during my industry internships, where I found not only mentors

xi



but also lifelong friends. To Jen-Hao Rick Chang, Ashish Shrivastava, Hema Swetha

Koppula, and Oncel Tuzel at Apple, your guidance and support were invaluable. At

Adobe, I am deeply thankful to Zexiang Xu, Sai Bi, and Kalyan Sunkavalli for your

insights and collaboration. And at Google, my sincere thanks go to Kyle Genova, Zhicheng

Wang, Howard Zhou, Abhijit Kundu, Soham Ghosh, Danushen Gnanapragasam, Varun

Jampani, Thomas Funkhouser, Guandao Yang, Songyou Peng, and Mikaela Angelina

Uy. Each of you has contributed to my growth in ways I will always appreciate, and the

knowledge, inspiration, and friendships forged during our time together will remain with

me throughout my career.

I feel incredibly fortunate to have collaborated with so many brilliant researchers,

whose expertise and dedication have enriched this journey in countless ways. I would like

to express my sincere thanks to each of you (listed alphabetically): Anpei Chen, Linghao

Chen, Xi Chen, Xuejin Chen, Haian Jin, Ang Li, Leizhi Li, Dai Liu, Zhu Liu, Qing Ran,

Jianyu Tao, Yijia Weng, Hongzhi Wu, Chao Xu, Jing Xu, Edward Yang, Kaizhi Yang,

Jingyi Yu, Peiyu Zeng, Chong Zeng, Mengqi Zhang, Fuqiang Zhao, and Xiaowei Zhou.

Collaborating with you has been a truly rewarding experience, and I have learned so much

from each of you. Thank you for your insights, dedication, and the shared commitment to

advancing our research.

My deepest gratitude goes to the cherished ones I have loved, liked, and fallen for

along this journey. The PhD path has not been without its storms, and the same can be

said for the beautiful, albeit sometimes bittersweet, moments shared with you. I treasure

the unforgettable memories and precious time spent together, which have continually

inspired me to grow into a better person. To my dear friends and those closest to my

heart, Jiahao Ye, Zifeng Li, Ziwei Zheng, Zhuangze Huang, Xuezheng Hong, Zeyu Pan,

and many more, your steadfast support and companionship have been the pillars that held

me up during the most challenging times. I truly couldn’t have come this far without you

by my side. I hope I have brought you as much joy and support as you have given me,

xii



and I look forward to continuing this journey together, staying connected, and creating

even more lasting memories.

Lastly, but with the deepest reverence, I would like to express my profound gratitude

to my parents and family. Your unconditional love has been the foundation upon which

all my achievements rest. I am eternally grateful for the wisdom and life lessons you

have imparted to me, shaping not only my mind but also my character. Your boundless

trust and support have given me the freedom to pursue my dreams and make choices that

have led me to where I am today. With your constant encouragement, I have grown into

the person I am, surrounded by happiness and a deep sense of fulfillment. I am forever

indebted to you for the love, strength, and guidance that have illuminated my path.

Chapter 2, in full, is a reprint of the material published in the 2022 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR): “NeRFusion: Fusing

Radiance Fields for Large-Scale Scene Reconstruction” (Xiaoshuai Zhang, Sai Bi, Kalyan

Sunkavalli, Hao Su, Zexiang Xu). The dissertation author was the primary investigator

and author of this paper.

Chapter 3, in full, is a reprint of the material published in the 2023 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR): “Nerflets: Local Radi-

ance Fields for Efficient Structure-Aware 3D Scene Representation from 2D Supervision”

(Xiaoshuai Zhang, Abhijit Kundu, Thomas Funkhouser, Leonidas Guibas, Hao Su, Kyle

Genova). The dissertation author was the primary investigator and author of this paper.

We sincerely thank Yueyu Hu, Nilesh Kulkarni, Songyou Peng, Mikaela Angelina Uy,

Boxin Wang, and Guandao Yang for useful discussion and help on experiments. We also

thank Avneesh Sud for feedback on the manuscript.

Chapter 4, in full, is a reprint of the material published in the 2024 European

Conference on Computer Vision (ECCV): “ConDense: Consistent 2D/3D Pre-training

xiii



for Dense and Sparse Features from Multi-View Images” (Xiaoshuai Zhang, Zhicheng

Wang, Howard Zhou, Soham Ghosh, Danushen Gnanapragasam, Varun Jampani, Hao Su,

Leonidas Guibas). The dissertation author was the primary investigator and author of

this paper. Our thanks go to Hao-Ning Wu and Bhav Ashok for their support in building

large-scale pose estimation and NeRF pipeline for dataset pre-processing.

xiv



VITA

2019 Bachelor of Science, Peking University

2024 Master of Science, University of California San Diego

2024 Doctor of Philosophy, University of California San Diego

PUBLICATIONS

[1] Xiaoshuai Zhang, Zhicheng Wang, Howard Zhou, Soham Ghosh, Danushen Gnanapragasam, Varun
Jampani, Hao Su, and Leonidas Guibas. “ConDense: Consistent 2D/3D Pre-training for Dense and
Sparse Features from Multi-View Images”, European Conference on Computer Vision (ECCV), 2024

[2] Kaizhi Yang, Xiaoshuai Zhang, Zhiao Huang, Xuejin Chen, Zexiang Xu, and Hao Su. “MovingParts:
Motion-based 3D Part Discovery in Dynamic Radiance Field”, International Conference on Learning
Representations (ICLR), 2024

[3] Minghua Liu, Chong Zeng, Xinyue Wei, Ruoxi Shi, Linghao Chen, Chao Xu, Mengqi Zhang, Zhaoning
Wang, Xiaoshuai Zhang, Isabella Liu, Hongzhi Wu, and Hao Su. “MeshFormer : High-Quality Mesh
Generation with 3D-Guided Reconstruction Model”. Under review

[4] Xiaoshuai Zhang*, Rui Chen*, Ang Li, Fanbo Xiang, Yuzhe Qin, Jiayuan Gu, Zhan Ling, Minghua Liu,
Peiyu Zeng, Songfang Han, Zhiao Huang, Tongzhou Mu, Jing Xu, and Hao Su. “Close the Optical
Sensing Domain Gap by Physics-Grounded Active Stereo Sensor Simulation”, IEEE Transactions on
Robotics (T-RO), 2023, vol. 39, no. 3, pp. 2429-2447

[5] Rui Chen, Isabella Liu, Edward Yang, Jianyu Tao, Xiaoshuai Zhang, Qing Ran, Zhu Liu, Jing Xu, and
Hao Su. “ActiveZero++: Mixed Domain Learning Stereo and Confidence-Based Depth Completion
with Zero Annotation”, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
2023, vol. 45, no. 12, pp. 14098-14113

[6] Haian Jin, Isabella Liu, Peijia Xu, Xiaoshuai Zhang, Songfang Han, Sai Bi, Xiaowei Zhou, Zexiang Xu,
and Hao Su. “TensoIR: Tensorial Inverse Rendering”, Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2023, pp. 165-174

[7] Xiaoshuai Zhang, Abhijit Kundu, Thomas Funkhouser, Leonidas Guibas, Hao Su, and Kyle Genova.
“Nerflets: Local Radiance Fields for Efficient Structure-Aware 3D Scene Representation from 2D
Supervision”, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2023, pp. 8274-8284

[8] Jen-Hao Rick Chang, Ashish Shrivastava, Hema Swetha Koppula, Xiaoshuai Zhang, and Oncel Tuzel.
“Style Equalization: Unsupervised Learning of Controllable Generative Sequence Models”, International
Conference on Machine Learning (ICML), 2022, pp. 2917-2937

xv



[9] Xiaoshuai Zhang, Sai Bi, Kalyan Sunkavalli, Hao Su, and Zexiang Xu. “NeRFusion: Fusing Radiance
Fields for Large-Scale Scene Reconstruction”, Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022, pp. 5449-5458

[10] Isabella Liu, Edward Yang, Jianyu Tao, Rui Chen, Xiaoshuai Zhang, Qing Ran, Zhu Liu, and Hao Su.
“ActiveZero: Mixed Domain Learning for Active Stereovision With Zero Annotation”, Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 13033-13042

[11] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu, and Hao Su.
“MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo”, Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 14124-14133

[12] Minghua Liu, Xiaoshuai Zhang, and Hao Su. “Meshing Point Clouds with Predicted Intrinsic-Extrinsic
Ratio Guidance”, European Conference on Computer Vision (ECCV), 2020, pp. 68-84

[13] Jiaying Liu, Dong Liu, Wenhan Yang, Sifeng Xia, Xiaoshuai Zhang, and Yuanying Dai. “A Compre-
hensive Benchmark for Single Image Compression Artifact Reduction”, IEEE Transactions on Image
Processing (TIP), 2020, vol. 29, pp. 7845-7860

[14] Rosaura G. VidalMata, Sreya Banerjee, Brandon RichardWebster, Michael Albright, Pedro Davalos,
Scott McCloskey, Ben Miller, Asong Tambo, Sushobhan Ghosh, Sudarshan Nagesh, Ye Yuan, Yueyu
Hu, Junru Wu, Wenhan Yang, Xiaoshuai Zhang, Jiaying Liu, Zhangyang Wang, Hwann-Tzong Chen,
Tzu-Wei Huang, Wen-Chi Chin, Yi-Chun Li, Mahmoud Lababidi, Charles Otto, and Walter J. Scheirer.
“Bridging the Gap Between Computational Photography and Visual Recognition”, IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 2020, vol. 43, no. 12, pp. 4272-4284

[15] Shaofan Cai*, Xiaoshuai Zhang*, Haoqiang Fan, Haibin Huang, Jiangyu Liu, Jiaming Liu, Jiaying Liu,
Jue Wang, and Jian Sun. “Disentangled Image Matting”, Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2019, pp. 8819-8828

[16] Xinlei Pan*, Weiyao Wang*, Xiaoshuai Zhang*, Bo Li, Jinfeng Yi, and Dawn Song. “How You Act
Tells a Lot: Privacy-Leakage Attack on Deep Reinforcement Learning”, International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS), 2019, pp. 368-376

[17] Xiaoshuai Zhang*, Yiping Lu*, Jiaying Liu, and Bin Dong. “Dynamically Unfolding Recurrent Restorer:
A Moving Endpoint Control Method for Image Restoration”, International Conference on Learning
Representations (ICLR), 2019

[18] Xiaoshuai Zhang, Wenhan Yang, Yueyu Hu, and Jiaying Liu. “DMCNN: Dual-domain Multi-scale
Convolutional Neural Network for Compression Artifacts Removal”, 2018 25th IEEE International
Conference on Image Processing (ICIP), 2018, pp. 390-394

xvi



ABSTRACT OF THE DISSERTATION

Learning to Capture, Understand, and Generate Large-Scale 3D Scenes

by

Xiaoshuai Zhang

Doctor of Philosophy in Computer Science

University of California San Diego, 2024

Professor Hao Su, Chair

As the world becomes increasingly digitized, the demand for advanced 3D scene

understanding has expanded beyond academic research into practical applications such

as virtual reality (VR), augmented reality (AR), autonomous robotics, urban planning,

and entertainment industries like gaming and film. The central aim of this dissertation is

to push the boundaries of how we capture, interpret, and generate these large-scale 3D

scenes, advancing both theoretical understanding and practical implementations.

Our key contributions include a novel framework, NeRFusion, for fast and scalable

radiance field reconstruction, specifically designed for large indoor environments. By

utilizing recurrent neural networks and sparse voxel grids, this framework achieves a

xvii



balance between geometric accuracy and photorealism, significantly improving efficiency

over traditional methods. Additionally, this dissertation introduces “nerflets”, an innovative

3D scene representation that breaks down complex scenes into smaller, interpretable

radiance fields. This allows for more efficient storage and enhanced semantic understanding,

enabling advanced tasks like 3D panoptic segmentation and interactive scene editing. The

dissertation also proposes the ConDense pre-training scheme, which unifies 2D and 3D

feature learning. Through a ray-marching process inspired by Neural Radiance Fields

(NeRF), ConDense ensures consistent 2D-3D feature alignment during pre-training,

improving performance across various downstream tasks, such as 2D and 3D classification

and segmentation tasks, and cross-modality scene query and retrieval. Finally, the

dissertation briefly touches on a novel methodology for generating 3D scenes by combining

2D diffusion models with 3D implicit scene representations, highlighting a promising

direction for further study in the field.

The research pushes the boundaries of 3D scene capturing, understanding, and

generation, offering solutions that are both practical and theoretically significant. These

innovations not only advance the field but also provide valuable tools for industries reliant

on high-fidelity 3D environments, paving the way for more intelligent, interactive digital

worlds.

xviii



Chapter 1

Introduction

1.1 Learning to Capture, Understand, and Gener-
ate Large-Scale 3D Scenes

The ability to capture, understand, and generate large-scale 3D scenes is a critical

capability at the intersection of computer vision, robotics, and computer graphics. As the

world becomes increasingly digitized, the demand for advanced 3D scene understanding

has expanded beyond academic research into practical applications such as virtual reality

(VR), augmented reality (AR), autonomous robotics, urban planning, and entertainment

industries like gaming and film. The central aim of this dissertation is to push the

boundaries of how we capture, interpret, and generate these large-scale 3D scenes, advancing

both theoretical understanding and practical implementations.

In recent years, 3D scene understanding has evolved from simple geometric re-

construction to more complex tasks that require a deep comprehension of the scene’s

semantics, dynamics, and interrelationships between objects. These advancements are

crucial for applications that demand not just a static snapshot of an environment but

a rich, interactive model that can be manipulated, explored, and analyzed in real-time.

For instance, in autonomous driving, the ability of a vehicle to perceive its surroundings

accurately, including recognizing and predicting the movement of objects within the scene,

directly impacts its safety and efficiency. Similarly, in VR/AR, the generation of realistic

1



and interactive environments hinges on the accurate reconstruction and understanding of

3D spaces.

The motivation behind this dissertation stems from the limitations of existing

methods in dealing with large-scale 3D environments, which are often characterized by

their complexity, diversity, and the need for real-time processing. Traditional methods,

while effective in controlled settings or with limited scope, struggle with scalability,

efficiency, and generalization. This work seeks to address these challenges by introducing

novel methodologies that leverage the latest advances in deep learning, neural rendering,

and multi-modal data fusion to improve the capture, understanding, and generation of

large-scale 3D scenes.

1.2 Challenges in Large-Scale 3D Scene Capturing
and Understanding

Understanding large-scale 3D scenes poses a multitude of challenges that arise from

the inherent complexity of the environments, the vast amounts of data involved, and the

need for high levels of accuracy and efficiency in processing. These challenges can be

broadly categorized into three main areas: data acquisition and processing, representation

and storage, and semantic understanding and interaction.

1.2.1 Data Acquisition and Processing

The first major challenge lies in the acquisition of 3D data, which must capture

the intricate details of large and complex environments. Traditional methods rely on

RGB-D cameras, LiDAR, or multi-view stereo techniques, each with its own limitations.

RGB-D sensors, while capable of capturing depth information alongside color, are often

limited in range and resolution, leading to incomplete or noisy data. LiDAR provides

high-resolution point clouds but is expensive and generates enormous datasets that are

challenging to process in real-time. Multi-view stereo techniques, on the other hand,

2



require a large number of images and careful calibration, making them impractical for

dynamic or large-scale scenes.

Moreover, processing this data to create a coherent 3D representation involves

significant computational resources. Techniques such as volumetric fusion and point

cloud processing need to handle the large volume of data efficiently while maintaining

accuracy. Errors in data acquisition, such as occlusions or varying lighting conditions,

further complicate the processing pipeline, often requiring sophisticated algorithms to fill

in missing information or correct for inconsistencies.

1.2.2 Representation and Storage

Once the data is acquired, representing it in a form that is both compact and

capable of supporting various downstream tasks is another significant challenge. Traditional

representations like voxel grids or mesh models, while straightforward, suffer from scalability

issues as the resolution of the scene increases. High-resolution voxel grids, for example,

require enormous amounts of memory, making them impractical for large-scale scenes.

Mesh models, although more efficient in terms of memory usage, struggle with representing

complex geometries and dynamic scenes.

Recently, neural representations have emerged as a promising alternative. Methods

such as Neural Radiance Fields (NeRF) have shown remarkable success in generating

photorealistic images from sparse 2D views by encoding the scene within a neural network.

However, these methods are computationally intensive and typically require optimization

for each individual scene, limiting their applicability to real-time or large-scale scenarios.

Furthermore, they often lack the ability to represent scene semantics, which is crucial for

tasks such as object recognition, segmentation, and interaction.

3



1.2.3 Semantic Understanding and Interaction

Beyond geometric reconstruction, a deeper understanding of the scene’s semantics is

essential for enabling intelligent interaction with the environment. Semantic understanding

involves recognizing and classifying objects within the scene, understanding their spatial

relationships, and interpreting the scene’s overall structure. This level of understanding is

necessary for a wide range of applications, from autonomous navigation and manipulation

in robotics to interactive editing and augmentation in AR/VR.

The challenge here is twofold. First, existing methods often require extensive

labeled 3D datasets for training, which are expensive and time-consuming to acquire.

Second, even with sufficient data, achieving real-time performance while maintaining high

accuracy remains a significant hurdle. Many state-of-the-art methods are either too slow

for practical use or lack the robustness needed to handle the diversity and variability

present in real-world scenes.

1.3 Overview of Techniques and Contributions

This dissertation addresses these challenges by introducing several novel techniques

designed to enhance the capture, understanding, and generation of large-scale 3D scenes.

The following sections outline the key contributions of this work, each aimed at overcoming

specific limitations in the current state of the art.

1.3.1 Fast and Scalable Radiance Field Reconstruction for
Indoor Scenes

One of the central contributions of this dissertation is the development of a fast and

scalable framework for radiance field reconstruction, specifically tailored for large-scale

indoor scenes. Traditional reconstruction methods, such as Truncated Signed Distance

Function (TSDF) fusion, focus primarily on geometry and are limited in their ability

to produce realistic visualizations. On the other hand, neural rendering techniques like

4



NeRF offer photorealistic results but are computationally prohibitive and typically require

per-scene optimization, making them unsuitable for large-scale or real-time applications.

This dissertation introduces a novel approach that leverages recurrent neural

networks (RNNs) to incrementally build a sparse radiance field from a sequence of RGB

images. By utilizing sparse voxel grids and tri-linearly interpolated neural features,

the proposed method achieves a balance between geometric accuracy and photorealism,

while significantly reducing the computational overhead. Unlike previous methods that

optimize a global neural network for each scene, this approach generalizes across different

scenes, making it more practical for applications that require quick adaptation to new

environments.

1.3.2 Compact and Efficient 3D Scene Representation with
Local Radiance Fields

Another major contribution is the introduction of "nerflets," a novel representation

that offers a more compact and interpretable way to encode large-scale 3D scenes. Nerflets

combine the strengths of local neural fields with a structured and irregular representation,

enabling efficient scene decomposition into meaningful components. This method not only

improves the efficiency of storage and manipulation but also enhances the interpretability

of the scene, facilitating tasks such as 3D panoptic segmentation, novel view synthesis,

and interactive editing.

Unlike traditional neural rendering approaches that rely on global MLP networks,

nerflets allow for a localized and structured representation that can be jointly optimized

from 2D images. This results in a comprehensive 3D decomposition that captures not just

the appearance and geometry of the scene, but also its semantics and object instances.

The compactness and efficiency of this representation make it particularly suitable for

applications where real-time performance and scalability are crucial.

5



1.3.3 Large-Scale Consistent 2D-3D Pre-Training with Dense
and Sparse Features

The third contribution of this dissertation is the development of ConDense, a

novel pre-training scheme designed to address the challenge of 3D data scarcity. By

leveraging large-scale 2D multi-view datasets and pre-trained 2D networks, ConDense

enforces 2D-3D feature consistency through a ray-marching process inspired by NeRF.

This process aligns features across the two domains, enabling the model to learn joint

2D-3D features that are consistent and transferrable.

The dual representation created by ConDense, which includes both dense per-

pixel features and sparse keypoint-based features, allows for versatile and adaptable

performance across a wide range of downstream tasks. This unified embedding space

facilitates the efficient querying and matching of 2D images with large-scale 3D scenes,

opening up new possibilities for cross-modal applications such as natural language-driven

scene interrogation, image-based localization, and object retrieval.

1.3.4 Fast 3D Scene Generation by Lifting Panorama Images
from 2D Diffusion Models

The generation of 3D scenes from 2D priors represents a transformative approach in

the intersection of computer vision and graphics, aiming to leverage the strengths of both

2D diffusion models and 3D implicit scene representations. This methodology harnesses

the power of 2D generative models to create detailed visual content, such as panoramas or

walkthrough videos, and then reconstructs these 2D outputs into full 3D environments

using advanced 3D reconstruction techniques.

At the heart of this approach lies the synergy between 2D and 3D representations.

The process begins with a 2D diffusion model, which is conditioned on textual or image

input to generate high-quality panorama images or video sequences that capture the

essence of the desired scene. These 2D outputs, while rich in detail and aesthetics, lack

6



the geometric depth required for full 3D scene understanding and interaction. To bridge

this gap, we employ state-of-the-art 3D reconstruction methods including Neural Radiance

Fields (NeRF) or 3D Gaussian Splatting (3DGS). These techniques take the 2D-generated

content and infer a corresponding 3D structure, effectively converting the flat images into

native 3D representations.

The integration of 2D diffusion models and 3D reconstruction algorithms offers

several advantages. Firstly, it capitalizes on the maturity and robustness of 2D generative

models, which have been extensively trained on vast image datasets, allowing them to

produce visually compelling scenes. Secondly, by reconstructing these scenes in 3D, we

unlock the potential for immersive experiences, enabling applications such as virtual reality

(VR), augmented reality (AR), and 3D content creation.

This 2D-to-3D generation pipeline represents a novel contribution to the field,

addressing challenges in scene synthesis by combining the creative flexibility of 2D models

with the spatial accuracy of 3D techniques. This fusion not only enhances the quality and

realism of generated 3D scenes but also opens new avenues for research and applications

in areas requiring high-fidelity 3D content.

7



Chapter 2

Fast and Scalable Radiance Field
Reconstruction for Indoor Scenes

2.1 Introduction

Reconstructing and rendering large-scale indoor scenes from RGB images is chal-

lenging but crucial for various applications in computer vision and graphics, including

AR/VR, e-commerce, and robotics. While truncated signed distance function (TSDF)

fusion techniques [120, 183] can achieve efficient reconstruction, these methods often use

depth sensors and focus on geometric reconstruction only, and cannot synthesize realistic

images. Recently, NeRF [115] proposed optimizing scene radiance fields, represented using

global MLPs, from RGB images to achieve photo-realistic novel view synthesis. However,

NeRF cannot handle large-scale scenes well due to its limited MLP network capacity and

impractical slow per-scene optimization.

In this work, we aim to achieve fast, large-scale scene-level radiance field recon-

struction to make neural scene reconstruction and rendering more practical. As opposed

to small-scale object-centric scenes, we use “large-scale” to refer to full-size indoor scenes,

like ScanNet scenes [36]), with multiple rooms and objects with complex scene geometry

and appearance.

To achieve fast radiance field reconstruction on such challenging scenes, we propose

a novel neural framework that uses recurrent neural modules to incrementally reconstruct

8



…

…

Ourspretrained Oursft-20min NeRF12h

16.98

17.02

22.09

21.29

17.18

17.09

Input
View

Novel
View

Figure 2.1. We propose a novel method to enable fast reconstruction of volumetric
radiance fields of large-scale scenes. Our method uses a novel recurrent network – that
is generalizable and trained across scenes – to sequentially reconstruct a radiance field of
a large indoor scene in ScanNet [36] from an input image sequence (marked in yellow)
via direct inference. The predicted field can be directly used to render realistic images at
novel viewpoints (marked in red), achieving comparable quality to NeRF [115] that takes
12 hours per-scene optimization. This radiance field can be further fine-tuned for a short
period of 20 min, leading to boosted quality that significantly outperforms NeRF.

a large sparse radiance field from a long RGB image sequence. Unlike NeRF [115], that

requires per-scene optimization, our network is generalizable, pre-trained across scenes,

and able to efficiently reconstruct large-scale radiance fields via direct network inference.

As shown in Figure 2.1, our framework can successfully reconstruct a large indoor scene

from from an input monocular RGB video from ScanNet [36], to create a high-quality

radiance field with photo-realistic novel view synthesis results.

Our reconstructed radiance field is represented by a sparse volume grid with

per-voxel neural features; these voxel features are tri-linearly interpolated at any scene

location, and used to regress volume density and view-dependent radiance through an

MLP decoder for differentiable volume rendering. In contrast to previous methods [98, 60]

that reconstruct similar representations using slow per-scene optimization, we present a

novel deep neural network that can be trained across scenes and generalize on unseen

novel scenes to achieve fast radiance field reconstruction, bypassing per-scene fitting.

Given an input sequence of RGB images with known camera poses (that can be

registered by SLAM or SfM techniques), our framework reconstructs a radiance field as a

9



sparse neural volume. Our pipeline is inspired by the classical TSDF fusion workflow [120,

121, 183] that starts from per-view geometry (depth) and fuses the per-view reconstruction

across key frames to obtain a global sparse TSDF volume. This workflow is widely used

to reconstruct large-scale scenes, but only focuses on geometric reconstruction. Instead,

we propose novel neural modules to reconstruct radiance fields as sparse voxels for photo-

realistic rendering.

We first reconstruct local radiance fields for each input key frame. We leverage

deep MVS techniques and apply sparse 3D convolutions on a world-space cost-volume

built from unprojected 2D images features (regressed from a deep 2D CNN) of neighboring

key frames. This reconstructs sparse neural voxels that represent a local radiance field.

Once estimated, this field can already be used to render realistic images locally, though

only for partial scene content seen by the local frames. We propose a recurrent neural

fusion module to sequentially fuse multiple local fields across frames. Our fusion module

recurrently takes a newly estimated local field as input and learns to incorporate the local

voxels to progressively reconstruct a global radiance field modeling the entire scene, by

adding new voxels and updating existing voxels. Our full model is trained from end to

end, learning to reconstruct radiance fields with arbitrary scene scales from an arbitrary

number of input images. We show that our direct network output can already render

high-quality images; moreover, our neural field can be effectively fine-tuned by optimizing

the predicted voxel features per scene in a short period to achieve better rendering quality

(see Figure 2.1 and 2.4).

We train our full framework from end to end with only rendering losses on a

combination of scenes from the ScanNet [36], DTU [72], and Google Scanned Object [143]

datasets. These datasets contain a large variety of different objects and scenes, allowing for

our method to work properly with any scene scale. We demonstrate, on various datasets,

that our approach performs better than prior arts, including IBRNet [180] that also designs

networks that generalize across scenes. Especially on large-scale indoor scenes, our results

10



from real-time direct network inference can even be on par with NeRF’s results from long

per-scene optimization. Moreover, after only one hour of per-scene fine-tuning, our quality

can be further boosted to the state-of-the-art, outperforming NeRF [113] and NVSF

[98] that require much longer per-scene optimization times. Our approach significantly

improves the efficiency and scalability of radiance field reconstruction. We believe this is

an important step towards making neural scene reconstruction and rendering practical.

2.2 Related Work

Multi-view scene reconstruction. Abundant research has been conducted on repro-

ducing the appearance of of 3D scens from multi-view data. To reconstruct the geometry,

previous methods apply multi-view stereo [150, 152] or depth sensors [120] to acquire

the depth information of the scene. Recently, learning-based multi-view stereo meth-

ods [69, 205, 206, 28, 110, 50, 32] based on plane-swept cost volumes are also introduced

for depth estimation. Given the depth, one category of methods represent scenes with

colored point clouds [3, 84, 89], and utilize point splatting to render images of the scene.

Another category of methods [120, 121, 183] fuse multi-view depth and reconstruct surface

meshes using techniques such as TSDF fusion or Poisson reconstruction, and further

generate textures [233, 10] from multi-view images. However, both kinds of methods are

sensitive to potential inaccuracies in point clouds and meshes resulting from corrupted

depth, especially when there are thin structures and textureless regions, thus suffering

from holes and blurry artifacts in the final renderings. While some works apply neural

networks [3, 148, 59] such as a 2D CNN in screen-space to mitigate potential errors in

the geometry, their models are per-scene optimized for a specific scene (similar to NeRF),

requiring a long optimization time. Moreover, the screen-space neural networks typically

produce temporally unstable results with flickering artifacts. Instead of estimating and

fusing per-view depth, previous methods [75, 163, 15] introduce learning-based methods

11



to aggregate per-view features and predict opacity volumes or signed distance volumes.

These methods only focus on geometry reconstruction and cannot produce realistic render-

ings. In contrast, our approach models scenes as neural volumetric radiance fields and

can reproduce the faithful scene appearance, producing photo-realistic novel views. Our

pipeline is pretrained on multi-view image datasets and can generalize to novel scenes at

arbitrary scales and enable efficient large-scale neural reconstruction.

Neural Radiance Fields. Volumetric representations [106, 115, 98] have been widely

adopted to reconstruct the appearance of the scene. NeRF [115] uses a global MLP to

regress the volume density and view-dependent radiance at any arbitrary point in the

space, and applies volume rendering to synthesize images at novel viewpoints. Following

works extend the framework for different tasks such as relighting [12, 11, 14, 160], scene

editing [193] and dynamic scene modeling [127, 128, 93]. Similar to NeRF, most of these

works train MLP networks, specific for each scene from scratch, which can take hours and

even days to optimize, heavily time-consuming. On the other hand, the limited network

capacity of MLPs makes these methods hard to scale up to large scene reconstruction.

NVSF [98] improves the scalability by building sparse voxel grids with per-voxel features.

However their networks and features are still optimized per scene from scratch and it can

still take days for large-scale scenes. In contrast, while we use a similar sparse volume,

our volume is generated from the direct inference of a pre-trained network, leading to fast

large-scale scene reconstruction. The direct network output can be further fine-tuned in a

short period to achieve better rendering quality than NeRF and NSVF.

Some previous papers also extend NeRF for generalization. PixelNeRF [208] uses

2D CNNs to extract image features on each sampled point of each ray used in ray marching

for regressing the point’s volume properties. However, their network is designed for object

rendering with few images and is trained specifically for each dataset. IBRNet [180] uses a

similar network but has better designs that enable rendering on any scene scales. However,

12



…

Im
age Encoder

Local V
olum

e R
econstruction

… …

G
lobal V

olum
e Fusion

Posed Images

𝐼!

𝐼"

𝐼#

𝐹!

𝐹"

𝐹#

𝒱!

𝒱"

𝒱#

…

𝒱!
$

𝒱"
$

𝒱#
$

2D Image Features Local Feature Volumes Global Feature Volumes

…

V
olum

e R
enderer

Volume Renderer

Camera Ray

(𝑥, 𝑑, 𝒱(𝑥))

𝒱
MLP

(𝜎, 𝑐)

Rendering 
Loss

Recurrent Connection

Figure 2.2. Overview of our framework. Given a sequence of images, 1) we first
extract their image features (F1 . . .FN ) using a 2D CNN. 2) Then, at each frame, we
reconstruct a local sparse neural volume V1 . . .VN in the canonical world space by fetching
and aggregating 2D features across its neighboring views at visible voxels using a sparse
3D CNN. 3) We further fuse the local sparse volumes across frames using a recurrent
neural network and sequentially build global feature volumes Vg

1 . . .Vg
N to model a radiance

field of the entire scene. We regress volume density and view-dependent radiance from the
sparse neural volumes to render images with differentiable ray marching.

it leverages image features from neighboring views as input, varying across novel viewpoints,

which often lead to blurry or flickering artifacts from sparse inputs. Our network instead

reconstructs a neural volume with per-voxel features in 3D, modeling scene geometry and

appearance in a more consistent way, leading to much better rendering than IBRNet.

MVSNeRF [23] also reconstructs 3D volumes; however, it focuses on reconstructing a local

volume from a fixed number of three nearby views. In contrast, our network can fuse

per-view local reconstruction into a global volume from an arbitrary number of images,

leading to highly efficient large-scale scene reconstruction and rendering.

2.3 Method

We now present our approach for neural scene reconstruction and rendering. Given

an input sequence of images I1,...,IN of a large-scale scene with their known camera

parameters Φ1,...,ΦN , our approach reconstructs a radiance field modeling the entire scene

for realistic rendering.

Our final output radiance field is represented by a sparse neural volume Vg with

13



per-voxel neural features (Sec. 2.3.1). Unlike per-scene optimization methods [115, 98],

we propose a deep neural network that sequentially takes the images It frame by frame

as input and convert the sequence to the final sparse reconstruction via direct network

inference. Our pipeline first learns to reconstruct a sparse volume Vt per input image frame,

expressing a local radiance field covered by local frames (Sec. 2.3.2). We then leverage a

recurrent fusion module that learns to fuse the per-frame volumes Vt online, incrementally

reconstructing the global large-scale field Vg (Sec. 2.3.3). We train our full pipeline from

end to end with pure rendering losses. Our model can reconstruct high-quality radiance

fields from direct network inference; the estimated field can also be further fine-tuned to

boost its quality (Sec. 2.3.4).

2.3.1 Sparse Volumes for Radiance Fields

Our output radiance field is modeled by a sparse neural volume V that has per-voxel

neural features in voxels that approximately cover the actual scene surface. We regress

volume density σ and view-dependent radiance c at any given 3D location x from this

volume using an MLP network, in which we first tri-linearly sample a feature vector and

then use the MLP to convert the feature to volume properties, expressed by

σ,c = R(x,d,V(x)). (2.1)

Here V(x) represents the trilinearly interpolated feature at x, R is the MLP, and d is the

viewing direction in rendering. The output volume properties regressed from the volume

can be directly used to synthesize images at novel target viewpoints via differentiable ray

marching as is done in NeRF [115]. This radiance field representation is similar to the

one in Neural Sparse Voxel Fields [98] that purely relies on per-scene optimization for the

reconstruction. We instead propose to leverage neural networks trained across scenes to

predict the neural volumes from image sequences.

14



In our pipeline, such sparse volumes are reconstructed locally as Vt per frame t

and also globally as Vg for the entire sequence. The MLP network R is shared across all

volumes in the training process. We model the local volumes and the global volume both

in the canonical world space.

2.3.2 Reconstructing Local Volumes

We propose a deep neural network to regress a local neural volume for each input

frame t, using its image It and K − 1 images from neighboring views. Usually, given a

monocular video, these neighboring views correspond to temporal neighboring frames.

Using multiple nearby images for per-frame reconstruction allows the network to leverage

multi-view correspondence to recover better scene geometry, which a single image cannot

provide.

To make the local reconstruction per frame well generalized across scenes, we

leverage deep MVS techniques [205, 74], which are known to be generalizable. We extract

2D image features, build a cost volume from the features, and regress a neural feature

volume from the cost volume. However, unlike MVSNeRF [23] and other MVS techniques

[205, 32] that built frustum volumes in view’s perspective coordinate, we construct volumes

in the canonical world coordinate frame to align it with the final global volume output Vg,

facilitating the following fusion process.

Image feature extraction. We use a deep 2D convolutional neural network to extract

2D image features for each input image. This network maps the input image It into a 2D

feature map Ft, encoding the scene content from each view.

Local sparse volume. We consider the bounding box that covers the frustums of all K

neighboring viewpoints in the world coordinate frame, containing of a set of voxels in the

canonical space. The bounding volume is axis-aligned with the world frame; each voxel

inside it can be visible to a different number of neighboring views. We mask out all the

15



voxels invisible to all view, leading to a sparse set of voxels in the bounding box. We then

unproject the image features into this volume for our local reconstruction.

3D feature volume. For each neighboring viewpoint i and its feature map Fi, we build

a 3D feature volume Ui. In particular, for each visible voxel centered at v, we fetch the 2D

image feature at its 2D projection from each neighboring view at frame t. In addition to

pure image features, we leverage the corresponding viewing direction di at v from each

viewpoint and compute additional features using an MLP G. The per-view 3D volume Ui

is expressed by

Ui(v) = [Fi(ui),G(di)], (2.2)

where Ui(v) is the feature at a voxel centered at v, ui is the center’s 2D projection in view

i, [·, ·] represents feature concatenation. Note that, we encode the additional information

of input viewing directions in the reconstruction process; this crucial information makes

our following fusion module effectively account for the view-dependent effects captured

across frames.

Neural reconstruction. We then aggregate the features across multiple neighboring

viewpoints to regress a local volume Vt at frame t, expressing a local radiance field. We

propose to leverage the mean and variance of the per-voxel features in Ui computed across

neighboring viewpoints; such operations have been widely used in building cost volumes in

MVS-based techniques [205, 23], where the mean can fuse per-view appearance information

and the variance provides rich correspondence cues for geometry reasoning. These two

operation are also invariant to the number/order of input; in our case, this naturally

handles voxels that have different numbers of visible viewpoints. We use a deep neural

network J to process the mean and variance features per voxel to regress the per-view

16



Local Volume 𝒱!

𝒱!"#
$

GRU

Updated Hidden State

𝒱!
$

Figure 2.3. A 2D example illustrating the GRU fusion step. The hidden state, which is
also the global feature volume Vg

t−1, is adaptively updated by aggregating new information
in the incoming local feature volume Vt.

reconstruction by

Vt = J([Meani∈NtUi, Vari∈NtUi]), (2.3)

Here Nt represents all K neighboring viewpoints used at frame t; Mean and Var represent

element-wise average and variance operation, respectively.

Essentially, we regress the local radiance field from the features across neighboring

views. This is similar to MVSNeRF [23]. However, unlike MVSNeRF that considers only

local reconstruction and builds perspective frustrum volumes for small-baseline rendering,

we leverage these local volumes for global large-scale reconstruction and rendering. We

build volumes directly in canonical space, naturally providing per-frame voxel inputs for

our fusion module.

2.3.3 Fusing Volumes for Global Reconstruction

In order to create a consistent, efficient, and extensible scene reconstruction, we

propose to use a global neural volume fusion network to incrementally fuse local feature

volumes {Vt} per frame into a global volume Vg.

Fusion. At each frame t, we consider its local sparse volume reconstruction Vt and

17



the global reconstruction Vg
t−1 from the previous frame as recurrent input. We leverage

GRUs (Gated Recurrent Unit) [33] with sparse 3D CNNs in our fusion module, allowing

our network to learn to recurrently fuse the per-frame local reconstruction and output

high-quality global radiance fields. This is expressed by

zt = Mz([Vg
t−1,Vt]), (2.4)

rt = Mr([Vg
t−1,Vt]), (2.5)

Ṽg
t = Mt([rt ∗Vg

t−1,Vt]), (2.6)

Vg
t = (1− zt)∗Vg

t−1 + zt ∗ Ṽg
t , (2.7)

where ∗ is the element-wise multiplication, zt and rt are the update gate and the reset

gate, Mz, Mr and Mt all deep neural networks with sparse 3D convolution layers. As in

standard GRU, Mz and Mr are designed with sigmoid activation in the end, while Mt

uses tanh, allowing for the entire model sequentially updating the global reconstruction

Vg
t (seen as the hidden state in a GRU) for every input frame. In this process, we only

apply the networks on the voxels covered by the local volume Vt; all other voxels in the

global volume are kept unchanged. A 2D illustration of this GRU fusion process is shown

in Figure 2.3.

Intuitively, the update gate zt and reset gate rt in the GRU determine how much

information from the previous global volume Vg
t−1 as well as how much information from

the current local volume Vt should be incorporated into the new global features. In this

way, our module can adaptively improve the global scene reconstruction by filling up holes

and refining features while keeping the representation consistent. This fusion process

is similar to previous 3D reconstruction pipelines [132, 76, 163] that focus on geometry

reconstruction; in contrast, we instead reconstruct neural feature volumes to represent

neural radiance fields for volume rendering, leading to photo-realistic novel view synthesis.

18



Voxel pruning. To maximize the memory and rendering efficiency, we adaptively prune

the global volume reconstruction Vg
t for every frame by removing the non-essential voxels

that do not have any scene content inside. We naturally leverage the volume density in

each voxel regressed by our radiance field (Equation 2.1), which models the scene geometry.

In particular, we prune voxels V if:

min
i=1...k

exp(−σ(vi)) > γ,vi ∈ V, (2.8)

where {vi}k
i=1 are k uniformly sampled points inside the voxel V , σ(vi) is the

predicted density at location vi, and γ is a pruning threshold. This pruning step is

performed in both later training phase and inference phase once we get a global feature

volume Vg
t . By doing so, we make our global volume sparser, leading to more efficient

reconstruction and rendering.

2.3.4 Training and optimization

Once a radiance field (that is represented by a sparse neural volume as described in

Sec. 2.3.1) is reconstructed, our final rendering is achieved via differentiable ray marching

using the regressed volume density and view-dependent radiance at any sampled ray points,

as is done in NeRF and any other radiance field methods [115, 98]. In this work, our full

pipeline is trained, completely depending on the rendering supervision with the ground

truth images, without any extra geometry supervision.

In particular, we first train our local reconstruction network and the radiance field

decoder (R) with a loss

Llocal = ∥Ct − Ĉ∥2
2, (2.9)

where Ĉ is the ground truth pixel color and Ct represents the rendered pixel color using

the local volume Vt reconstructed at frame t. This makes the network learn to predict

reasonable local neural volumes, which are already renderable and able to produce realistic

19



images locally; it also initializes the radiance field decoder MLP to a reasonable state,

which is later shared across local and global volumes. This pre-training allows the local

reconstruction module to provide meaningful volume features for the fusion module to

utilize in the end-to-end training, effectively facilitating the fusion task. We then train

our full pipeline with the local reconstruction network, fusion network, and the radiance

field decoder network all together from end to end, using a rendering loss:

Lfuse =
∑

t

∥Ct − Ĉ∥2
2 +∥Cg

t − Ĉ∥2
2, (2.10)

where Ct is the pixel color rendered from the local reconstruction Vt (as is in Equation 2.9)

and Cg
t is the color rendered from the global volume Vg

t after fusing frame t. Basically,

we take every intermediate global and local volume (Vt and Vg
t ) at every frame to render

novel view images and supervise them with the ground truth. The fusion module thus

reasonably learns to fuse local volumes from an arbitrary number of input frames.

After trained, our full network is able to output a high-quality radiance field from

direct network inference and produce realistic rendering results (as shown in Figure 2.1).

In addition, the reconstructed radiance field as a sparse neural volume can also be easily

optimized (fine-tuned) per scene further to boost the rendering quality.

Fine-tuning. To fine-tune the estimated radiance field, we optimize the per-voxel neural

features in the sparse volume reconstruction Vg and the MLP decoder per scene with

the captured images, leading to better rendering results. Since our initial reconstruction

is already very good, a short period of optimization with less than 25k iterations can

usually lead to very high quality, which takes less than 1 hour. This is substantially less

optimization time than NeRF and other pure per-scene optimization methods.

In this per-scene optimization stage, we also do a coarse-to-fine reconstruction,

similar to NSVF [98]. Basically, after every 10k optimization iterations, we further prune

unnecessary voxels (using Equation 2.8) and also subdivide each voxel into 8 sub voxels.

20



This prune and subdivision step progressively increases the spatial resolution of the neural

volume, further improving our final rendering quality.

2.4 Implementation Details

Training datasets. Our training data consists of both large-scale indoor scenes from

ScanNet [36] and small objects from DTU [73] and Google Scanned Objects [143]. We

randomly sample 100 scenes from ScanNet for training. For DTU, We adopt the training

split from PixelNeRF [208], which includes 88 training scenes. In addition, we use the

object-centric synthetic renderings of 1,023 models from the Google Scanned Objects [143]

generated by [180]. Our training data includes various camera setups and scene types,

enabling our model to generalize to all kinds of scenarios. We demonstrate that our model

can effectively work on large-scale indoor scenes, as well as scenes of objects.

Training details. For each input image sequence, we uniformly sample key frames from

the full sequences for the input frames in network training. For object-centric datasets, we

sample 16 views for each scene, and for ScanNet, we sample 2%−5% of the full sequence

as key frames. All other frames are used for supervision. We use K = 3 neighboring views

for each input frame, for local volume reconstruction. For video sequence captured by

a monocular camera, such as the scenes in ScanNet, we directly take the 3 neighboring

key frames temporally. For other datasets, we select the 3 spatially closest viewpoints, in

terms of both viewing location and direction.

Model details. The sparse volumes and networks are implemented with torchsparse [166].

We train our model using Adam optimizer with an initial learning rate of 0.003. We train

our network with 2 NVIDIA 2080Ti GPUs for 3 days. During inference, our network

processes frames from ScanNet sequences in real-time at 22 FPS. The final model takes

38 seconds on average to render a 640 × 480 image on ScanNet. We follow [163] to

use a modified MnasNet [165] pretrained from ImageNet [149] as the 2D encoder. The

21



output feature channel number from the 2D encoder is 64. The direction encoder G is

a 5 layer MLP with 16-channel output. The SparseConvNet J has 5 SparseConv layers

implemented with torchsparse [166]. Each of Mz,Mr,Mt has 3 SparseConv layers. All

networks use ReLU as activation layers. All features in the feature volumes (global Vg
t

or local Vt) have 16 channels. We apply positional encoding to the volume feature with

maximum frequency L = 5 before feeding them into the volume renderer. The initial voxel

size is set manually for different datasets, specifically 40mm for large-scale datasets e.g.

ScanNet [36], and 4mm for object-centric datasets e.g. NeRF Synthetic [115] and Google

Scanned Objects [143]. When unprojecting 2D features into local feature volumes, we

build view frustums with max depth dmax = 3m. The pruning threshold γ is set to 0.6 for

all experiments. Nearest-neighbor interpolation is used for all coarse-to-fine fine-tuning

experiments. The code will be released after the review period.

2.5 Experiments

In this section, we evaluate the our model on various datasets. For all results, we

denote our results from direct network inference as Ours and our results after per-scene

fine-tuning as Oursft in all figure and tables. Similar labels are applied to IBRNet and

other generalizing methods.

Baselines. We compare our method against the state-of-the-art NeRF methods on

novel view synthesis including per-scene optimization methods, such as NeRF [115],

NVSF [98], and NerfingMVS [185], and methods that can generalize to new scenes, such

as PixelNeRF [208], IBRNet [180], and MVSNeRF [23].

To achieve fair and accurate comparisons, we run our method on the same experi-

ment settings in previous papers, and we try our best to directly use the reported official

quantitative results in previous papers or use the official code to run the experiments.

We find that the official NeRF and IBRNet code can easily run and work on different

22



Table 2.1. Quantitative comparisons on the ScanNet dataset [36]. We follow the same
experiment settings as in NeRFingMVS [185] and report the error metrics including PSNR
(higher is better), SSIM (higher is better) and LPIPS (lower is better). Note that, our
diret inference results are better than IBRNet [180]. Our fine-tuning results achieve the
best numbers in all three metrics.

Method Settings PSNR↑ SSIM↑ LPIPS↓

IBRNet No per-scene
optimization

21.19 0.786 0.358
Ours 22.99 0.838 0.335

NeRF

Per-scene
optimization

24.04 0.860 0.334
NSVF 26.01 0.881 -
NeRFingMVS 26.37 0.903 0.245
IBRNetft-1.5h 25.14 0.871 0.266
Oursft-1h 26.49 0.915 0.209

datasets, producing corresponding images. We demonstrate visual comparison with these

two methods across the three testing sets in Figure 2.4. On the other hand, NSVF is very

hard to run without enough GPU memory; their official models are optimized on a V100

GPU that has 32G memory; we found it impractical to generate their corresponding results

with our resources. We therefore only include NSVF’s quantitative results whenever they

are reported previously. Besides, the recent MVSNeRF [23] is a very relevant technique,

but it is designed to take a fixed number of three nearby views as its network input; as a

result, it cannot support large-baseline rendering or arbitrary number of input images for

inference. We therefore only compare with MVSNeRF on the DTU dataset in the same

experiment setting used in their paper.

Large-scale scenes in ScanNet. We follow the same training and evaluation scheme as

described in NerfingMVS [185] for the comparison on ScanNet. We tested our model on

the 8 testing scenes used in their paper. From Table 2.1, we can see that our recurrent

neural reconstruction network generates significantly better results than IBRNet via direct

network inference. After fine-tuning for only a short period of 1 hour, the quality of our

results is further boosted significantly, leading to the best PSNR, SSIM and LIPIPS in all

23



Table 2.2. Quantitative comparison on the NeRF Synthetic dataset [115]. Our model
is able to generate better results than IBRNet in both direct inference and fine-tuning
settings. Our model after 1 hour fine-tuning achieves comparable performance to the
state-of-the-art per-scene overfitting methods such as NeRF [115] and NVSF [98].

Method Settings PSNR↑ SSIM↑ LPIPS↓

IBRNet No per-scene
optimization

25.51 0.916 0.100
Ours 25.47 0.922 0.093

NeRF
Per-scene

optimization

31.01 0.947 0.081
NSVF 31.75 0.954 0.048
IBRNetft-1.5h 28.19 0.943 0.072
Oursft-1h 31.25 0.953 0.069

compared methods. Note that, the per-scene optimization methods like NeRF, NeRFing

MVS and NSVF require substantially longer per-scene optimization time but are still

outperformed by our method. Our approach is impressively better than NSVF in this

case though both methods have similar final radiance field representation; this indicates

that the data priors learned by our recurrent neural network can effectively help the

reconstruction and lead to reasonable initial radiance fields, even benefiting the per-scene

fine-tuning process.

As shown in Figure 2.4, our results on these large-scale scenes are of very high visual

quality. Our results are visually much better than the IBRNet’s results from both direct

inference and per-scene fine-tuning. IBRNet generates tearing artifacts since it performs

image-based rendering and can only aggregate a small set of local neighboring views due

to limited GPU memory. In contrast, our model learns a unified 3D representation in

the canonical space with a recurrent module that is able to efficiently aggregate per-view

information across all input views, leading to significantly better rendering quality with

better across-view consistency. Note that, even our direct inference renderings are already

very realistic and contain few noticeable artifacts; they are arguably comparable to the

rendering results of NeRF which require long per-scene optimization. Our approach

achieves highly efficient and highly accurate large-scale radiance field reconstruction.

24



IBRNet Ours Oursft-1h IBRNetft-1.5h NeRF12hReference

(2
) N

eR
F

Sy
nt

he
tic

(3
) D

TU
(1

)S
ca

nN
et

Figure 2.4. Qualitative comparisons of rendering quality on diverse scenes between
our method and state-of-the-art method. Our method achieves better performance than
state-of-the-art generalizable method IBRNet [180] in both the direct-inference and the fine-
tuned settings, where IBRNet generates results with obvious blurry and tearing artifacts.
Our model fine-tuned for 1 hour can generate even better results than NeRF [115] that
requires 12 hours of training, especially on large-scale scenes from ScanNet [36].

25



Table 2.3. Quantitative comparisons on the DTU dataset [72]. Our model is able to
generate good results under this difficult setting where only 3 input views are given for the
direct inference. Our fine-tuning results outperforms other methods in all three metrics.

Method Settings PSNR↑ SSIM↑ LPIPS↓

PixelNeRF
No per-scene
optimization

19.31 0.789 0.382
IBRNet 26.04 0.917 0.190
MVSNeRF 26.63 0.931 0.168
Ours 26.19 0.922 0.177
NeRF

Per-scene
optimization

27.01 0.902 0.263
IBRNetft-1.5h 31.35 0.956 0.131
MVSNeRFft-15min 28.50 0.933 0.179
Oursft-1h 31.79 0.962 0.119

NeRF Synthetic. Our method also works well on small-scale scenes. We conduct

experiments on the NeRF Synthetic 360◦ dataset, and apply the same evaluation setting as

in [115]. As shown in Table 2.2, without per-scene fine-tuning, our model generates results

that are comparable to IBRNet; however, fine-tuning significantly boosts the performance

of our model, leading to high accuracy that is much superior to the fine-tuned IBRNet. In

practice, IBRNet suffers from the sparsely distributed input views of the dataset with large

baselines, where interpolating neighboring views are not effective to synthesize realistic

novel view images. Our fine-tuned model also achieves similar performance when compared

to per-scene optimization methods [115, 98], while ours is optimized for only 1 hour,

substantially less than the time other methods require.

DTU. To show that our method works with a small number of input views with small

baselines. We also evaluate our model on the DTU dataset, following the experiment

settings in MVSNeRF [23], where only 3 views are provided for the setting without

per-scene optimization and 16 more views are provided in the per-scene optimization

setting. Here we also compare with PixelNeRF [208], which is specifically trained for the

DTU dataset in their paper. As demonstrated in Table 2.3 and Figure 2.4, similar to

previous results, our model generalizes well to the testing scenes and can be efficiently

26



Ours Oursft-20min Oursft-1h Oursft-2h NeRF12h
17.03 15.9822.16 23.22 24.09

Figure 2.5. Effect of fine-tuning. We show the results with our model with different
fine-tuning duration. The first column is our results without fine-tuning. Note that our
direct inference result have outperformed NeRF and the results from fine-tuning contain
significantly more details. PSNRs are shown at top right of each image.

fine-tuned to outperform NeRF and other generalizable methods including IBRNet [180]

and MVSNeRF [23].

2.6 Model Analysis and Discussions

Effect of input view numbers. Figure 2.6 shows the comparison when sample different

numbers of neighboring views to build the feature volume. Our learned global feature

fusion module is able to effectively fuse information from different views. Note that, when

using more input views, our method could produce sharper details in the rendered images,

which are very close to the reference.

Effect of fine-tuning. Figure 2.5 shows the visual quality of our method when fine-tuning

for different time period. Note that our direct inference result have outperformed NeRF,

and the results from fine-tuning contain significantly more details. PSNRs are shown at

top right of each image.

Geometry reconstruction. Following [115, 23], we evaluate our geometry reconstruction

quality on the DTU dataset [73] by comparing depth reconstruction results generated

from the volume density by a weighted sum of the depth values of the sampled points on

marched rays. We use 16 input views and compare the depth quality on both input views

27



3 Input Views 
(Local Volume)

20 Input Views 40 Input Views Reference 

Figure 2.6. Effect of input view numbers. We show the results when sample different
numbers of neighboring views to build the feature volume. All results are from the
pretrained model without any further fine-tuning. It worth noting that when using more
input views, the method could produce sharp details comparable or even better than the
reference image.

Table 2.4. Geometry reconstruction. We evaluate depth reconstruction on the DTU
testing set and compare with other two neural rendering methods PixelNeRF [208] and
IBRNet [180]. Our method significantly outperforms other neural rendering methods and
achieves high depth accuracy. The two numbers of each item refers to the depth at input /
novel views.

Method Abs Err↓ Acc (8mm)↑
PixelNeRF [208] 0.205/0.211 0.096/0.089
IBRNet [180] 1.123/1.324 0.000/0.000
Ours 0.034/0.036 0.722/0.709

and novel views with 2 common metrics. The results are shown in Table 2.4. Thanks to

the explicit geometry modeling in our pipeline, our approach achieves significantly more

accurate geometry than other neural rendering methods.

2.7 Limitations

Our approach currently focuses on handling large-scale indoor scenes, but might not

be efficient on handling scenes that have foreground objects with distant background, which

might appear in unbounded outdoor scenes. This is because we consider a uniform grid for

the entire scene, similar to [98]. This can be potentially addressed in the future by doing

per-view reconstruction in disparity space or applying spherical coordinates for regions at

28



long distances (similar to [219]). Our method relies on multi-view correspondence; hence,

extreme camera poses without enough parallax could lead to problems, which cannot be

addressed by any MVS-based techniques. For our current pipeline, we simply sample

input frames uniformly, because the camera motion in ScanNet has enough translation.

However, a more careful input view selection technique that accounts for relative camera

poses may be necessary in practice to address various types of camera motions.

2.8 Conclusion

In this work, we present a novel neural approach that can achieve fast, large-

scale, and high-quality scene reconstruction for photo-realistic rendering. In contrast to

traditional TSDF-based reconstruction, we reconstruct scenes as volumetric radiance fields,

leading to photo-realistic view synthesis results. Our approach leverages a novel recurrent

neural network to process the input image sequence and incrementally reconstruct a global

large-scale radiance field by reconstructing and fusing per-frame local radiance fields.

We demonstrate that our approach can achieve the state-of-the-art rendering quality for

large-scale indoor scenes from ScanNet while taking substantially less reconstruction time.

29



Acknowledgements

Chapter 2, in full, is a reprint of the material published in the 2022 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR): “NeRFusion: Fusing

Radiance Fields for Large-Scale Scene Reconstruction” (Xiaoshuai Zhang, Sai Bi, Kalyan

Sunkavalli, Hao Su, and Zexiang Xu). The dissertation author was the primary investigator

and author of this paper.

30



Chapter 3

Compact and Efficient 3D Scene
Representation with Local Radiance
Fields

3.1 Introduction

This paper aims to produce a compact, efficient, and comprehensive 3D scene

representation from only 2D images. Ideally, the representation should reconstruct ap-

pearances, infer semantics, and separate object instances, so that it can be used in a

variety of computer vision and robotics tasks, including 2D and 3D panoptic segmentation,

interactive scene editing, and novel view synthesis.

Many previous approaches have attempted to generate rich 3D scene representations

from images. PanopticFusion [118] produces 3D panoptic labels from images, though

it requires input depth measurements from specialized sensors. NeRF [116] and its

descendants [117, 8, 9, 142] produce 3D density and radiance fields that are useful for novel

view synthesis, surface reconstruction, semantic segmentation [227, 173], and panoptic

segmentation [85, 13]. However, existing approaches require 3D ground truth supervision,

are inefficient, or do not handle object instances.

We propose nerflets, a 3D scene representation with multiple local neural fields that

are optimized jointly to describe the appearance, density, semantics, and object instances

31



Figure 3.1. We propose to represent the scene with a set of local neural radiance fields,
named nerflets, which are trained with only 2D supervision. Our representation is not
only useful for 2D tasks such as novel view synthesis and panoptic segmentation, but also
capable of solving 3D-oriented tasks such as 3D segmentation and scene editing. The key
idea is our learned structured decomposition (top right).

in a scene (Figure 3.1). Nerflets constitute a structured and irregular representation– each

is parameterized by a 3D center, a 3D XYZ rotation, and 3 (per-axis) radii in a 9-DOF

coordinate frame. The influence of every nerflet is modulated by a radial basis function

(RBF) which falls off with increasing distance from the nerflet center according to its

orientation and radii, ensuring that each nerflet contributes to a local part of the scene.

Within that region of influence, each nerflet has a miniature MLP to estimate density and

radiance. It also stores one semantic logit vector describing the category (e.g., “car”) of the

nerflet, and one instance label indicating which real-world object it belongs to (e.g., “the

third car”). In Figure 3.1, each ellipsoid is a single nerflet, and they are colored according

to their semantics.

A scene can contain any number of nerflets, they may be placed anywhere in space,

and they may overlap, which provides the flexibility to model complex, sparse 3D scenes

efficiently. Since multiple nerflets can have the same instance label, they can combine to

represent the density and radiance distributions of complex object instances. Conversely,

since each nerflet has only one instance label, the nerflets provide a complete decomposition

of the scene into real-world objects. Nerflets therefore provide a 3D panoptic decomposition

32



of a scene that can be rendered and edited.

Synthesizing images using nerflets proceeds with density-based volume rendering

just as in NeRF [116]. However, instead of evaluating one large MLP at each point sample

along a ray, we evaluate the small MLPs of only the nerflets near a sample. We average

the results, weighting by the influence each nerflet has over that sample. The rendering is

fully-differentiable with respect to all continuous parameters of the nerflets. Fitting the

nerflet representation is performed from a set of posed RGB images with a single training

stage. After training, instance labels are assigned based on the scene structure, completing

the representation.

Experiments with indoor and outdoor datasets confirm the main benefits of nerflets.

We find that: 1) Sparsity encourages the optimizer to decompose the scene into nerflets with

consistent projections into novel panoptic images (Section 3.5.2); 2) Semantic supervision

can be beneficial to novel view synthesis (Section 3.6); 3) Structure encourages efficiency,

compactness, and scalability (Section 3.3.4); and 4) the explicit decomposition of a

scene improves human interpretability for easy interactive editing, including adding and

removing objects (Section 3.5.3). These benefits enable state-of-the-art performance on

the KITTI360 [94] novel semantic view synthesis benchmark, competitive performance on

ScanNet 3D panoptic segmentation tasks with more limited supervision, and an interactive

3D editing tool that leverages the efficiency and 3D decomposition of nerflets.

The following summarizes our main contributions:

• We propose a novel 3D scene representation made of small, posed, local neural fields

named nerflets.

• The pose, shape, panoptic, and appearance information of nerflets are all fit jointly in

a single training stage, resulting in a comprehensive learned 3D decomposition from

real RGB images of indoor or outdoor scenes.

• We test nerflets on multiple tasks- novel view synthesis, panoptic view synthesis, 3D

33



panoptic segmentation and reconstruction, and interactive editing.

• We achieve 1st place on the KITTI-360 semantic novel view synthesis leaderboard.

3.2 Related Work

Recently, the success of deep learning approaches for both computer vision and

graphics tasks has enabled researchers to reconstruct and reason about 3D scenes under

various settings. We review related work on segmentation and neural field based scene

representations.

Semantic, Instance, and Panoptic Segmentation: There are many methods designed

for semantic, instance, and/or panoptic [82] segmentation. The most popular approaches

are fully-supervised and operate within a single input data modality. For example, 2D

approaches [147, 108, 7, 27, 225, 226, 57, 105, 217] are usually based on CNN or transformer

backbones and associate each pixel in an image with certain semantic or instance labels.

We leverage a trained 2D panoptic model, Panoptic Deeplab [31], in our framework.

Similar frameworks have been proposed to solve 3D segmentation tasks for 3D

point clouds [131, 135, 136, 154, 168], meshes [52, 68], voxel grids [49, 159], and octrees

[146]. However, these methods typically require a large amount of annotated 3D data,

which is expensive to obtain.

To avoid the need for 3D annotations, several multiview fusion approaches have

explored aggregating 2D image semantic features onto a pointcloud or mesh using weighted

averaging [61, 87, 172, 5], conditional random fields (CRFs) [86, 114], and bayesian fusions

[111, 172, 214]. There have also been approaches like 2D3DNet [48] that combine both 2D

mutiview fusion with a 3D model.

In contrast to these methods, ours builds a complete 3D representation including

geometry, appearance, semantic, and instance information from only 2D inputs and without

34



any input 3D substrate such as a mesh or a point cloud.

Scene Understanding with NeRF: NeRF [116] and subsequent work [85, 125, 202, 228,

173, 83] show the promise of neural radiance fields for tasks beyond novel view synthesis,

including 3D reconstruction, semantic segmentation, and panoptic segmentation. For

example, SemanticNeRF [228], and NeSF [173] are useful for semantic understanding,

but do not consider object instances. DFF [83] leverages the power of large language

models for semantic understanding, but similarly does not produce object instances.

ObjectNeRF [202] and NSG [125] are useful for object editing, but do not produce a full

panoptic decomposition or support efficient interactive editing. None of these methods

produce a complete scene representation in the way that nerflets do.

Panoptic Neural Fields (PNF) [85] is very relevant to our paper as it supports

both semantic scene understanding and object-level scene editing. PNF first runs a 3D

object detector and then a tracker to create an input set of object tracks. They then fit an

individual MLP for each object track and another special “stuff” MLP for the remainder of

the scene. This is a compelling and effective approach which supports moving objects, but

it does not solve our target problem. It 1) requires expensive ground truth 3D supervision

for the detector and tracker that are only available for some classes, and 2) has a fixed 3D

scene decomposition that is provided by the input tracker results. This last point means

that it can fail when the detector or tracker fails, even if a multi-view analysis-by-synthesis

appearance loss, like in NeRF, would have been able to force a correct prediction by

requiring all pixels to be described by some object instance. By comparison, nerflets

require only 2D supervision, support any class for which 2D panoptic segmentations are

available, and optimize most parameters jointly, improving efficiency and instance recall.

DM-NeRF [13] is highly related concurrent work. It learns an object decomposition

of a scene, but does not provide the explicit structure, full panoptic decomposition, or

easy interactive editing of nerflets. In particular, a large MLP decodes spatial positions to

35



object identity vectors, and editing therefore requires careful consideration– an inverse

query algorithm [13]. By contrast, nerflets can be edited directly as geometric primitives.

We compare quantitatively to both PNF and DM-NeRF in Section 3.5.

Structured NeRF Representations: One of the key advantages of nerflets is their

irregular structure, which has been investigated in other contexts. Many existing approaches

exploit structure for efficiency [117, 142, 162, 187, 107], compactness [98], scalability [169,

222], human-interpretability [125], parsimony [46], or editability[85, 202]. For example,

Kilo-NeRF [142] and DiVER [187] exploit regular grids of MLPs or features to improve

the efficiency of NeRF novel view synthesis. MVP [107] builds an irregular primitive-based

representation for real-time portrait rendering, but requires explicit scene geometry inputs

to initialize the primitives and freezes their location after initialization. We take inspiration

from these approaches, which achieve impressive performance through local structure,

and apply their insights to panoptic segmentation and editing. Unlike these approaches,

nerflets can conform to an object’s extent and then move as it is edited. In the future,

more benefits of exploring irregular NeRF representations could include tracking a moving

object or allowing for a consistent local coordinate frame for learning 3D priors.

3.3 Method

This section introduces our nerflet scene representation and our training and

rendering method. As in NeRF [116], the input to our method is a set of posed 2D

RGB images. We first run an off-the-shelf 2D panoptic segmentation model [31] to

generate predicted 2D semantic and instance images, which we use as a target during

the optimization. Next, we optimize our core nerflet representation (Section 3.3.1) to

convergence on photometric, semantic, instance, and regularization losses applied to images

rendered with volumetric ray-marching [116] (Section 3.3.2). Finally, we assign instance

labels to the nerflets based on the learned decomposition (Section 3.3.3), at which point

36



Nerflet

~15k FLOPs

Semantic Logits s

Influence Function 𝑔!

𝝈

c

Instance ID Insi

Output Learnable ParameterInput Assigned Parameter

x

d

𝑔! x

NeRF (for comparison)

~1056k FLOPs

𝝈

cx

d

Figure 3.2. Information maintained by a nerflet and NeRF. Compared to NeRF, a
nerflet focuses only on a small portion of the scene determined by its influence function g
(Equation 3.1), and thus it uses a miniature MLP to fit density σ and color c. Each nerflet
also maintains a single semantic logit vector si and an assigned instance ID Insi. Together
these parameters comprise a compact building block for our scene representation.

the representation is complete and ready for rendering or editing.

3.3.1 Scene Representation

The core novelty of our framework is the nerflet scene representation. Nerflets are

a structured representation, where the output radiance and panoptic fields are defined by

blending the values produced by N individual nerflets.

Nerflet definition: Each nerflet stores local geometry, appearance, semantic, and

instance information. As shown in Figure. 3.2, a nerflet i has 1) position and orientation

parameters that define its influence function gi over space, 2) its own tiny MLP fi

generating both density and radiance values, 3) a single semantic logit vector si storing its

semantic information directly, and 4) an associated instance ID Insi. Compared to other

semantics-aware NeRF methods [227, 173], we use a single logit vector to represent local

semantic information instead of training an MLP to encode semantics. This aligns with

our goal that a single nerflet should not span multiple classes or instances, and has the

additional benefits of reducing the capacity burden of the MLP and providing a natural

37



inductive bias towards 3D spatial consistency.

Pose and influence: Each nerflet has 9 pose parameters– a 3D center µi, 3 axis-aligned

radii, and 3 rotation angles. We interpret these pose parameters in two ways. First, as a

coordinate frame– each nerflet can be rasterized directly for visualization by transforming

an ellipsoid into the coordinate frame defined by the nerflet. This is useful for editing

and understanding the scene structure (e.g., Figure 3.1). The second way, more critical

for rendering, is via an influence function gi(x) defined by the same 9 pose parameters.

gi is an analytic radial basis function (RBF) based on scaled anisotropic multivariate

Gaussians [47, 46]

gi(x) = η exp
(

− 1
2τ

(x −µi)
T Σ−1

i (x −µi)
)

. (3.1)

µi is the center of the basis function and Σi is a 6-DOF covariance matrix. The covariance

matrix is determined by 3 Euler-angle rotation angles and 3 axis-aligned radii that are

the reciprocal of variance along each principal axis. These 9 parameters provide a fast

and compact way to evaluate a region of influence for each nerflet without evaluating any

neural network. This property is crucial for our fast training and evaluation, which will be

introduced later. η is a scaling hyper-parameter set to 5 for all experiments, and τ is a

scheduled temperature hyper-parameter used to control the falloff hardness. τ is reduced

after each training epoch to minimize overlap between nerflets gradually.

Rendering and blending: Given a scene represented by N nerflets, we can render 2D

images with volume rendering, as in NeRF:

Ĉ(r) =
K∑

k=1
Tkαkck, (3.2)

where αk = 1− exp(−σkδk) , (3.3)

Tk =
k−1∏
j=1

(1−αj). (3.4)

38



Camera Ray 𝑟

nerflet 1

nerflet 2
nerflet 3

𝒈𝟏 = 𝟎. 𝟐

𝒈𝟐 = 𝟎. 𝟗

𝒈𝟑 = 𝟎. 𝟏

Figure 3.3. Sample and blend method illustration. Results from individual nerflets
are mixed based on the influence values gi determined by the distance-based weighting
function. The mixing is smooth but most locations in space are dominated by a single
nerflet, even when there is some overlap.

Ĉ(r) is the final color of ray r, Tk is transmission at the k-th sample along the ray, αk is

the opacity of the sample, ck is the color at the sample, δk is the thickness of the current

sample on the ray, and σk is the density at the sample. We denote k for the index of the

sample along a ray, K total number of samples and reserve i for the index of the nerflet.

The biggest difference from NeRF is that instead of employing a single large MLP to

produce ck and σk, we combine values produced by individual nerflets using their influence

weights (Figure 3.3). We query individual nerflet MLPs fi at the k-th input sample

(pos,dir) = (xk,d) along the ray, producing producing N values σk,i and ck,i for nerflets

labeled i ∈ [1,N ]. We then map the individual nerflet σk,i values to αk,i for rendering

using δk and Equation 3.2. Finally, we take a weighted average of the N individual nerflet

39



color and α values to produce ck and αk:

ck =
N∑

i=1
ĝi(xk)ck,i, (3.5)

αk =
N∑

i=1
ĝi(xk)αk,i, (3.6)

where ĝi(xk) = gi(xk)∑N
j=1 gj(xk)+ ϵ

. (3.7)

ϵ is a factor allowing smooth decay to zero in empty space, with Σgi(xk) ∼ ϵ. After

blending, the αk and ck values are used directly for ray marching as in Equation 3.2-3.4

to generate final pixel color values Ĉ(r), as in NeRF.

While in principle we should evaluate all nerflet MLPs in the scene in this step, as

gaussian RBFs have infinite support, we do not do this. Typically, gi is dominated by one

or at most a handful of nerflets that are close to the sample. Therefore, we evaluate only

the nearby MLPs, improving performance and scalability. This is implemented with our

custom CUDA kernel, which will be introduced in Sec. 3.3.4. More distant nerflets are

omitted from the average.

To generate semantic images, we average the per-nerflet semantic logit vector for

each point sample in the same way described for color values ck,i above.

To handle instances, we first compute a nerflet influence activation function w ∈ Rn

for each point sample:

w(x) = SoftMax([σ1g1(x), . . . ,σN gN (x)]). (3.8)

σi is the density evaluation for x on the i-th nerflet. This value intuitively represents how

much influence each nerflet has over a given point sample, and can be accumulated by

ray marching to generate a nerflet influence map W (r) for each ray r. W (r) continuously

captures which nerflet is dominant for each final pixel value, and is used by our influence

40



loss described in Section 3.3.2. To assign a discrete instance label to a query position or

ray, we take argmaxi∈[N ]w(r) or argmaxi∈[N ]W (r), respectively to get i, then output Insi,

the instance of that nerflet.

Unbounded scenes: Nerflets support both indoor (bounded) and outdoor (unbounded)

scenes. To handle unbounded scenes, we add a single MLP ffar to evaluate samples outside

a large scene bounding box. We draw M additional samples for these points at the end of

the ray, which we concatenate after our blended RGBα values and composite. We use the

scheme proposed by Zhang et al. [219], with an added semantics branch, though as the

content is very distant and nearly directional, many other approaches would likely work

well (e.g., an environment map).

3.3.2 Loss Function

During training, we jointly optimize all network parameters as well as the pose of

the nerflets. In this way, each nerflet can be pushed by gradients to “move” across the

scene, and focus on a specific portion of it. We expect a final decomposition mirroring the

scene, with more nerflets on complex objects, and use multiple losses to that end.

The loss function is broken up into rgb, semantic, instance, and regularization

terms:

L = Lrgb +Lsem +Lins +Lreg. (3.9)

Lrgb: The RGB loss Lrgb is the mean squared error between the synthesized color

Ĉ and the ground truth color C averaged over a batch of sampled rays, as in the original

NeRF. The one change is that we weight this loss with a schedule parameter that is 0.0 at

step 0. We gradually increase this value to 1.0 during training to prevent early overfitting

to high frequency appearance information.

Lsem: Our semantic loss Lsem compares the volume-rendered semantic logits pixel

41



with the Panoptic Deeplab prediction [31]. We use a per-pixel softmax-cross-entropy

function for this loss.

Lins: The instance loss is defined as:

Lins = − 1
P

∑
(r1,r2)

||W (r1)−W (r2)||1. (3.10)

That is, we sample P ray pairs (r1,r2) that are from the same class but different instances

according to the instance segmentation model prediction, and enforce them to have different

influence maps. While this approach is somewhat indirect, well separated nerflets can

be easily assigned instance labels (Section 3.3.3), and it has the advantage of avoiding

topology issues due to a variable number of instances in the scene while still achieving an

analysis-by-synthesis loss targeting the instance decomposition. It is also compatible with

the inconsistent instance ID labelings across different 2D panoptic image predictions. Ray

pairs (r1,r2) are chosen within in an L×L pixel window per-batch for training efficiency.

Lreg: Our regularization loss has several terms to make the structure of the nerflets

better mirror the structure of the scene–

Lreg = Ldensity +Lradii +Lℓ1 +Lbox. (3.11)

In addition to the intuitions described below, each of these is validated in a knock-out

ablation study (Sec. 3.6) and tested on multiple datasets, to reduce the risk of overfitting

to one setting.

First, to minimize unnecessary nerflet overlap within objects and reduce scene

clutter, we penalize the L2 norm of the radii of the nerflets (Lradii). To encourage sparsity

where possible, we penalize the L1 norm of the nerflet influence values at the sample

42



locations (Lℓ1). We also require nerflets to stay within their scene bounding box, penalizing:

∑
d∈{x,y,z}

max(xd −boxmax,boxmin −xd,0). (3.12)

This reduces risk of “dead” nerflets, where a nerflet is far from the scene content, so it

does not contribute to the loss, and therefore would receive no gradient.

Finally, we incorporate a “density” regularization loss Ldensity, which substantially

improves the decomposition quality:

Ldensity = − 1
D

n∑
i=1

∑
x∼N (µi,Σi)

σ(x). (3.13)

N (µi,Σi) represents the underlying multivariate gaussian distribution for the i-th

nerflet and D is the number of samples drawn. This term rewards a nerflet for creating

density near its center location. As a result, nerflets end up centered inside the objects

they reconstruct.

3.3.3 Instance Label Assignment

Given an optimized scene representation, we use a greedy merge algorithm to group

the nerflets and associate them with actual object instances. We first pick an arbitrary 2D

instance image, and render the associated nerflet influence map W (r) for the image. We

then assign the nerflets most responsible for rendering each 2D instance to a 3D instance

based on it. We proceed to the next image, assigning nerflets to new or existing 3D

instances as needed. Because the nerflets have been optimized to project to only a single

2D instance in the training images, this stage is not prone to failure unless the 2D panoptic

images disagree strongly.

To assign instance labels for each nerflet, we render the nerflet influence map Wi

for each view and compare with corresponding 2D semantic and instance segmentation

43



maps to match each lji (2D object instance or stuff with local id j in view i) to a set of

nerflets M(lji ). Here M(·) maps an instance ID to its set of associated nerflets. We then

create a set of 3D instances G = {gk} according to the segmentation result of the first view

– we create a 3D global instance for each detected 2D object instance and also each disjoint

stuff labels in the semantic maps. For each new view i, we match lji to the 3D instance gk

if |M(lji )∩M(gk)|/|M(lji )| ≥ δ, and then update M(gk) to M(gk)∪M(lji ). If no match is

found in {gk}, we create a new 3D instance and insert it into G. Before inserting any new

global instance g, we remove all nerflets that are already covered by the global set G from

g. By using this first-come-first-serve greedy strategy we always guarantee no nerflet is

associated with 2 different global instances. After this step, each nerflet is associated with

a global instance ID, and our representation can be used to reason at an instance level

effectively.

3.3.4 Efficient Nerflet Evaluation

Top-k Evaluation: Instead of evaluating all nerflet MLPs in a scene as in Equation 3.5-

3.8, we use the gi influence values to filter out distant and irrelevant nerflets in two ways.

First, we truncate all nerflet influences below some trivial threshold to 0– there is no need

to evaluate the MLP at all if it has limited support. In free space, often all MLPs can be

ignored this way. Next, we implement a “top-k” MLP evaluation CUDA kernel that is

compatible with the autodiff training and inference framework. This kernel evaluates only

the highest influence nerflet MLPs associated with each sample. We use k = 16 for both

training and visualizations in this work, although even more aggressive pruning is quite

similar in image quality (e.g., a difference of only ∼ 0.05 PSNR between top-16 and top-3)

and provides a substantial reduction in compute. A top-k ablation study is available in

the supplemental.

Interactive Visualization and Scene Editing: We develop an interactive visualizer

combining CUDA and OpenGL for nerflets that takes advantage of their structure, efficiency,

44



rendering quality, and panoptic decomposition of the scene. Details are available in the

supplemental. The key insight enabling efficient evaluation is that nerflets have a good

sparsity pattern for acceleration – they are sparse with consistent local structure. We

greatly reduce computation with the following two pass approach. In the first pass, we

determine where in the volumetric sample grid nerflets have high enough influence to

contribute to the final image. In the second pass, we evaluate small spatially adjacent

subgrids for a particular nerflet MLP, which is generally high-influence for all samples in

the subgrid due to the low spatial frequency of the RBF function. This amortizes the

memory bandwidth of loading the MLP layers into shared memory. This approach is not

as fast as InstantNGP [117], but is still interactive and has the advantage of mirroring the

scene structure.

3.4 Implementation Details

Model Architecture: For all nerflets MLPs fi, we follow the NeRF architecture [116]

but reduce the number of hidden layers from 8 to 4, and reduce the number of hidden

dimensions from 256 to 32. We also removed the shortcut connection in the original

network. All other architecture details are as in [116]. The background neural field uses

NeRF++ [219] style encoding, and its MLP ffar is with 6 hidden layers and 128 hidden

dimensions. One distinction is that we do perform coarse-to-fine sampling as in [116], but

both coarse and fine samples are drawn from a single MLP, not two distinct ones.

Hyper-parameters: We use N = 512 nerflets for all experiments in the main paper. The

scaling parameter η is set to 5 for all experiments. We initialize the nerflets temperature

parameter τ to 1 and multiply τ by 0.9 across the epochs. The smooth decay factor ϵ is

set to 10−7 for all experiments. We draw 64 samples for coarse level and 128 samples for

fine level within the bounding box. For unbounded scenes, we draw 16 coarse samples

and 16 fine samples from the background MLP. We increase the weight for Lrgb from 0.0

45



to a maximum of 1.0 by the step of 0.2 across epochs to prevent early overfitting to high

frequency information. Contrastive ray pairs are sampled within an 32 × 32 pixel window.

The weight for regularization loss Lreg is set to 0.1. All other losses are with weight 1.0.

Dataset Details: For training on each ScanNet scene, we uniformly sample 20% of the

RGB frames for training and 10% of the RGB frames for evaluation– about 200 frames

for training and 100 frames for evaluation. For both ScanNet and KITTI-360 scenes, we

estimate the scene bounding box with camera extrinsics and normalize the coordinate

inputs to [−0.5,0.5] for all experiments.

One important note about the ScanNet [36] experiments is that 2D ScanNet

supervision indirectly comes from 3D. That is because the 2D ScanNet dataset was made

by rendering the labeled mesh into images. We do not use this 2D ground truth directly,

but PSPNet [225] is trained on it. Here, this is primarily a limitation of the evaluation

rather than the method– there are many 2D models that can predict reasonable semantics

and instances on ScanNet images, but we want to be able to evaluate against the exact

classes present in the 3D ground truth. This does not affect the comparison to other

2D supervised methods, as all receive their supervision from the same 2D model. By

comparison KITTI-360 results are purely 2D only, but all quantitative evaluations must

be done in image-space.

For KITTI-360 experiments, we use the novel view synthesis split, and compare to

Panoptic Neural Fields (PNF) [85], a recent state of the art method for panoptic novel

view synthesis (1st on the KITTI-360 leaderboard). To generate 2D panoptic predictions

for outdoor scenes, we use a Panoptic DeepLab [31] model trained on COCO [96].

For ScanNet experiments, we evaluate on 8 scenes as in DM-NeRF [13] and

compare to recent baselines– DM-NeRF [13], which synthesizes both semantics and

instance information, and Semantic-NeRF [227] which synthesizes semantics only. To

generate panoptic images for indoor scenes, we use PSPNet [225] and Mask R-CNN [57].

Please see the supplemental for important subtleties regarding how 2D supervision on

46



ScanNet is achieved.

Interactive Visualizer Details: In order to demonstrate the efficiency of our represen-

tation, we have implemented a real-time interactive visualizer for nerflets. Our interactive

visualizer allows real-time previewing of nerflet editing results while adjusting the bounding

boxes of objects in the scene. The visualizer draws the following components. First, a

volume-rendered RGB or depth image at an interactive resolution of up to 320x240. This

enables viewing the changes being made to the scene in real time. Second, the nerflets

directly, by rendering an ellipsoid per nerflet at a configurable influence threshold. This

enables seeing the scene decomposition produced by the nerflets. Third, a dynamic isosur-

face mesh extracted via marching cubes that updates as the scene is edited, giving some

sense of where the nerflets are in relation to the content of the scene. Fourth, a set of

boxing box manipulators, one per object instance, with draggable translation and rotation

handles. These boxes are instantiated by taking the bounding box of the ellipsoid outline

meshes for all nerflets associated with a single instance ID. A transformation matrix that

varies per instance is stored and pushed to the nerflets on each edit.

Most of the editor is implemented in OpenGL, with the volume rendering imple-

mented as a sequence of CUDA kernels that execute asynchronously and are transferred

to the preview window when ready. In the main paper we report performance numbers for

top-1 evaluation, which is often the right compromise for maximizing perceived quality in

a given budget (e.g., pixel count can be more important), though interactive framerates

with top-16 or top-3 evaluation are possible at somewhat lower resolutions.

3.5 Experiments

In this section, we evaluate our method using 512 nerflets on multiple tasks with

two challenging real-world datasets.

47



Table 3.1. Results on novel view color and semantic synthesis tasks on KITTI-360 [94].
Nerflets achieve similar color synthesis quality and better semantic synthesis quality
compared to PNF [85] without any 3D supervision. We also have the best efficiency in
terms of worst case kFLOPs.

Method Appearance
PSNR

Semantics
mIOU

Worst-Case
kFLOPs

PBNR [84] + PSPNet [225] 19.91 65.07 -
FVS [145] + PSPNet [225] 20.00 67.08 -
NeRF [116] + PSPNet [225] 21.18 53.01 ∼ 1056
Mip-NeRF [8] + PSPNet [225] 21.54 51.15 ∼ 1056
PNF [85] 21.91 74.28 ∼ 1256
Ours 21.69 75.07 ∼ 244

Table 3.2. ScanNet novel view synthesis quantitative results. Rendered color images and
segmentation maps from nerflets have the best quality among all evaluated methods.

Method PSNR Semantics mIoU Instance mAP0.5
PSPNet [225] on GT Image - 68.43 -
Mask R-CNN [57] on GT Image - - 23.53
PSPNet [225] on NeRF Im. - 46.21 -
Mask R-CNN [57] on NeRF Im. - - 14.32
Semantic-NeRF [227] 28.43 71.34 -
DM-NeRF [13] 28.21 70.71 25.12
Ours 29.12 73.63 31.32

Table 3.3. Evaluation of nerflet panoptic performance on ScanNet 3D point cloud labeling
task. Nerflets beat some less recent fully 3D-supervised methods with less supervision at
both semantic and instance tasks, while also beating the similarly supervised multiview
fusion approach.

Supervision Method Semantics mIoU Instance mAP0.5

Pointcloud

MinkowskiNet [34] 71.92 -
3DMV [37] 49.22 -

PointNet++ [136] 44.54 -
Mask3D [151] - 75.34

3D-BoNet [203] - 46.23

Images Multiview Fusion [48] 55.23 -
Ours 63.94 48.67

48



N
eR
F

M
ip
-N
eR
F

PN
F

O
ur
s

FV
S

Figure 3.4. Novel view synthesis qualitative comparison. Nerflets outperform NeRF,
Mip-NeRF, and FVS, and perform comparably to PNF with better performance in difficult
areas (far left), possibly due to explicit spatial allocation of parameters.

3.5.1 Novel View Synthesis

We evaluate the performance of nerflets for novel view image synthesis on both

KITTI-360 and ScanNet. As shown in Table 3.1, on KITTI-360, our method achieves

better PSNR than all other 2D supervised methods on the leaderboard and is competitive

with PNF [85], which utilizes 3D supervision. As shown in Figure 3.4 our visual quality

is approximately on par with PNF, and does particularly well in challenging areas. For

complex indoor scenes in ScanNet (Table 3.2), we achieve the best performance for

novel view synthesis under all settings (with or without instance supervision), including

when compared to DM-NeRF [13]. In particular, nerflets achieve better object details

(Figure 3.6), likely due to their explicit allocation of parameters to individual object

instances.

49



M
ip

-N
eR

F
PN

F
O

ur
s

Sy
nt

h.
 

R
ef

.

Figure 3.5. Novel view semantic synthesis qualitative comparison. Nerflets outperform
other methods, particularly with respect to details and thin structures.

3.5.2 2D Panoptic Segmentation

Nerflets can render semantic and instance segmentations at novel views. We evaluate

our 2D panoptic rendering performance quantitatively on both KITTI-360 (Table 3.1)

and ScanNet (Table 3.2). On both datasets, nerflets outperform all baselines in terms of

semantic mIoU, even compared to the 3D-supervised PNF [85]. On the ScanNet dataset,

we also show that nerflets outperform PSPNet [225] and Mask R-CNN [57] in terms of both

mIoU and instance mAP, although those methods were used to generate the 2D supervision

for our method. This is an indication that nerflets are not only expressive enough to

represent the input masks despite their much lower-dimensional semantic parameterization,

but also that nerflets are effectively fusing 2D information from multiple views into a

better more consistent 3D whole. We further explore this in the supplemental material.

Qualitatively, nerflets achieve better, more detailed segmentations compared to baseline

methods (Figure 3.5, Figure 3.6), particularly for thin structures.

50



Ground Truth DM-NeRF Ours

Figure 3.6. ScanNet qualitative result and comparison to DM-NeRF [13]. The comparison
is on a ScanNet view synthesis example taken from the DM-NeRF paper. Our results
improve in terms of both image and segmentation quality- notice the better image rendering
for the glass table, and the better segmentation of the chair legs, which even exceeds the
ground truth quality.

3.5.3 Scene Editing

In Figure 3.7 and Figure 3.8, we use the instance labels on nerflets to select individual

objects, and then manipulate the nerflet structure directly to edit scenes. No additional

optimization is required, and editing can be done while rendering at interactive framerates

(please see the video for a demonstration, the results here were rendered by the standard

autodiff inference code for the paper). When compared to Object-NeRF on ScanNet

(Figure 3.8), nerflets generate cleaner results with more detail, thanks to their explicit

structure and alignment with object boundaries. Using nerflets, empty scene regions will

not carry any density after deletion, as there is nothing there to evaluate. In Figure 3.7,

we demonstrate additional edits on KITTI-360, with similar results. These visualizations

help to confirm that indeed, nerflets learn a precise and useful 3D decomposition of the

scene.

51



Original View Edited

Figure 3.7. KITTI-360 scene editing. We replace cars (top) or removing a sign instance
(bottom).

3.5.4 3D Panoptic Reconstruction

In Figure 3.9, we demonstrate the 3D capabilities of nerflets by extracting a

panoptically labeled 3D mesh and comparing it to the ground truth. We create point

samples on a grid and evaluate their density, semantic and instance information from

nerflets. We then estimate point normals using the 5 nearest neighbors and create a mesh

with screened Poisson surface reconstruction [77]. The mesh triangles are colored according

to the semantic and instance labels of their vertices. We observe that the resulting mesh

has both good reconstruction and panoptic quality compared to the ground truth. For

example, nerflets even reveal a chair instance that is entirely absent in the ground truth

mesh. We demonstrate this quantitatively by transferring nerflet representations to a

set of ground truth 3D ScanNet meshes, comparing to existing 3D-labeling approaches

in Table 3.3. We observe that nerflets outperform the similarly supervised multi-view

fusion baseline, while adding instance capabilities. State of the art directly-3D supervised

baselines are still more effective than nerflets when input geometry and a large 3D training

corpus are available, but even so nerflets outperform some older 3D semantic and instance

segmentation methods.

52



Original View

OursObjectNeRF

Re
mo
va
l

Duplication

Figure 3.8. Scene editing comparison with ObjectNeRF on a pair of ScanNet images
shown in the ObjectNeRF paper. Notice the improved handling of free space during
removal and the more accurate texture during duplication, both attributable to the simple
“copy-and-paste” nature of nerflets manipulation.

3.6 Model Analysis and Discussions

Scene Decomposition Quality: Our insight was to create an irregular representation

that mirrors the structure of the scene. Do nerflets succeed at achieving this scene

decomposition? In Figure 3.10, we show RGB and panoptic images alongside the underlying

nerflet decomposition that generated them. We visualize nerflets according to its influence

function. We draw ellipsoids at influence value e− 1
2 ≈ 0.607. We see that indeed, the

nerflets do not cross object boundaries, do join together to represent large or complex

objects, and do cover the scene content.

Semantics Help Appearance: One key insight about our approach is that the semantic

structure of the nerflets decomposition is beneficial even for lower level tasks, like novel

view synthesis. We perform an experiment on the KITTI-360 validation set and observe

that when training without a semantic or instance loss (i.e., photometric and regularization

losses only), nerflets achieve a PSNR of 20.95. But when adding the semantics loss, PSNR

increases to 22.43, because the nerflets end up more accurately positioned where the

content of the scene is. This is also why we train with a higher semantic loss early in

53



Figure 3.9. A 3D mesh extracted from a ScanNet RGB sequence with nerflets, colorized
according to predicted panoptic labels. Ground truth RGBD mesh with human-annotated
labels is shown on the left. Nerflets successfully reconstruct and label a chair instance
missing from the ground truth mesh.

Rendered Image Rendered Semantic Segmentation
(overlaid on rendered image) Learned Nerflets RepresentationRendered Panoptic Segmentation

(overlaid on rendered image)

Figure 3.10. Visualization of nerflet outputs, trained on KITTI-360 images.

training, to encourage better nerflet positioning.

Ablation Study: Here we run a knock-out ablation study to validate the effectiveness of

each of our regularization terms. Table 3.4 shows that all regularization terms contribute

to final performance quantitatively. Ldensity is the most crucial term for learning a nice

representation. It affects both image synthesis and segmentation performance, as it

encourages nerflets to focus around actual scene content. Lradii, Lℓ1 and Lbox all also

improve performance, due to their effect of forcing a more well-separated and active

decomposition of the scene where all nerflets contribute to the final result.

Performance: Nerflets have good performance due to their local structure. Our editor

renders 320×240 top-1 editable volume images with 192 samples/pixel at 31 FPS with 4

54



Table 3.4. Ablation experiment on ScanNet for the effectiveness of our regularization
terms– density loss Ldensity, radii penalty Lradii, influence sparsity loss Lℓ1 and scene box
loss. Lbox

PSNR mIOU mAP0.5
w/o Ldensity 20.85 63.31 11.20
w/o Lradii 27.23 72.43 26.32
w/o Lℓ1 28.83 68.23 21.74
w/o Lbox 28.93 72.14 29.88
full model 29.12 73.63 31.32

Table 3.5. Ablation experiment on ScanNet for different number of nerflets.

PSNR mIOU
n = 64 26.34 53.23
n = 128 28.34 62.41
n = 256 28.81 69.97
n = 512 29.12 73.63
n = 1024 29.19 74.09

A100 GPUs and 64 nerflets– 457 million sample evaluations per second.

Number of Nerflets: We perform ablation study on the number of nerflets on the

subset of ScanNet from [13]. The results are in Table 3.5. We find that increasing the

number of nerflets could improve the performance on both photometric and semantic

metrics. However, the benefit saturates when adding more nerflets than 512. To balance

performance and efficiency, we use 512 nerflets in all experiments in the paper.

Effect of Top-k Evaluation: We perform ablation study on the performance impact of

k when we only evaluate nerflets with top-k influence weights for each point sample. The

experiment is done on the subset of ScanNet from [13]. The results are in Table 3.6. We

Table 3.6. Ablation experiment on ScanNet for evaluating only nerflets with top-k
influence weights during training and testing.

PSNR mIOU
k = 32 29.13 73.72
k = 16 29.12 73.63
k = 3 29.05 72.95
k = 1 28.35 70.73

55



Figure 3.11. Comparison of ScanNet reference panoptic segmentation maps and our
panoptic segmentation predictions overlaid on reference images.

find that evaluating 32, 16 or 3 nerflets have little influence on the model performance,

since each nerflet is only contributing locally. However we see a moderate performance

drop when only evaluating one nerflets with the highest influence weight. We choose to

evaluate k = 16 nerflets for all experiments in the paper to balance the computational cost

and performance.

Inactive Nerflets: One known problem [47] with training using RBFs that have learned

extent is that when an RBF gets too small or too far from the scene, it does not contribute

to the construction results. The radii loss Lradii and box loss Lbox are proposed to alleviate

this issue. To estimate the actual number of inactive nerflets, we utilize nerflet influence

map W and count nerflets that do not appear on any of these maps in any views. In

KITTI-360 experiments, we estimate to have 10.6 inactive nerflets on average per scene,

making up ∼ 2.07% of all available nerflets. In ScanNet experiments in the main paper,

we estimate to have 30.6 inactive nerflets on average per scene, making up ∼ 5.98% of all

available nerflets.

Robustness against Input 2D Segmentation: In Figure 3.11, we visualize more

examples on ScanNet comparing our panoptic predictions with reference annotations from

the dataset. It can be seen that our representation learned from 2D supervision contains

56



rich information and can produce more accurate segmentation results than reference maps

in some cases. Our method produces clearer boundaries, fewer holes and discovers missing

objects in the reference results, thanks to its ability to fuse segmentation maps from

multiple views with a 3D sparsity prior from the structure of the representation.

3.7 Conclusion and Limitations

In this work, we present nerflets, a novel 3D scene representation which decomposes

the scene into a set of local neural fields. Past work demonstrated structure is useful for

parsimony in MLP-based shape representation [46], and we have found similar evidence

extending that to scenes in this work. Thanks to the locality of each nerflet, our model is

compact, efficient, and multi-view-consistent. Results of experiments on two challenging

real-world datasets KITTI-360 and ScanNet demonstrate state-of-the-art performance for

panoptic novel view synthesis, as well as competitive novel view synthesis and support for

downstream tasks such as scene editing and 3D segmentation.

Despite these positives, nerflets have several limitations. For example, we do

not model dynamic content. Even though the representation is well-suited for handling

rigid motions (as demonstrated in scene editing), that feature has not been investigated.

Also, while individual nerflet radiance fields are capable of handling participating media,

the overall representation may struggle to fit scenes where those effects cross semantic

boundaries (e.g., foggy outdoor sequences). Finally, we currently assume a fixed number of

nerflets for each scene, regardless of the scene complexity. However, it may be advantageous

to prune, add, or otherwise dynamically adjust the number based on where they are needed

(e.g. where the loss is highest). Investigating these novel features is interesting for future

work.

Connection to 3D Gaussian Splatting (3DGS): This work shares a common high-

level idea with the later work 3DGS [78]. Both methods explore to decompose and express

57



a large scene into a set of small 3D Gaussian based primitives. The major difference

lies in the method for rendering. In our work, we follow the NeRF line of works to

evaluate point samples along the ray, and render with volume rendering equation. While

in 3DGS, splatting is used to directly rasterize 3D representations onto 2D image planes.

Our representation is more information-rich while 3DGS is more compact and faster in

rendering.

58



Acknowledgements

Chapter 3, in full, is a reprint of the material published in the 2023 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR): “Nerflets: Local Radi-

ance Fields for Efficient Structure-Aware 3D Scene Representation from 2D Supervision”

(Xiaoshuai Zhang, Abhijit Kundu, Thomas Funkhouser, Leonidas Guibas, Hao Su, and

Kyle Genova). The dissertation author was the primary investigator and author of this

paper. We sincerely thank Yueyu Hu, Nilesh Kulkarni, Songyou Peng, Mikaela Angelina

Uy, Boxin Wang, and Guandao Yang for useful discussion and help on experiments. We

also thank Avneesh Sud for feedback on the manuscript.

59



Chapter 4

Large-Scale Consistent 2D-3D Pre-
Training with Dense and Sparse Fea-
tures

4.1 Introduction

The rapid advancement of 3D computer vision has led to significant breakthroughs

in understanding and interpreting the world in three dimensions. However, achieving

robust performance across a range of 3D perception tasks is challenging when we try to

match the accomplishments of large pre-trained models in the natural language and 2D

vision domains. The path to a 3D foundation model is hampered by the relative scarcity

of 3D data compared to 2D images, and especially the increased difficulty of obtaining

quality annotations in 3D. At the same time, 3D models need to co-exist and communicate

with language or language-vision models, if we are to optimally use priors in perceiving,

reasoning, and acting on the physical world. Motivated by these considerations we propose

a novel approach for large-scale 3D pre-training that leverages the knowledge encoded in

extant pre-trained 2D networks, capitalizes on the availability of large-scale multi-view

datasets, and learns consistent 2D-3D features.

In this work, we introduce a comprehensive 2D-3D joint training scheme, named

ConDense, aimed at extracting co-embedded 2D and 3D features in an end-to-end

60



Enables 2D Downstream Tasks

…

2D 
Feature

Backbone

Enables 3D Downstream Tasks

3D
Feature 

Backbone

Enables 2D-3D Joint Query:
3D Retrieval from Images, 3D-3D Retrieval, etc.

Images 2D Features w/ Key Points 3D Feature Fields w/ Key Points 3D Inputs

…

…

(multiple matches)

NeRFs

Meshes

Point Clouds

Figure 4.1. ConDense extract co-embedded feature for 2D or 3D inputs. The model
not only has improved performance over previous pre-training methods but also enables
efficient cross-modality, cross-scale queries such as 3D retrieval and duplicate detection.

pipeline. Our approach goes beyond conventional pre-training methods by enforcing

2D-3D feature consistency through 2D-3D consensus. This consistency is established by

cross-checking the extracted 2D and 3D features via a ray-marching process inspired by

Neural Radiance Fields (NeRFs), ensuring that the learned features align seamlessly in

both the 2D and 3D domains.

In addition, ConDense represents the extracted features in two forms: a dense per-

pixel representation and a sparse key point-based representation. This dual representation

allows us to capitalize on the strengths of both types of features, making ConDense ver-

satile and adaptable to a wide range of downstream tasks. Consider, for example, the

fact the NeRFs have made the capture of 3D scenes a lightweight and widely available

process. We will soon have hundreds of millions of objects and scenes in a NeRF form and

the need arises to organize and search large collections of such data – and in particular to

interrogate them using language and image queries. Our sparse key point representation

and joint 2D-3D embeddings enable and facilitate such multi-modal cross-domain queries.

Our contributions can be summarized as follows:

61



• We propose ConDense, a novel 3D self-supervised pre-training scheme. By leverag-

ing only large-scale 2D multi-view image datasets and 2D foundation models, we are

able to achieve 3D pre-training with state-of-the-art downstream task performance,

even when compared to 3D pre-training methods that utilize 3D training data.

• Our approach leads to the creation of more consistent and less noisy 2D features,

enhancing the quality of existing 2D visual representations, and shows better perfor-

mance than base models in various downstream 2D tasks.

• By learning sparse features jointly with the dense features for both 2D and 3D, we

enable several novel tasks such as efficiently matching 2D images to larger-scale 3D

scenes, or matching 3D captures of the same scene to each other.

• We establish a unified embedding space where 2D, 3D, and other modalities (e.g.,

natural language prompts) can be jointly queried, enabling efficient matching using

either dense or efficient sparse features.

To validate the effectiveness of our large-scale pre-training approach, we conduct

extensive experiments, showcasing its superior performance in various tasks. Furthermore,

our pre-trained model opens up exciting possibilities for downstream applications, such as

querying 3D scenes through natural language inputs or efficiently matching 2D images to

3D scenes, all without per-scene fine-tuning.

4.2 Related Work

2D Representation Learning and Foundation Models. Initial works on self-

supervised 2D representation learning employ various pretext tasks derived from the

images themselves [129, 221, 17], etc. Another line of work adopted discriminative strate-

gies, such as instance classification [55], treating each image as a unique class and employing

data augmentation for training. Recent advances in patch-based architectures, like Vision

62



Transformers (ViTs) [41], revived interest in pretext tasks, particularly inpainting in both

image and feature space. Various works find that masked-autoencoders (MAEs) provide

strong initialization for downstream tasks [54]. However, all these pre-trained features

require additional supervised fine-tuning. More recently, foundation models, referring to

pre-trained models adept at a broad range of tasks, have seen expansive growth within

the vision domain through variants that have successfully adapted to numerous vision-

related tasks. Notably, the CLIP model [139] leverages contrastive learning from extensive

image-text pairs to achieve zero-shot task transferability. DINO [18, 123] demonstrates

the emergence of various desirable properties in its features through self-supervision,

facilitating its direct application across diverse visual tasks.

3D Representation Learning and Foundation Models. Despite advances in 2D

representation learning and foundation models, 3D models lag behind greatly due to

dataset and architecture constraints. A major line of research proposed various pretext

tasks for 3D point clouds [126, 224]. The recent success of ViTs in 2D has also spurred

the exploration of their counterparts in 3D domains [212, 126, 236, 95]. However, all

these models require 3D point clouds for pre-training. Most of them are pre-trained on

ScanNet [36] (around 1000 scenes) and ShapeNet [20] (around 50k objects, synthetic), and

are thus constrained by the limited amount of real-world data available.

2D to 3D Feature Distillation and Multi-Modality Embeddings. With the

recent development of large-scale 2D foundation models and multi-modality embeddings

(e.g., CLIP for images and languages), many have tried to distill the knowledge learned

from these models and extend their application to 3D data formats. PointCLIP and

PartSLIP [220, 102] achieves zero-shot point cloud classification and segmentation by

projecting point clouds to 2D depth maps and applying the 2D pre-trained models directly.

OpenShape, ULIP, and ULIP-2 [100, 199, 200] collects text, image, and point cloud triplets

and takes advantage of pre-aligned vision-language feature space to achieve alignment

among the triplet modalities. Specifically, they fix the visual-language embedding space

63



and only tune their 3D point cloud encoder to achieve this alignment. These methods

focus on the task of point cloud classification and their design cannot be easily extended

to other 3D tasks or 3D input formats. Several methods have been proposed for dense

feature encoding in 3D [130, 236, 232]. For example, OpenScene [130] trains on point

cloud-grounded multi-view datasets and learns a 3D point cloud network from multi-view

aggregated 2D features. Like PointCLIP and ULIP, OpenScene requires 3D point clouds

for training, which are scarce and hard to collect in the real world on a large scale, when

compared to multi-view images. These works also re-use the embedding space from the

2D foundation model and only distill the 3D encoder.

More recently, Neural Radiance Fields (NeRFs) [116] and numerous subsequent

follow-ups [9, 222] have gained great success in novel view synthesis. NeRF has the

property of aggregating information across views. Several recent works leverage this

property to improve the quality of semantic segmentation [79, 223, 229]. Many works

distill features (e.g., DINO [18] and CLIP [140]) into 3D and demonstrate they can be

used for downstream tasks such as natural language-based query. These works require

per-scene distillation and optimization. FeatureNeRF [207] proposed to distill features

from 2D foundation models to 3D space via generalizable NeRFs [209, 23]. Through

distillation, the learned model can lift any 2D images to continuous 3D semantic feature

volumes. However, the pipeline serves more as a 2D-to-3D lifting technique and cannot

handle native 3D data directly.

NeRF for Perception. The integration of Neural Radiance Fields (NeRF) into various

discriminative perception tasks such as classification, detection, and segmentation has also

been explored [223, 174]. These methods typically follow a reconstruction-then-detection

pipeline by creating NeRFs from multi-view image data first and then designing task-

specific networks and loss terms to tackle each perception task, and many of them work in

a scene-by-scene manner and require re-training and optimization for each new scene. More

recently, NeRF-Det [195] incorporates generalizable, feature-conditioned NeRF, and 3D

64



detection pipelines to achieve efficient detection performance with no per-scene fine-tuning.

Our work is inspired by these ideas while developing further by joining forces with 2D

foundation models and creating a pre-training pipeline that is native to both 2D images

and 3D formats.

Querying 3D Data. A variety of works have explored 3D to 3D similarity queries in

pre-deep learning period, mostly at the object level, by constructing human-designed whole

object features encoded as Euclidean embeddings or as distributions [124, 24]. Later some

works explored learned embedding spaces, as well as co-embeddings of images and 3D

models [91]. Inspired by the bag-of-words paradigm in image search, “bags-of-features”

have also been investigated in 3D to 3D search, for example [16]. However, none of these

approaches is integrated into a multi-task framework, as we aim to do here and they are

largely focused on object retrieval, not scenes.

4.3 Preliminaries

Neural Radiance Fields (NeRFs) [116] offer a novel representation of 3D scenes,

capturing continuous volumetric scenes as neural networks. We briefly describe the

mechanism of the NeRF and refer to [116, 9] for details about related NeRF models. A

NeRF F maps a 3D coordinate x = (x,y,z) and a viewing direction d = (θ,ϕ) to a color

c = (R,G,B) and density σ – F : (x,d) 7→ (c,σ), where color c is related to both point

location x and viewing direction d, recording the local appearance information, and density

σ is only related to point location x, recording the local geometry information.

The rendering of a 3D scene from a 2D perspective is formulated as a volume

rendering problem. Given a ray r(t) = o+ td, where o is the camera origin and t is the

distance along the viewing direction d, the color C(r) of the ray is computed as:

C(r) =
∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, T (t) = exp
(

−
∫ t

tn

σ(r(s))ds

)
, (4.1)

65



where T (t) is the accumulated transmittance along the ray from tn (near bound) to tf (far

bound). In practice, discretized approximations are used to evaluate this integral. The

process is also called ray marching, which can be used as a general tool to render from

any 3D feature field f and get a 2D-projected feature map as shown in many previous

works [229, 174, 223]. The property can be used to bridge the 3D feature field of a scene

with its 2D feature maps and is the basis of our 2D-3D consensus pipeline.

2D Foundation Models are deep learning models that have been extensively pre-trained

on large-scale image datasets. Let G be a 2D foundation model that maps an input

image I to a feature representation F: G : I 7→ F. The feature representation F is a high-

dimensional vector that captures the essential properties such as geometry and semantic

information of the input image I. Of particular interest, our work leverages DINO [18, 123],

a self-supervised learning approach for visual representation trained on large-scale image

datasets. Its latest version, DINOv2, excels in capturing both fine-grained details and

global contextual information from images without any labeled data. By initializing the 2D

encoder from DINOv2, we tap into a robust source of information-rich 2D dense features,

and can thus kick-start our 3D encoder from 2D-3D knowledge distillation.

4.4 Method

An overview of our approach is illustrated in Figure 4.2 (dense feature encoding)

and Figure 4.3 (key point prediction). Our model is composed of two branches, encoding

2D and 3D information, respectively (Sec. 4.4.1 and Sec. 4.4.2). Both branches encode

features in two forms – dense format and key-point-based sparse format (Sec. 4.4.4).

During training, we use paired 2D-3D inputs in the form of multi-view images and the

corresponding NeRF scene. The information extracted in 2D and 3D branches is compared

via 2D-3D consensus (Sec. 4.4.3) so that information can flow both ways.

66



…

…
Pretrained DINO ℒfid𝒦2D

…

ℐ3D

ℒ2D3D

…

ℋ3D

Volume 
Render

Input 3D Scene Input 3D Embedding 𝐉! 3D Feature Grid 𝐅!

𝒢2D

2D Modules

3D Modules

2D Transformer 
Blocks

3D Sparse 
Convolutions

Loss Modules

Input 2D Image

❆

𝐅"# 𝐅$#

Figure 4.2. Dense feature encoding: the 3D encoding module G3D is composed of a
swappable input processing head J3D and a common 3D reasoning backbone H3D. J3D
maps input 3D scenes of various formats into a feature Js in a unified 3D embedding
space. H3D turns Js into a 3D feature grid Fs. Through interpolation on Fs and volume
rendering, a 3D-projected feature map F3D can be obtained and compared with a 2D
dense feature map F2D, extracted from the 2D encoding module G2D. The resulting 2D-3D
consensus loss L2D3D is used as a self-supervision signal. An additional 2D fidelity loss
Lfid is introduced to make sure that the 2D-3D consensus optimized 2D feature F2D does
not deviate too much from the original 2D feature in order to retain some of its semantics
and visual richness.

4.4.1 2D Encoding

The 2D encoding branch (G2D) of the ConDense framework is crucial for extracting

rich visual features from multi-view images, which later are learned synergistically with the

3D encoding module. We follow the network architecture of DINOv2 [123] to use ViT [41]

as the base for our 2D encoder and load the pre-trained DINO weights for the initialization

of our 2D branch. The ViT architecture takes as input a grid of non-overlapping contiguous

image patches of resolution N ×N . In this work, we use N = 14 (“/14” ViT models). The

patches are then passed through a linear layer to form a set of embeddings. Following

previous works [41, 18], an extra learnable [CLS] token is added to the sequence to

aggregate global information. These patch tokens and the [CLS] token are fed to the

67



standard transformer blocks and updated by the attention mechanism.

For any given input image I, the 2D branch generates a dense feature map F2D =

G2D(I). This feature representation F2D is a high-dimensional vector encoding various

essential attributions of the input image, and can already be used out-of-the-box due to

its pre-training on large-scale image datasets. We will later show that combined with our

2D-3D joint training, the feature branch can be further improved for various downstream

tasks.

4.4.2 3D Encoding

The 3D encoding branch (G3D) of the ConDense framework is aimed at extracting

a 3D feature field from various data formats. It is designed to be composed of two parts:

G3D = H3D ◦J3D, where J3D is the input processing head and H3D is the actual 3D reasoning

backbone. Different 3D data formats have their individual input processing heads, but

they share a common 3D reasoning backbone H3D. The major 3D inputs we are dealing

with are NeRF models, while we also support other data formats such as point clouds.

Here we detail the full pipeline for 3D feature field reasoning from NeRF data.

Grid Sampling from NeRF. Given any learned NeRF function F : (σ,c), we sample

uniformly on a 3D lattice within the normalized scene bounding box [−1,+1], with spacing

ϵ between samples:

Σs = {σ(x),s.t. x ∈ [−1 : ϵ : 1]3}, (4.2)

Cs = {c(x,d),s.t. x ∈ [−1 : ϵ : 1]3,d ∈ D}, (4.3)

where D is a predefined set of directions aiming to capture as much local appearance

information as possible. In order to reduce computation costs, we use the density field

from the input NeRF to sparsify these grids. Specifically, we calculate sample opacity by

α(x) = 1− exp(−σ(x)) due to the canceled-out spacing term δt in the regular grid [195],

68



and filter out the point samples x with α(x) < θ. After sparsification, the evaluated

sigma value and color values are concatenated for each grid sample and fed into the input

processing head, which is a small 3D sparse convolutional network:

Js = J NeRF
3D (Concat(Σs,Cs)). (4.4)

Here Js serves as the input embedding for the 3D reasoning backbone, while

different input processing heads take care of mapping data from different input sources

to this input embedding space. For point cloud inputs, we first voxelize the data before

feeding it into a small 3D network. Please check the appendix for more details.

3D Spatial Reasoning. We apply a 3D UNet [35] implemented with sparse convolution

blocks to obtain a 3D feature grid Fs from the aforementioned input embedding:

Fs = H3D(Js). (4.5)

The module enables reasoning in 3D space. To obtain the feature for an arbitrary 3D

query point x ∈ R3, we interpolate within the feature grid Fs with a trilinear interpolation

operator:

f3D(x) = TriLerp(x,Fs). (4.6)

4.4.3 2D-3D Consensus with 2D Fidelity

With the proposed 2D and 3D encoders, our model can generate co-embedded

dense features given 2D or 3D inputs. During training, we use paired data of multi-view

2D images {Ik} and their corresponding learned NeRF F : (σ,c) to jointly train the 2D

and 3D branches.

Specifically, for each scene, we first generate the 3D feature field f3D as detailed in

69



Sec. 4.4.2. Based on this feature field and the scene density σ, we can adapt the rendering

equation to render 3D-projected feature maps as in [229, 174]:

F3D(r) =
∫ tf

tn

T (t)σ(r(t))f3D(r(t))dt. (4.7)

In the meantime, we generate the 2D feature map with our 2D branch: F2D = G2D(Ik)

and adopt the consistency loss between the 3D rendered feature map F3D the 2D-originated

counterpart F2D with L2 loss:

L2D3D(F2D,F3D) =
∑
r∈R

||F2D(r)−F3D(r)||22. (4.8)

R denotes all camera rays in the multi-view image set of the scene that hit at

least one active voxel in the 3D feature grid Fs. The loss encourages information to flow

both ways – the 3D branch could learn to generate useful 3D feature fields from the 2D

multi-view supervision, and the 2D branch could also benefit from consistent underlying 3D

geometry and learn to extract less noisy, multi-view consistent, and 3D-informed features.

Due to the biased and scarcer nature of the existing multi-view image datasets, if we

optimize the networks based only on this 2D-3D consistency loss, the feature quality may

degrade due to trivial solutions and biased data distribution. To prevent this, we propose

to insert an additional output head called 2D fidelity head K2D before the second-to-last

transfer block (see Figure 4.2), and apply the 2D fidelity loss to keep its output Ffid
2D from

deviating too much from the original DINOv2 [18] feature:

Lfid(Ffid
2D ) = ||Ffid

2D −Ft
2D||22, (4.9)

where Ft
2D is the pre-trained DINOv2 feature. No ground-truth labels are used in this loss,

and this term can be applied on any natural image collection. We adapt ImageNet-21k [144]

in our pipeline.

70



𝐅!"

𝐅!

Per-pixel 
Shared MLP

Per-voxel 
Shared MLP

(
𝐻
𝑁 ,
𝑊
𝑁 , 𝐶) (

𝐻
𝑁 ,
𝑊
𝑁 ,𝑁! + 1)

Volume 
Rendering 
(𝐻,𝑊)	

𝐏!

Reshape to (𝐻,𝑊)	
Multiply Patch Prob. 

(0-channel)

ℒp

𝐏!"

𝐏,"

Figure 4.3. Key point prediction: key points are detected in both 2D (P2D) and 3D
(P3D) based on the existing feature backbones. The 2D-3D key point loss Lp is used as a
self-supervision signal.

4.4.4 Key Point Extraction

With the proposed 2D and 3D encoders and the joint training scheme, our model

can generate co-embedded dense features given any input 2D image or 3D scene. This

property is desired since it enables possible applications to query among 2D, 3D, and other

modalities. To further facilitate these applications, we add support for sparse key point

detection in both 2D and 3D based on the existing feature backbones for efficient queries

across scene scales.

As shown in Figure 4.3. To detect key points in 2D images, we follow a similar

formulation as in [40] and decode the 2D backbone feature F2D into the full image-resolution

interest point possibility map P2D with 2 MLP layers with a softmax output head (noted

as M2D). Please refer to [40] and our Appendix for more in-depth details. For the 3D

branch, we similarly use 2 MLP layers with a ReLU output head (noted as M3D) to decode

the key point possibility on the 3D feature grid Fs, and the possibility maps are rendered

71



and compared between 2D and 3D using the aforementioned 2D-3D consensus scheme:

P2D = M2D(F2D), (4.10)

P3D(r) =
∫ tf

tn

T (t)σ(r(t))p3D(r(t))dt, (4.11)

Ps = M3D(Fs), p3D(x) = TriLerp(x,Ps), (4.12)

Lp(P2D,P3D) =
∑
r∈R

||P2D(r)−P3D(r)||22. (4.13)

During test time, 3D key points are selected directly from opaque 3D grid samples.

We multiply the opacity value by the predicted key point possibility and use α(x)×p3D as

the selecting criteria for the 3D key points.

We argue that the joint 2D-3D key point detection not only helps enable various

query tasks based on dense feature backbones (Sec. 4.6.3) but also serves as a useful

technique to improve the overall feature quality (Sec. 4.7.1).

4.5 Implementation Details

Loss Terms. The final loss L is given by:

L = λ2D3DL2D3D +λfidLfid +λpLp, (4.14)

where λ2D3D, λfid, and λp are scalars adjusted throughout the training process. Check the

appendix for more details.

Datasets Details. For all experiments included in the main experiments, we use

MVImgNet [211], ScanNet [36], and RealEstate10k [234] as our multi-view pre-training

datasets. MVImgNet is an object-centric dataset containing a total of 6.5 million frames

from more than 200k video captures of diverse objects. ScanNet and RealEstate10k are

indoor scene-scale datasets each containing a diverse set of scene captures in the form of

video clips. Though other modalities are provided in some of these datasets (e.g. point

72



clouds, semantic labels, etc.), we only use the posed images in pre-training. To generate

NeRFs for our pre-training dataset, we use the MipNeRF-360 [9] official implementation

to fit the scenes. For MVImgNet, we trained 4000 steps for each scene. For ScanNet and

RealEstate10k we trained 8000 steps for each scene. We half the image resolution before

using it as training supervision. All the NeRF are fitted with 8 V100 GPUs. We find these

settings are enough for generating NeRF with good qualities. We summarized the NeRF

quality in terms of PSNR and SSIM in Table 4.1. It takes around 35000 V100 GPU hours

to build these NeRFs, and we parallelize the process on around 1000 GPUs. For ScanNet,

we are determining the bounding boxes with the ground-truth meshes. For MVImgNet

and RealEstate10k, we use the ray near-far values and camera locations to determine the

scene bounds.

Table 4.1. NeRF quality on the pre-training datasets with PSNR (before the slash) and
SSIM (after the slash), tested on the sampled 1% images on each dataset’s native image
resolution.

MVImgNet ScanNet RealEstate10k

30.23 / 0.939 25.78 / 0.901 27.24 / 0.922

We acknowledge that fitting NeRFs on multi-view datasets requires significant

computation. However, we believe this upfront cost is justified: (1) It enables 3D backbone

pre-training without explicit 3D supervision, which is much more time-consuming to

acquire. (2) Creating these datasets is a one-time process, and they can be shared among

researchers to avoid repeated computation. (3) Faster rendering models have emerged

since we developed the pipeline, especially the 3D Gaussian Splatting, which is even more

suitable for our pipeline due to its sparsity nature. Adoption of these newer models could

potentially cut the computational cost greatly.

ImageNet-21k [144] is used to provide image samples for the 2D fidelity loss in

addition to the multi-view datasets. ImageNet-21k is the superset of the commonly used

ImageNet-1k dataset and contains more than 14 million images.

73



2D Input Details. For MVImgNet [211], we use all 6.4M images in 214k scenes spreading

over 238 classes for pre-training. Images are center-cropped and resized to 336×336 before

being fed into 2D branch input. For ScanNet [36], we use all 1513 scans for training. We

filter out blurred frames by calculating the variance of the Laplacian matrix and ignore

them for the 2D branch inputs. Other images are randomly cropped in 336×336 before

being used as 2D inputs. The same sampling and pre-processing schemes are applied for

RealEstate10k [234]. For 2D fidelity loss, we sample from all 14M images in ImageNet-21k

spreading over 21k classes. Images are resized in 336×336 before being processed by our

2D branch and output features were compared with the DINOv2 ViT-g/14 model [123] to

enforce the 2D fidelity.

3D Input Details. During training, we grid sample the NeRFs with resolution varying

from 64×64×64 to 256×256×256 to ensure adaptability to different resolutions. These

samples are then re-scaled to 128×128×128, with 0.5 possibility of being sparse-dilated.

The output 3D feature grid Fs has the spatial resolution of 128×128×128 in all experiments

in this work.

Network Details. For the 3D Network, we follow the conventions and implementations

as in MinkowskiNet [34]. Specifically, for input processing heads J3D, we apply 3 sparse

convolution layers with “5×5×5×1,16”, “5×5×5×1,32” and “5×5×5×1,64” config-

urations, similarly following the input processing of [34]. Here × indicates a hypercubic

sparse kernel. For the 3D reasoning backbone H3D, we apply the same architecture as

MinkowskiUNet32 in [34] but remove the original input head and modify the number

of output channels to match the 2D feature channels. We utilize Vision Transformers

(ViT-g/14) as the backbone for the 2D branch and use 8 A100 GPUs for training. For the

key point prediction, the process is illustrated in Figure 4.3. Two different 2-layer MLPs

are used for reasoning key point possibilities from 2D and 3D inputs.

Training Scheme. We bootstrap the full training process of ConDense in four stages.

First, the 2D feature backbone G2D is initialized from DINOv2 [18] pre-trained weights.

74



We then freeze its weights and fit the 2D key point detector MLPs (M2D) by enforcing

the interest point heatmap predictions to a pre-trained, frozen SuperPoint [40] model.

Then both G2D and M2D are kept frozen, while the 3D branch modules G3D and M3D

are optimized from L2D3D and Lp. In this stage, we distill the knowledge from the 2D

foundation models to kick start the learning of 3D modules. For the final phase, we

unfreeze all modules and jointly train all 2D and 3D modules with the loss terms defined

in Equation 4.14.

Loss Scheduling. After initializing the 2D branches and fine-tuning the 2D key point

detector, we train for 30k iterations with λfid and λp = 0 while only tuning the 3D networks

(distillation from 2D to 3D), where we sample 8 NeRF scenes in each iteration and sample

rays within the original set of rays for supervision. After this stage, we train an additional

30k iterations with a linear warm-up of λfid and λp in 5k iterations where all 2D and 3D

modules are jointly fine-tuned. Throughout the process, we use an AdamW optimizer,

an initial LayerScale value of 1e-5, a weight decay cosine schedule from 0.02 to 0.24, a

learning rate of 3.3e-4, and its warm-up of 2k iterations.

Computational Footprints. For data preparation, we use V100 GPUs for fitting each

scene. It takes around 35k V100 GPU hours. For pre-training, we use A100 GPUs and it

takes around 4k A100 GPU hours, including both distillation and joint tuning stages. The

total estimated power consumption is 12.1 MWh and carbon emitted is 5.8t CO2eq.

4.6 Experiments

In this section, we present extensive evaluations of our models on 1) 3D tasks

including 3D classification, and 3D segmentation; 2) 2D image understanding tasks; and

3) Cross-Modality scene queries. In all experiments, we freeze weights for the feature

backbones G2D and H3D unless otherwise stated. Due to the page limit, we only include

the most common benchmarks in the main paper, please check the appendix for more

75



experiments including 3D detection, 2D retrieval, and 2D depth estimation.

4.6.1 3D Tasks

For point-cloud-based 3D tasks, we use the 3D feature backbone H3D out-of-the-

box and freeze its weights, while training a point cloud input head J PC
3D with 4 sparse

convolutional layers. For a 3D point x, we fetch the interpolated features in the 3D feature

grid Fs as the point feature (Equation 4.6). Depending on the actual 3D tasks, different

output heads could be added to further process these point features.

3D Classification We follow the testing protocols in the previous works [199, 200]

to evaluate on ModelNet40 [192] and ScanObjectNN [170]. ModelNet40 is a synthetic

dataset of CAD models containing around 10k training samples and 2.5k testing samples.

ScanObjectNN is a real-world 3D dataset with around 15k objects extracted from indoor

scans. We follow the same dataset setup and preparation protocols as in ULIP [199] to

ensure consistent evaluation. We apply normalization on the point clouds before passing

them into the input processing head and use a simple 3-layer sparse convolutional network

with average pooling and 1-layer MLP output with softmax to predict the scene class.

Only these two modules are trained with standard cross entropy loss on the target dataset

and the 3D feature backbone is kept frozen. Results are in Table 4.2.

3D Segmentation We follow the testing protocols in the previous works [204, 138] to

evaluate on the ScanNet [36] and the S3DIS [6] datasets. ScanNet contains 1613 indoor

scans with 20 semantic classes, we train on its train split and report the mean Intersection

over Union (mIoU) on the validation split. S3DIS contains 272 scenes, we train on its

training split and evaluate on its validation set with the 6-fold cross-validation scheme.

The voxel sizes for ScanNet and S3DIS are set to 2cm and 5cm, respectively. We extract

the point feature from the backbone with trilinear interpolation (Equation 4.6) and use a

simple linear layer with softmax to predict the point label. Only the input processing head

and the linear layer are trained with standard cross entropy loss on the target dataset and

76



Table 4.2. 3D classification results on ScanObjectNN (before slash) and ModelNet40 (after
slash). ConDense outperforms all the baselines including train-from-scratch methods
and pre-training methods.

Model Overall Acc Cls-mean Acc

PointNet [135] 68.2 / 89.2 63.4 / 86.0
PointNet++ [136] 77.9 / 90.7 75.4 / – –
DGCNN [186] 78.1 / 92.9 73.6 / 90.2
MVTN [51] 82.8 / 93.8 – – / 92.0
PointMLP [112] 85.7 / 94.1 84.4 / 91.3
PointNeXt [138] 87.5 / – – 85.9 / – –

Point2Vec [213] 87.5 / 94.8 86.0 / 92.0
ULIP (w/ PointMLP) [199] 88.8 / 94.3 87.8 / 92.3
ULIP-2 (w/ PointNeXt) [200] 90.8 / – – 90.3 / – –
ReCon [137] 90.6 / 94.7 – – / – –
PointGPT [26] 93.4 / 94.9 – – / – –
ConDense (Ours) 94.1 / 95.2 93.4 / 93.1

the 3D feature backbone is kept frozen. Results are presented in Table 4.3.

3D Detection We show that our 3D features are also useful for 3D detection by following

the settings of [204] to attach a state-of-the-art detection head CAGoup3D [178] and

fine-tune the entire network for fair comparisons. The results are presented in Table 4.4.

We provide an additional 2.1 and 2.9 points gain in terms of mAP@0.25 and mAP@0.5

respectively over an already strong baseline CAGroup3D. Our performance is also better

than other pre-training methods [194, 204].

Summarizing the results in Table 4.2, Table 4.3, and Table 4.4 our method has

demonstrated superior performance compared to other train-from-scratch and pre-training

frameworks on 3D classification, segmentation, and detection tasks. Despite only tuning

the input and output heads, our approach still surpasses the performance of pre-trained

methods that fine-tune the entire model. Furthermore, while many other methods heavily

utilize point cloud data during pre-training [199, 200], our approach achieves remarkable

results without this requirement.

77



Table 4.3. 3D segmentation results (mIOU) on ScanNet and S3DIS. ConDense outper-
forms all the baselines including train-from-scratch methods and pre-training methods.

Model ScanNet S3DIS
PointNet++ [136] 53.5 54.5
MinkowskiNet [34] 72.2 65.4
PointCNN [90] – 65.4
KPConv [168] 69.2 70.6
PointNeXt [138] 71.5 74.9
PointMetaBase [95] 72.8 77.0
PointVector [39] – 78.4
PointContrast [194] 74.1 –
MSC (w/ SparseUNet) [191] 75.5 –
PPT (w/ SparseUNet) [190] 76.4 78.1
PonderV2 (w/ SparseUNet) [235] 77.0 79.9
Swin3D [204] 77.5 79.8
ConDense (Ours) 79.8 80.7

Table 4.4. 3D detection results (mAP@0.25 and mAP@0.5) on ScanNet.

Model mAP@0.25 mAP@0.5
RepSurf [141] 71.2 54.8
SoftGroup [175] 71.6 59.4
CAGroup3D [178] 75.1 61.3
PointContrast [194] 59.2 37.3
Swin3D [204] w/ CAGroup3D 76.4 63.2
ConDense w/ CAGroup3D 77.2 64.2

4.6.2 2D Tasks

To evaluate the performance of the pre-trained 2D feature backbone G2D, we follow

the settings as presented in DINOv2 [123], and compare with common self-supervised pre-

trained baselines including MAE [54], DINO [18, 123], and iBOT [231], as well as weakly

supervised visual-language pre-trained model OpenCLIP [71]. For both classification

and segmentation, we present results under the “Linear (lin.)” setting [18, 123]. We

include more results under the “multi-scale (+ms)” setting and more 3D benchmarks in

our appendix. Results are presented in Table 4.5.

78



2D Classification We test the quality of the holistic image representation produced by

the model on the ImageNet-1k [149] and Places205 [230] classification dataset. A linear

probe is added on top of the frozen feature backbone to generate the prediction, following

previous works [18, 123].

2D Segmentation We test on the task of semantic image segmentation to evaluate the

quality of our learned representation. A linear layer is trained to predict class logits from

patch tokens and it is upscaled to obtain the final segmentation map, following previous

works [18, 123].

Table 4.5. 2D classification and segmentation results on multiple evaluation datasets
with frozen features. ConDense improves over the DINOv2 in all benchmarks.

Classification (Acc) Segmentation (mIOU)
Model ImageNet Places205 ADE20k PascalVOC
OpenCLIP [71] 86.2 69.8 39.3 71.4
MAE [54] 76.6 52.4 33.3 67.6
DINO [18] 79.2 60.4 31.8 66.4
iBOT [231] 82.3 64.4 44.6 82.3
DINOv2 [123] 86.5 67.5 49.0 83.0
ConDense 89.6 70.2 53.6 85.1

For both 2D classification and segmentation benchmarks, our 3D-informed Con-

Dense shows consistent improvement over the original DINOv2 and indicate that our

2D-3D consensus training pipeline can help improve the performance of the existing 2D

foundation models.

2D Retrieval We evaluate our performance for image retrieval with MVImgNet [211]

and ScanNet [36]. We follow the experiment settings of [18, 123] by freezing the features

and directly applying k-NN for retrieval. On both datasets, we perform tests with 1 query

image and 1 index image on each scene. The top-1 accuracy is reported in Table 4.6. Our

ConDense clearly generates better global features suitable for retrieval tasks.

Depth Estimation We follow the settings in [123] and attach a linear classifier on top

79



of one (lin. 1) or four (lin. 4) transformer layers to infer depth from the frozen feature

backbones. It can be seen that our performance is better than all other pre-training

backbones except DINOv2. The reason is that the 2D-3D consensus loss enforces the

feature to be invariant across different views, and the 2D branch is thus expected to

generate the same features for the same spatial point regardless of viewing angles and

distances. The process of 2D-3D consensus facilitates more 3D-informed and consistent

features, as can be observed from Figure 4.4. Such a property could be desired or unwanted

depending on the exact downstream tasks. And we defer the more in-depth study into

this property to future research. To validate this, we show our results on multi-view stereo

(MVS) depth estimation. Here we tested two widely used MVS depth estimation methods–

MVSNet [205] and PointMVS [28], on the standard dataset (DTU [73]). It can be seen

that both backbones are boosted by our features, and ConDense outperforms DINOv2

by a large margin.

Table 4.6. 2D retrieval results (top-1 Acc) on MVImgNet and ReaEstate10k datasets.

Model MVImgNet RealEstate10k
OpenCLIP [71] 70.1 63.0
MAE [54] 65.4 55.1
DINO [18] 65.6 58.9
DINOv2 [123] 70.1 61.3
ConDense 76.9 63.2

4.6.3 Cross-Modality Scene Query

Leveraging the joint 2D-3D co-embedding property of ConDense, we are able

to query across modalities. Here we tackle a series of matching tasks including scene

identification from 2D images and a newly proposed task – 3D scene duplication detection.

The results are presented in Table 4.9.

We use 3 datasets: Objectron [170], ScanNet [36], and Replica [161] for cross-

modality scene query tasks. To NeRF these scenes, we trained 4000 steps for Objectron

80



Table 4.7. Depth estimation with frozen features. We report performance when training
a linear classifier on top of one (lin. 1) or four (lin. 4) transformer layers. We report the
RMSE metric on the 3 datasets. Lower is better.

NYUd NYUd → SUN RGBD
Method lin. 1 lin. 4 lin. 1 lin. 4
OpenCLIP [71] 0.541 0.510 0.537 0.476
MAE [54] 0.517 0.483 0.545 0.523
DINO [18] 0.555 0.539 0.553 0.541
iBOT [231] 0.417 0.387 0.447 0.435
DINOv2 [123] 0.344 0.298 0.402 0.362
Ours 0.361 0.322 0.389 0.367

Table 4.8. Stereo depth estimation on the DTU dataset. Backbone methods could benefit
a lot from our feature initialization.

Model Overall Err.
MVSNet [205] 0.462
PointMVS [28] 0.366
DINOv2 [123] w/ MVSNet 0.389
DINOv2 [123] w/ PointMVS 0.365
ConDense w/ MVSNet 0.341
ConDense w/ PointMVS 0.320

and 8000 steps for both ScanNet and Replica on each scan. We use ground-truth bounding

boxes included in these datasets. For “Ren5” baselines, we render images in the same

resolution as in their corresponding datasets and the 5 views are randomly sampled from

the original camera trajectories. So these 2D-Native methods are taking advantage of

that queries and indices are drawn from the same trajectory, where in real-world cases

this is not possible– since the original image sequences and trajectories are typically not

accessible in 3D models. For ULIP-2 [200], we use its global scene embedding to perform

the top-1 matching between the queries and indices. For our methods, we use 32 key points

for each 2D image and 32, 64, and 64 key points for 3D input from Objectron, ScanNet,

and Replica respectively. For our 2D-3D key point matching, we use the threshold 0.75

81



and select the 3D scene with the most number of successful matches as the query result.

3D Scene Retrieval with a Single Image (2D-3D). In this task, we retrieve a scene

from a repository with a single view. To compare with 2D-only methods, we first render

5 views (Ren5) from a scene and compute the cosine similarity of the query image and

rendered views, and then use the winner-take-all scheme to identify the scene.

For Objectron [170], we sampled 1000 scenes spreading over 9 object categories.

For each scene, we sample one image as the test query. We use top-1 to match between

queries and keys and calculate the retrieval accuracy. For ScanNet [36], we use all 1513

scans. We sample one frame as a test query per 100 frames and at least one frame for

every scene regardless of its length.

In Table 4.9, it can be seen ConDense 2D is a strong baseline not only outper-

forming all the other 2D methods but also performing better than ULIP-2. In 2D-3D

methods, both global (using globally averaged feature) and KP (key point matching with

RANSAC) variants of ConDense do better than the other 2D-3D method.

Table 4.9. 3D scene retrieval and 3D scene duplicate detection results on multiple datasets
with frozen features. The upper includes 2D solutions where scenes are represented by 5
random views (Ren5), and the lower includes 2D-3D native methods.

3D Retrieval (Acc) 3D Dup. Det. (AP∗
75)

Model Objectron ScanNet ScanNet Replica
OpenCLIP (Ren5) [71] 90.3 49.8 51.0 52.7
DINOv2 (Ren5) [123] 88.1 43.1 41.3 43.3
Unicom (Ren5) [4] 92.9 52.5 54.3 57.0
ConDense 2D (Ren5) 94.6 53.3 58.7 59.0

ULIP-2 [200] 89.7 61.7 63.0 66.6
ConDense-Global 91.6 70.1 65.3 66.9
ConDense-KP 92.9 78.4 70.7 72.0

3D Scene Duplicate Detection (3D - 3D). We further test the matching capabilities

of ConDense at the scene level by proposing a new task of detecting duplicate scenes

in a large NeRF repository. Our method is generalizable to both NeRF and Point-Cloud

82



inputs, and we run our experiments on ScanNet and Replica [36, 161]. For both datasets,

we sample 300 scene pairs where half of them are NeRFs from the same scene (duplicates)

and half of them not. For ScanNet, the duplicates are created from different scans of

the same scenes. (e.g. scene #0 has 3 different scans.) For Replica, the duplicates are

created from the overlapping scans of the same scenes, where at least 50% of trajectory

overlappings are ensured. In this way, we comprehensively test the 3D matching capability

of models on either full scans or adjacent partial scans. We use 0.75 as the threshold when

determining if two embeddings belong to the same scene as a way to detect duplicated

scenes. AP∗
75 is calculated as the classification accuracy of duplicate detection when the

threshold is 0.75.

Results are presented in Table 4.9. Here, Ren5 methods are similarly defined as

in the previous 3D scene retrieval, where scenes are rendered into images and the image

embeddings are used. We use θ = 0.75 as the threshold to determine if two embeddings

belong to the same scene. Here we find the remarkable effectiveness of our key points.

There is a large gap between 2D-3D methods for this task, showing the need to tackle

this task in 3D feature space. While ConDense-Global performs similarly to ULIP-2,

ConDense-KP is significantly better for scene-to-scene matching.

4.7 Model Analysis and Discussions

4.7.1 Ablation Study

Table 4.10. Ablation study on removing individual components in our pre-training
pipeline, evaluated on both 3D classification (Overall Acc on ScanObjectNN, before slash)
and 2D classification (Acc on ImageNet-1k, after slash).

Full Model Freeze 2D No Lp No Lfid 10% Data
94.1 / 89.6 91.3 / 86.5 90.5 / 87.1 89.7 / 79.9 88.7 / 79.1

We perform experiments to verify the effectiveness of our design. The ablation

83



Figure 4.4. Visualization of our 2D dense feature reveals its superiority over the Original
DINOv2 feature in terms of consistency across multi-view images. Additionally, we present
visualizations of sparse feature locations identified by our key point detector.

study results are presented in Table 4.10. Freeze the 2D encoder? When we freeze

the 2D encoder, as is done in other methods [130, 199], we observed a worse performance

in performance for both 2D and 3D tasks. We can also see that the features from our

backbone are more 3D consistent and contains more detail. Please check the visualization

in our supplementary materials. Sparse feature helps? The sparse feature module is

an integral component of our framework, not only enabling novel capabilities in 2D-3D

retrieval but also serving as a strong self-supervision signal to enhance performance on

individual 2D and 3D tasks. 2D fidelity helps? The 2D fidelity loss helps prevent the

2D features from collapsing to a trivial solution or overfitting the biased data distribution.

The exclusion of the 2D fidelity module has a detrimental impact on the quality of both

2D and 3D tasks, as evidenced by our experiments. Part of this loss is due to multi-view

datasets being still considerably smaller than 2D image datasets, and featuring mostly

man-made objects and indoor scenes. The limited size and biased distribution can cause

the features to deviate significantly, leading to worse results.

84



Figure 4.5. Visualization of using different types of input to query the target scene
repository (ScanNet). Within each pair are query inputs (left) and top-1 query results
(right).

4.7.2 Feature Visualization

For Figure 4.4, we ran PCA on the generated feature maps, both DINOv2 (2nd

row) and ours (3rd row), of each scene and selected top-3 components to visualize them

as red, green, and blue, respectively. We also visualize the top 10 confident (in terms of

predicted probabilities) key points with positive 3D matches in this figure (1st row).

4.7.3 Cross-Modality Queries

We show in Figure 4.5 the visualization of using different types of input to query

the target 3D scene repository (ScanNet). The unique 2D-3D co-embedded embedding

space with sparse key point design enables ConDense to effectively query objects in

repositories of large scenes. Here, ConDense is not only able to query 3D scenes with

partial views from the dataset but also able to find objects in these scenes that match

the appearance from unseen internet images. In addition, by changing our backbone to a

multi-scale CLIP [140] feature as in [80], we further acquire the ability to query 3D scenes

with natural languages inputs, and thus build a language-image-3D co-embedded feature

85



space with sparse key points. With this modified model, we can query scene repositories

with text inputs as in Figure 4.5 third row.

Table 4.11. 3D Classification (Acc) on MVImgNet, Co3D, and ShapeNet. Our method
is even more useful when 3D training data are scarce (ShapeNet 1%).

Method MVImgNet Co3D ShapeNet (1%) ShapeNet (10%) ShapeNet (Full)
From Scratch 73.5 81.1 61.2 76.9 84.9
PointContrast [194] 76.9 84.9 65.8 78.9 86.6
Point-MAE [126] 79.1 86.2 72.3 81.1 89.2
ULIP-2 [200] 82.9 86.1 74.3 81.9 89.3
Ours (Freeze 2D) 87.3 88.8 80.1 83.9 90.1
Ours 91.3 93.8 81.4 85.3 91.9

Table 4.12. 3D Segmentation (mIOU) on ScanNet, SemanticKitti, and S3DIS. Our
method is even more useful when 3D training data are scarce (ScanNet 1%).

Method ScanNet (1%) ScanNet (10%) ScanNet (100%) SemanticKitti S3DIS
PointNet [135] 42.2 62.1 72.2 19.6 47.6
Mix3D [119] 39.4 69.9 73.6 65.4 63.5
PointContrast [194] 52.9 70.4 74.1 71.7 75.2
Swin3D [204] 54.8 65.2 77.5 74.7 79.8
Ours (Freeze 2D) 65.6 70.0 78.1 74.6 80.6
Ours 67.3 72.3 79.8 75.1 80.7

4.7.4 Effect of Data Amount

We tested our 3D capabilities on more datasets and also with varying amounts of

3D training data. The results are presented in Table 4.11 (classification) and Table 4.12

(segmentation). We see consistent improvement over all baselines from these results. Also,

it can be seen that our method is even more useful when 3D training data is very scarce

(See ShapeNet 1% and ScanNet 1%).

Table 4.13. Comparing different backbones.

PointBERT PointNeXt MinkowskiNet
#Parameters 32.3M 41.6M 41.3M
3D Cls / 3D Seg 87.2 / - 92.1 / 77.0 93.2 / 79.1

86



4.7.5 Backbone Architecture

The MinkowskiNet (MNet) is the established state-of-the-art for dense 3D tasks

and has been adopted by most 3D dense task models. So we select MinkowskiNet as

our backbone. Here we had an experiment comparing different backbones – results are

reported in Table 4.13 on ScanObjectNN (3D Cls) and ScanNet (3D Seg).

We see better performance, especially on 3D Seg, with MNet. The reasons behind

this may include (1) an overfitting tendency of the transformer-based model PointBERT,

which aligns with OpenScene’s finding (their Sec. 6.4); (2) our better generalizability from

training to test domains, where point distributions are different. We will include a more

detailed discussion on the performance and scalability of different backbones once time

permits.

Table 4.14. Ablation study on NeRF quality in the pre-training dataset.

Training NeRF Type Mip-NeRF (2k steps) Mip-NeRF (4k steps)
Quality (PSNR/SSIM) 28.54 / 0.899 30.23 / 0.939
2D Cls / 3D Cls 86.2 / 88.9 87.7 / 93.2

4.7.6 Effect of NeRF Quality

We observed differences in performance when using trained NeRFs of different

quality. The numbers are reported on ImageNet (2D Cls) and ScanObjectNN (3D Cls) on

a lighter version of the final model reported in the main paper.

Results are presented in Table 4.14. We find that pre-training with data of lower

quality will have an impact on performance, especially for 3D tasks. We take measures such

as using different iteration numbers to ensure convergence, and filtering out low-quality

frames as mentioned previously.

87



4.8 Conclusions and Limitations

In this work, we have presented ConDense, a framework for 3D pre-training that

adeptly harmonizes 2D and 3D feature extraction using pre-trained 2D networks and

multi-view datasets, in both the dense and the sparse feature regimes. Our approach not

only provides a pre-trained 3D network acing in multiple tasks but also enhances the quality

of 2D feature representation and establishes a unified embedding space for multi-modal

data interaction. Extensive experiments demonstrate the superiority of ConDense over

existing 3D pre-training methods in tasks like 3D classification and 3D segmentation and

in new applications such as 2D image queries of 3D NeRF scenes. ConDense marks an

advance in 3D computer vision, reducing the reliance on scarce 3D data and enabling more

efficient and multi-modality queries on 3D scenes.

Nonetheless, the pipeline comes with several limitations including the relatively high

cost of processing multi-view data. Exploring more efficient ways to exploit multi-view data

as well as ready-to-use 3D data could be a useful future direction. Furthermore, combining

techniques from contrastive learning methods [194, 56] and efficient fine-tuning methods

(e.g. LoRA [67]) could improve the overall robustness and efficiency of the pipeline. We

believe that ConDense opens up exciting avenues for model pre-training and 2D/3D

feature backbones, and defer these to future research in this direction.

88



Acknowledgements

Chapter 4, in full, is a reprint of the material published in the 2024 European

Conference on Computer Vision (ECCV): “ConDense: Consistent 2D/3D Pre-training for

Dense and Sparse Features from Multi-View Images” (Xiaoshuai Zhang, Zhicheng Wang,

Howard Zhou, Soham Ghosh, Danushen Gnanapragasam, Varun Jampani, Hao Su, and

Leonidas Guibas). The dissertation author was the primary investigator and author of

this paper. Our thanks go to Hao-Ning Wu and Bhav Ashok for their support in building

large-scale pose estimation and NeRF pipeline for dataset pre-processing.

89



Chapter 5

Fast 3D Scene Generation by Lifting
Panorama Images from 2D Diffusion
Models

5.1 Introduction

The creation of immersive 3D environments represents a frontier in computer vision

and graphics, promising to revolutionize content creation for virtual reality, gaming, and

architectural visualization. While recent years have seen remarkable progress in image

synthesis, particularly with the advent of diffusion models, extending these capabilities to

full 3D scene generation introduces a host of new challenges. These challenges stem from

the need to ensure geometric consistency, scene completeness, and the ability to render

novel views that were not explicitly generated.

In this dissertation, we propose and analyze a framework for text-to-3D and image-

to-3D scene generation that bridges the gap between the rich priors of 2D diffusion models

and the complexities of 3D scene representation. Our approach leverages the strengths of

existing 2D generative models to bootstrap a robust 3D reconstruction process, effectively

decomposing the problem into manageable stages that can be optimized independently.

The core of our method lies in a two-stage pipeline: First, we harness state-of-the-art

2D diffusion models, specifically panorama generation models, to produce photorealistic

90



panorama images. These models, which can be conditioned on text descriptions or single

image inputs, generate panorama images with a comprehensive 360-degree representation

of the scene. In the second stage, we employ a learned 3D reconstruction model that

integrates information across these generated images to infer the underlying 3D geometry

and appearance. This reconstruction process is designed to complete any missing regions,

resulting in a coherent 3D scene that can be freely navigated.

Our two-stage pipeline offers several key advantages:

Flexibility in Input Modalities. Our framework supports both text-to-3D and image-

to-3D generation, providing flexibility for various use cases and user preferences. This

versatility makes our approach applicable to a wide range of scenarios, from purely

imaginative creations to extensions of existing environments.

Complete, Navigable 3D Scenes. Unlike methods that focus on generating single

objects or constrained viewpoints, our approach produces complete, navigable 3D scenes.

This enables users to explore the generated environments from any angle, enhancing the

immersive experience.

Scalability and Efficiency. By decomposing the problem into 2D generation followed

by 3D reconstruction, we can leverage highly optimized 2D diffusion models and focus our

3D learning efforts on the reconstruction task. This leads to a more scalable and efficient

pipeline and an easier optimization process.

We demonstrate through experiments that our approach generates diverse, high-

quality 3D scenes from text descriptions or single images. By enabling the rapid creation

of immersive 3D environments from simple text descriptions, we open up new possibilities

for creative expression, prototyping, and virtual world-building. This technology has the

potential to democratize 3D content creation, making it accessible to a broader audience

of artists, designers, and developers who may lack traditional 3D modeling expertise.

In summary, this chapter introduces a new methodology for text-to-3D and image-

to-3D scene generation that leverages the strengths of 2D diffusion models to produce

91



high-quality, navigable 3D environments. By bridging the gap between 2D and 3D

generation, we pave the way for more advanced and accessible 3D content creation tools,

bringing us closer to the vision of effortlessly translating imagination into immersive virtual

experiences.

5.2 Related Work

Our proposed 3D scene generation from the panorama prior pipeline is built upon

the recent advancement of 2D panorama generative and 3D scene implicit representations.

We now review related work on these techniques as well as similar approaches that integrate

2D generative model priors into object-level 3D generation tasks.

Panorama Generative Model. Omnidirectional 360-degree panorama images are

subjected to nonlinear perspective distortion of equirectangular projection, resulting in a

shift of data distribution from regular 2D images used to train large-scale image generative

models. Among existing methods, one line of works [176, 2, 179, 122, 188, 38, 157, 53]

tries to solve the problem of panorama image generation as an outpainting problem and

focuses on generating a 360-degree panorama from a partial image input. To tackle the

distribution shift while ensuring visual authenticity, various attempts have been made.

OmniDreamer [2] utilized transformer-based networks to perform diverse completions

and samplings while BIPS [122] integrates depth-aided adversarial supervision into their

training process. PanoDiffusion [189] adopts progressive camera rotations during each

diffusion denoising step, leading to panorama wrap-around consistency improvements.

Alternatively, following the success of advanced generative models, another line of works

explores to synthesize high-fidelity panorama images, from textual input [64, 158, 188,

43, 181, 201, 210, 177]. Such attempts integrate rich prior information from pre-trained

2D text-to-image generation models, further broadening their generalization capability

to zero-shot scenarios. Test2Light [30] introduce VQGAN [42] structure to synthesize

92



panorama images from text inputs. AOGNet [109] performs 360-degree outpainting

through an autoregressive process but suffers from inefficiency in the sampling process.

MVDiffusion [167] generates multi-view consistent images indirectly which can be stitched

together into panorama images. More recently, PanFusion [215] proposes a dual network,

considering both global panorama views and local perspective views, ensuring both global

consistency and local quality.

3D Reconstruction with Implicit Representations. Neural rendering techniques

have recently gained significant attention for their ability to represent high-quality 3D

scenes for realistic rendering, novel view synthesis, and extended applications. Most

recent methods are based on NeRF [11] which represents scenes as volumetric neural

radiance fields [22, 45, 117] and is optimized by per-scene rendering supervision. Given the

expressibility of NeRF, the NeRF-based pipeline suffers from high computation overhead,

as rendering usually requires dozens of queries through large MLP of the neural field per

ray. 3D Gaussian Splatting (3DGS) [78] solves this problem by representing the radiance

field using 3DGS that can efficiently be rendered via rasterization. However, all these

methods require dense input images and time-consuming per-scene optimization to achieve

high-quality reconstruction. More recently, transformer-based large reconstruction models

(LRMs) emerged as a general framework [65, 197, 182, 216, 184, 198] for reconstructing an

implicit 3D representation (NeRF or 3DGS) with only a feed-forward pass. These methods

learn from a large-scale dataset and capture rich priors useful for 3D reconstruction, and

achieve high-quality 3D reconstruction with only sparse view inputs. LRM [65] adopts a

highly scalable transformer-based architecture to directly predict a neural radiance field

from the input images. CRM [182] generates six canonical view images from a single

image input, and then feeds these images into a convolutional U-Net to create a high-

resolution triplane neural field. These LRM-derived methods mostly focus on object-level

reconstruction. For scene-level reconstruction, a more common line of research is to leverage

93



per-pixel (per-patch) feature and backproject each pixel into 3D space [21, 164, 29, 218].

PixelSplat [21] leverages epipolar line-based sampling to overcome local minima. GS-

LRM [218] takes advantage of plucker ray coding [133] and directly processes image

patches as a sequence of variable length. Flash3D [164] integrates a monocular depth

estimation model as prior and extends it to a full 3D shape and appearance reconstruction.

MVSplat [29] builds a cost volume representation via plane sweeping which provides

valuable geometry cues to the estimation of depth. This line of work is the most related

to our proposed method, while we adopt a few novel techniques to take care of unique

challenges in full 3D scene generation.

3D Object Generation from 2D Prior. The advancements in generative techniques [81,

62] enable large-scale pretrained 2D generative models to synthesize high-fidelity, open-

vocabulary, photorealistic 2D visual contents [41, 63]. There is a host of new challenges

to extending these capabilities into 3D content generation. Vast explorations have been

made into utilizing 2D diffusion models in object-level 3D generation. DreamFusion [134]

introduces the Score Distillation Sampling (SDS) method and a loss based on probability

density distillation that enables the use of a 2D diffusion model as a prior for optimization

of the objective neural field parameters. Later works [181, 155, 70, 104] improve SDS

sampling in terms of training speed, cross-view consistency, and texture fidelity. Notably,

MVDream [155] trains a multi-view diffusion to generate multi-view images simultaneously,

improving the 3D awareness of 2D. Later works [103, 153, 101, 99] take advantage of

consistent multi-view generation models to further improve the quality and speed of

3D object generation. However, these methods do not trivially extend to 3D scene

generation due to inherent challenges including lack of large-scale training data and limited

representation capabilities.

94



Input: Image / Text Output: Realistic Full 3D ScenesOur Pano3D Model

“a spacious modern 
bedroom, glossy floor, 

bright lighting ”

or

Panorama Generation

3D Reconstruction

Figure 5.1. Given a text or single image input, the pipeline first employs a 2D panorama
generation model to generate photorealistic panorama images, and then perform 3D
reconstruction to create complete and navigable 3D scenes. Pano3D efficiently creates 3D
scenes from only feed-forward passes.

5.3 Method

Our pipeline (Figure 5.1) integrates off-the-shelf panorama generative models to

synthesize 360-degree panorama images I ∈ RH×W ×3 conditioned on given inputs (text

or image). Then the panorama images are processed by our novel 3D Gaussian-based

reconstruction model to produce full 3D scenes with only fast feed-forward passes.

5.3.1 Panorama Image Generation

For text-to-panorama generation, we adopt the FLUX.1 [dev] model [88], since it is

the current state-of-the-art for image generation. The original FLUX.1 [dev] is distilled

from FLUX.1 [pro], a giant model, which is trained on a diverse set of natural, art, and

artificial images. We finetune FLUX.1 [dev] with LoRA on our curated panorama image

dataset for 2000 steps. The dataset contains 72 samples selected from public-domain

internet images, and we captioned the images manually.

For image-to-panorama generation, we adopt the Diffusion360 model [44]. The

model takes a perspective image of arbitrary shape and a corresponding mask on a

panorama image as input, and outpaint the entire panorama image based on the content.

95



Input Image Input Mask Generated Panorama Image #1 Generated Panorama Image #2

Figure 5.2. Generation examples with single image inputs. The model could generate a
diverse set of panorama images with different inputs or different diffusion runs.

We use a standard center mask and square image inputs throughout the paper to simplify

the settings. Examples of these images and masks are shown in Figure 5.2.

5.3.2 Navigable 3D Scene from a Single Panorama Image

As shown in Figure 5.3, given the generated 2D panorama image I, we then use a

simple transformer-based network to convert the image into a complete and navigable 3D

Gaussian splat-based scene.

Transformer-based Reconstruction Model

We use a transformer-based model to regress 3D Gaussian primitive parameters

corresponding to each pixel in the image. Given a panorama image I, we first incorporate

the spatial information into the pixel feature by concatenating Plücker ray coordinates [133]

following previous works [196, 25]. Specifically, for each pixel i, j we compute the ri,j = (o×

di,j ,di,j) in world coordinate; here o is the origin of the camera, and di,j is the normalized

direction vector from the origin to the pixel, calculated by reverse equirectangular projection.

The 6D Plücker ray coordinates are concatenated with the image RGB colors channel-wise,

forming 9-channel inputs to the network.

Following ViT [41], we patchify input pose-conditioned panorama images I into

96



Patchify

…
Tokenize

…

Linear Layers

Self-Attention

+

+

✕ N

Transformer Blocks

Detokenize & Unpatchify

…

𝜇! , 𝜎! , 𝑆𝐻!
Patch-wise Gaussian 

Splat Parameters

3D Gaussian-Based Scene

Concat

…
Learnable Tokens

…

Figure 5.3. The input panorama image is pachified and processed into a sequence of
tokens with flatten and linear operations. The transformer network maps this sequence of
tokens into patch-wise Gaussian splat parameters, and constructs the final 3D Gaussian
based scene.

non-overlapping 2D tokens {Ti,j ∈ Rh×w×9} indexed by x,y, where h = H
p ,w = W

p , and

p is the patch size (set to 8 for all experiments). These tokens are flattened into a 1D

sequence of width 9 ·p2 and length h ·w before being transformed by a set of linear layers

into dimension d to align with the following transformer layers. No positional encoding

is used in this network since absolution location information is already encoded in the

Plücker ray coordinates. If more than one image is passed to the network, we simply

concatenate the tokens as a longer sequence. This further improves the overall flexibility

of the pipeline, making it easier to train and use under different settings.

The pose-conditioned tokens are fed into layers of residual connected [58] transformer

blocks [171]. Each consists of a self-attention layer and a set of linear layers as implemented

in ViT [41]. We then take the output tokens and decode them into Gaussian primitive

parameters with a set of linear layers, each token produces p2 sets of Gaussian parameters,

representing p2 pixels within the original patch. This step generates h × w Gaussian

primitives in total.

97



We follow [78] and parameterize the 3D Gaussian primitives by 3-channel RGB,

3-channel scale, 3-channel location, 4-channel rotation quaternion, and 1-channel opacity,

and 1-channel distance (to the corresponding pixel center).

Learnable Gaussian Tokens for Scene Completion

The formulation above could generate 3D Gaussian primitives and cover most

portion of the scene. However, such a Gaussian placement strategy is not capable of

covering the occluded parts of the scene, leaving the scene incomplete.

To generate a complete 3D scene, the ability to generate free-float 3D Gaussian

primitives is required. This is solved by introducing learnable tokens into the pipeline.

Given the tokenized sequence, we concatenate a set of learnable tokens at the end of the

sequence. Then at the detokenize and unpatchify steps, each of these tokens decodes into

p2 3D Gaussian primitives, but with 3-channel location instead of 1-channel distance. This

enables the network to reason where to add 3D Gaussian primitives and complete the

scene as much as possible, leaving much fewer holes.

Loss Terms and Training Scheme

During training, we render panorama images from the generated 3D Gaussian

primitives at 10 supervision views. The views are randomly sampled within the scene

beforehand. Following [218], we use both perceptual loss and mean squared error (MSE)

loss terms during training. We also followed their practice of using VGG-19 [156] based

perceptual loss.

We adopted the multi-stage training scheme to reach convergence faster and make

the most of the limited 3D scene data. In the first stage, we train the network with

perspective images from the RealEstate10k [234] dataset. We use 2-6 input images in

this stage. Both input images and supervision images are randomly sampled on the same

video sequence, encouraging the network to learn extrapolation and generation of unseen

98



Gaussian primitives in the input images. For the second and third stages, we switch

to our own 3D synthetic dataset, which contains around 10k 3D indoor scenes. In the

second stage, we use 6 cube map images as input to the network and supervise with

randomly sampled perspective views within the scene. This stage adapts the network to

single-viewpoint data. In the final stage, we use a single panorama image as input and

supervise with randomly sampled perspective views within the scene. This prepares the

network for our actual test settings.

The training takes around 60 hours with 32 NVIDIA H100 GPUs, in which the

three stages take around 30, 15, and 15 hours respectively. The network acts fast during

evaluation, taking less than 1s with 1024 × 512 panorama images on a single NVIDIA

H100 GPU.

5.4 Experiments

In this section, we perform various experiments to evaluate the performance of the

proposed Pano3D framework, both quantitatively and qualitatively.

5.4.1 3D Scene Generation

Text-Conditioned Generation

Our results for text-conditioned generation are presented in Figure 5.4. For the

same input text prompt, our model is capable of sampling different 3D scenes, as shown

in the first and second columns. Our model generates smooth geometry and realistic

appearance, leading to appealing 3D scenes. This setting is particularly useful for VR

devices since users could be able to enter and explore new 3D scenes given solely their

text prompts.

99



Table 5.1. Quantitative analysis of novel view synthesis quality. The experiments are
performed on the Matterport3D dataset [19].

Method PSNR ↑ SSIM ↑ LPIPS ↓
NeRF [11] 18.32 0.745 0.341
TensoRF [22] 18.90 0.778 0.333
OmniNeRF [66] 33.25 0.954 0.110
Pano3D (Ours) 33.98 0.961 0.098

Table 5.2. Quantitative analysis of geometry accuracy of generated 3D scenes. The
experiments are performed on the Matterport3D dataset [19].

Method Abs Rel ↓ Sq. Rel ↓ RMSE ↓
OmniFusion [92] 0.1007 0.0969 0.4435
HRDFuse [1] 0.0967 0.0936 0.4433
Liu et al., 2024 [97] 0.0941 0.0723 0.4396
Pano3D (Ours) 0.0889 0.0613 0.4126

Image-Conditioned Generation

Our results for image-conditioned generation are presented in Figure 5.5. Our model

is capable of generating different types of scenes ranging from bedrooms to bathrooms,

given the image condition. Our model not only generates 3D scenes with appealing

appearance and geometry details but also well follows the input condition, making it

suitable for a wide range of downstream tasks such as interior designing and remodeling.

For quantitative evaluation of image-conditioned generation, we followed the settings

of OmniNeRF [66], where they train the models on a single panorama image and evaluate

on a set of neighboring views. The results on the Matterport3D dataset are shown in

Table 5.1. Our model generates the scene that best matches the original inputs.

5.4.2 Geometry Accuracy

To evaluate the geometry quality of the generated scenes, we test on the Mat-

terport3D dataset by generating 3D scenes from Matterport3D panorama images and

comparing rendered depth maps with the dataset ground truth. We also include several

recent state-of-the-art methods for panoramic depth estimation [92, 1, 97]. The results

100



“An unfurnished spacious 
home in North America, 

wooden floor”
Text Input

Generated
Panorama Image

Depth Map
Generated 3D Scene

Novel Views
Generated 3D Scene

“An unfurnished spacious 
home in North America, 

wooden floor”

Normal Map
Generated 3D Scene

“A modern living room, 
with a TV and sofas, 

floor-to-ceiling windows”

Figure 5.4. 3D scene generation examples with text inputs. The model could generate
3D scenes with consistent geometry and good novel view quality.

101



Image Input

Generated
Panorama Image

Depth Map
Generated 3D Scene

Novel Views
Generated 3D Scene

Normal Map
Generated 3D Scene

Figure 5.5. 3D scene generation examples with single image inputs. The model could
generate 3D scenes with consistent geometry and good novel view quality.

102



are presented in Table 5.2. We find that our model outperforms all other models, even

though no explicit geometry supervision is given in the training stage, suggesting our

strong capability of geometry reasoning.

5.5 Conclusion and Limitations

This chapter presents a framework for 3D indoor scene generation that integrates

2D panorama image diffusion models with 3D scene reconstruction methods, addressing

key challenges in creating immersive, navigable virtual environments. By leveraging

the strengths of cutting-edge 2D generative techniques, our two-stage pipeline provides

a flexible, efficient approach to transforming text descriptions and single images into

comprehensive 3D scenes. The proposed transformer-based reconstruction network and

panorama-oriented training scheme help improve the completeness and visual quality of

the generated scenes. This approach points to a clear direction for making realistic 3D

data more accessible to a diverse range of users and applications.

The method comes with several shortcomings. First, it is not possible to generate

large-scale outdoor scenes with this pipeline, due to the inherent difficulty of modeling

distant 3D Gaussian primitives. Secondly, the method is prone to distance ambiguity due

to its single view nature. Because of this, the method would sometimes generate curved

walls and ceilings, which is rarely seen in real world. The method also relies heavily on

the consistency and correctness of the 2D generation model. Any failure in the first step

generation (e.g. prompt not matched, or geometrically incorrect image) is not fixable and

the final result would also fail. An interesting future direction is to incorporate more

explicit 3D priors to solve these issues.

103



Bibliography

[1] Hao Ai, Zidong Cao, Yan-Pei Cao, Ying Shan, and Lin Wang. Hrdfuse: Monocular
360deg depth estimation by collaboratively learning holistic-with-regional depth
distributions. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 13273–13282, 2023.

[2] Naofumi Akimoto, Yuhi Matsuo, and Yoshimitsu Aoki. Diverse plausible 360-
degree image outpainting for efficient 3dcg background creation. In CVPR, pages
11441–11450, 2022.

[3] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry Ulyanov, and Victor
Lempitsky. Neural point-based graphics. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII
16, pages 696–712. Springer, 2020.

[4] Xiang An, Jiankang Deng, Kaicheng Yang, Jaiwei Li, Ziyong Feng, Jia Guo, Jing
Yang, and Tongliang Liu. Unicom: Universal and compact representation learning
for image retrieval. arXiv preprint arXiv:2304.05884, 2023.

[5] Iro Armeni, Zhi-Yang He, JunYoung Gwak, Amir R Zamir, Martin Fischer, Jitendra
Malik, and Silvio Savarese. 3d scene graph: A structure for unified semantics, 3d
space, and camera. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 5664–5673, 2019.

[6] Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioannis Brilakis, Martin
Fischer, and Silvio Savarese. 3d semantic parsing of large-scale indoor spaces. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
1534–1543, 2016.

[7] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolu-
tional encoder-decoder architecture for image segmentation. IEEE transactions on
pattern analysis and machine intelligence, 39(12):2481–2495, 2017.

[8] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo
Martin-Brualla, and Pratul P Srinivasan. Mip-nerf: A multiscale representation for
anti-aliasing neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5855–5864, 2021.

104



[9] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter
Hedman. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. CVPR, 2022.

[10] Sai Bi, Nima Khademi Kalantari, and Ravi Ramamoorthi. Patch-based optimization
for image-based texture mapping. ACM Transaction on Graphics, 36(4):106–1, 2017.

[11] Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall, Kalyan Sunkavalli, Miloš
Hašan, Yannick Hold-Geoffroy, David Kriegman, and Ravi Ramamoorthi. Neural
reflectance fields for appearance acquisition. arXiv preprint arXiv:2008.03824, 2020.

[12] Sai Bi, Zexiang Xu, Kalyan Sunkavalli, Miloš Hašan, Yannick Hold-Geoffroy, David
Kriegman, and Ravi Ramamoorthi. Deep reflectance volumes: Relightable recon-
structions from multi-view photometric images. In Proc. ECCV, 2020.

[13] Wang Bing, Lu Chen, and Bo Yang. Dm-nerf: 3d scene geometry decomposition
and manipulation from 2d images. arXiv preprint arXiv:2208.07227, 2022.

[14] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T Barron, Ce Liu, and
Hendrik Lensch. Nerd: Neural reflectance decomposition from image collections. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
12684–12694, 2021.

[15] Aljaž Božič, Pablo Palafox, Justus Thies, Angela Dai, and Matthias Nießner. Trans-
formerfusion: Monocular rgb scene reconstruction using transformers. Proc. Neural
Information Processing Systems (NeurIPS), 2021.

[16] Alexander M Bronstein, Michael M Bronstein, Leonidas J Guibas, and Maks Ovs-
janikov. Shape google: Geometric words and expressions for invariant shape retrieval.
ACM Transactions on Graphics (TOG), 30(1):1–20, 2011.

[17] Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara Caputo, and Tatiana
Tommasi. Domain generalization by solving jigsaw puzzles. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2229–2238, 2019.

[18] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr
Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision
transformers. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 9650–9660, 2021.

[19] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner,
Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning
from rgb-d data in indoor environments. 3DV, 2017.

[20] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing
Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong

105



Xiao, Li Yi, and Fisher Yu. ShapeNet: An Information-Rich 3D Model Reposi-
tory. Technical Report arXiv:1512.03012 [cs.GR], Stanford University — Princeton
University — Toyota Technological Institute at Chicago, 2015.

[21] David Charatan, Sizhe Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat:
3d gaussian splats from image pairs for scalable generalizable 3d reconstruction,
2024.

[22] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial
radiance fields, 2022.

[23] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi
Yu, and Hao Su. Mvsnerf: Fast generalizable radiance field reconstruction from
multi-view stereo. arXiv preprint arXiv:2103.15595, 2021.

[24] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. On visual
similarity based 3d model retrieval. Computer Graphics Forum, 22(3):223–232, 2003.

[25] Eric Ming Chen, Sidhanth Holalkere, Ruyu Yan, Kai Zhang, and Abe Davis. Ray
conditioning: Trading photo-consistency for photo-realism in multi-view image
generation, 2023.

[26] Guangyan Chen, Meiling Wang, Yi Yang, Kai Yu, Li Yuan, and Yufeng Yue.
Pointgpt: Auto-regressively generative pre-training from point clouds. arXiv preprint
arXiv:2305.11487, 2023.

[27] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis
and machine intelligence, 40(4):834–848, 2017.

[28] Rui Chen, Songfang Han, Jing Xu, and Hao Su. Point-based multi-view stereo
network. In Proc. ICCV, 2019.

[29] Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang, Marc Pollefeys, Andreas
Geiger, Tat-Jen Cham, and Jianfei Cai. Mvsplat: Efficient 3d gaussian splatting
from sparse multi-view images, 2024.

[30] Zhaoxi Chen, Guangcong Wang, and Ziwei Liu. Text2light: Zero-shot text-driven
hdr panorama generation. ACM TOG, 41(6):1–16, 2022.

[31] Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu, Thomas S Huang, Hartwig
Adam, and Liang-Chieh Chen. Panoptic-deeplab: A simple, strong, and fast baseline
for bottom-up panoptic segmentation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 12475–12485, 2020.

106



[32] Shuo Cheng, Zexiang Xu, Shilin Zhu, Zhuwen Li, Li Erran Li, Ravi Ramamoorthi,
and Hao Su. Deep stereo using adaptive thin volume representation with uncertainty
awareness. In Proceedings of the CVPR, pages 2524–2534, 2020.

[33] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-
tions using rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[34] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets:
Minkowski convolutional neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3075–3084, 2019.

[35] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ron-
neberger. 3d u-net: learning dense volumetric segmentation from sparse annotation.
In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016:
19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings,
Part II 19, pages 424–432. Springer, 2016.

[36] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser,
and Matthias Nießner. Scannet: Richly-annotated 3d reconstructions of indoor
scenes. In Proc. Computer Vision and Pattern Recognition (CVPR), IEEE, 2017.

[37] Angela Dai and Matthias Nießner. 3dmv: Joint 3d-multi-view prediction for 3d
semantic scene segmentation. In Proceedings of the European Conference on Computer
Vision (ECCV), 2018.

[38] Mohammad Reza Karimi Dastjerdi, Yannick Hold-Geoffroy, Jonathan Eisenmann,
Siavash Khodadadeh, and Jean-François Lalonde. Guided co-modulated gan for 360°
field of view extrapolation. In 3DV, pages 475–485. IEEE, 2022.

[39] Xin Deng, WenYu Zhang, Qing Ding, and XinMing Zhang. Pointvector: A vector
representation in point cloud analysis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9455–9465, 2023.

[40] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint: Self-
supervised interest point detection and description, 2018.

[41] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. ICLR, 2021.

[42] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-
resolution image synthesis. In CVPR, pages 12873–12883, 2021.

107



[43] Chuan Fang, Xiaotao Hu, Kunming Luo, and Ping Tan. Ctrl-room: Control-
lable text-to-3d room meshes generation with layout constraints. arXiv preprint
arXiv:2310.03602, 2023.

[44] Mengyang Feng, Jinlin Liu, Miaomiao Cui, and Xuansong Xie. Diffusion360: Seamless
360 degree panoramic image generation based on diffusion models. arXiv preprint
arXiv:2311.13141, 2023.

[45] Fridovich-Keil and Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and
Angjoo Kanazawa. Plenoxels: Radiance fields without neural networks. In CVPR,
2022.

[46] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas Funkhouser.
Local deep implicit functions for 3d shape. In CVPR, pages 4857–4866, 2020.

[47] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Freeman, and
Thomas Funkhouser. Learning shape templates with structured implicit functions.
In ICCV, pages 7154–7164, 2019.

[48] Kyle Genova, Xiaoqi Yin, Abhijit Kundu, Caroline Pantofaru, Forrester Cole,
Avneesh Sud, Brian Brewington, Brian Shucker, and Thomas Funkhouser. Learning
3d semantic segmentation with only 2d image supervision. In 2021 International
Conference on 3D Vision (3DV), pages 361–372. IEEE, 2021.

[49] Ben Graham. Sparse 3d convolutional neural networks. arXiv preprint
arXiv:1505.02890, 2015.

[50] Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong Tan, and Ping Tan.
Cascade cost volume for high-resolution multi-view stereo and stereo matching. In
Proceedings of the CVPR, pages 2495–2504, 2020.

[51] Abdullah Hamdi, Silvio Giancola, and Bernard Ghanem. Mvtn: Multi-view trans-
formation network for 3d shape recognition. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1–11, 2021.

[52] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel
Cohen-Or. Meshcnn: a network with an edge. ACM Transactions on Graphics
(TOG), 38(4):1–12, 2019.

[53] Takayuki Hara, Yusuke Mukuta, and Tatsuya Harada. Spherical image generation
from a single image by considering scene symmetry. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 1513–1521, 2021.

[54] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 16000–16009, 2022.

108



[55] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum
contrast for unsupervised visual representation learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June
2020.

[56] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum
contrast for unsupervised visual representation learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 9729–9738,
2020.

[57] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In
Proceedings of the IEEE international conference on computer vision, pages 2961–
2969, 2017.

[58] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[59] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and
Gabriel Brostow. Deep blending for free-viewpoint image-based rendering. ACM
Transactions on Graphics, 37(6):1–15, 2018.

[60] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall, Jonathan T Barron, and Paul
Debevec. Baking neural radiance fields for real-time view synthesis. arXiv preprint
arXiv:2103.14645, 2021.

[61] Alexander Hermans, Georgios Floros, and Bastian Leibe. Dense 3d semantic mapping
of indoor scenes from rgb-d images. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 2631–2638. IEEE, 2014.

[62] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin, editors, NeurIPS, volume 33, pages 6840–6851, 2020.

[63] Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance.
arXiv:2207.12598, 2022.

[64] Lukas Höllein, Ang Cao, Andrew Owens, Justin Johnson, and Matthias Nießner.
Text2room: Extracting textured 3d meshes from 2d text-to-image models. In ICCV,
pages 7909–7920, October 2023.

[65] Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu,
Kalyan Sunkavalli, Trung Bui, and Hao Tan. LRM: Large reconstruction model for
single image to 3D. International Conference on Learning Representations, 2024.

[66] Ching-Yu Hsu, Cheng Sun, and Hwann-Tzong Chen. Moving in a 360 world:
Synthesizing panoramic parallaxes from a single panorama. CoRR, abs/2106.10859,
2021.

109



[67] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language
models. arXiv preprint arXiv:2106.09685, 2021.

[68] Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkhouser, Matthias Nießner, and
Leonidas J Guibas. Texturenet: Consistent local parametrizations for learning
from high-resolution signals on meshes. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4440–4449, 2019.

[69] Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra Ahuja, and Jia-Bin Huang.
Deepmvs: Learning multi-view stereopsis. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2821–2830, 2018.

[70] Yukun Huang, Jianan Wang, Yukai Shi, Boshi Tang, Xianbiao Qi, and Lei Zhang.
Dreamtime: An improved optimization strategy for diffusion-guided 3d generation,
2024.

[71] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini,
Rohan Taori, Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller,
Hannaneh Hajishirzi, Ali Farhadi, and Ludwig Schmidt. Openclip, July 2021. If you
use this software, please cite it as below.

[72] Rasmus Jensen, Anders Dahl, George Vogiatzis, Engil Tola, and Henrik Aanæs.
Large scale multi-view stereopsis evaluation. In 2014 CVPR, pages 406–413. IEEE,
2014.

[73] Rasmus Jensen, Anders Dahl, George Vogiatzis, Engin Tola, and Henrik Aanæs.
Large scale multi-view stereopsis evaluation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 406–413, 2014.

[74] Mengqi Ji, Juergen Gall, Haitian Zheng, Yebin Liu, and Lu Fang. SurfaceNet: An
end-to-end 3D neural network for multiview stereopsis. In Proc. ICCV, 2017.

[75] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning a multi-view stereo
machine. Advances in neural information processing systems, 30, 2017.

[76] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning a multi-view stereo
machine. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, pages 364–375, 2017.

[77] Michael Kazhdan and Hugues Hoppe. Screened poisson surface reconstruction. ACM
Transactions on Graphics (ToG), 32(3):1–13, 2013.

[78] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis.
3D gaussian splatting for real-time radiance field rendering. ACM Transactions on
Graphics, 42(4), July 2023.

110



[79] Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew
Tancik. Lerf: Language embedded radiance fields. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 19729–19739, 2023.

[80] Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew
Tancik. Lerf: Language embedded radiance fields. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 19729–19739, 2023.

[81] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion
models. Advances in neural information processing systems, 34:21696–21707, 2021.

[82] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr Dollár.
Panoptic segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9404–9413, 2019.

[83] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann. Decomposing nerf for
editing via feature field distillation. NIPS 2022, 2022.

[84] Georgios Kopanas, Julien Philip, Thomas Leimkühler, and George Drettakis. Point-
based neural rendering with per-view optimization. In Computer Graphics Forum,
volume 40, pages 29–43. Wiley Online Library, 2021.

[85] Abhijit Kundu, Kyle Genova, Xiaoqi Yin, Alireza Fathi, Caroline Pantofaru,
Leonidas J Guibas, Andrea Tagliasacchi, Frank Dellaert, and Thomas Funkhouser.
Panoptic neural fields: A semantic object-aware neural scene representation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12871–12881, 2022.

[86] Abhijit Kundu, Yin Li, Frank Dellaert, Fuxin Li, and James M Rehg. Joint semantic
segmentation and 3d reconstruction from monocular video. In European Conference
on Computer Vision, pages 703–718. Springer, 2014.

[87] Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas
Funkhouser, and Caroline Pantofaru. Virtual multi-view fusion for 3d semantic
segmentation. In European Conference on Computer Vision, pages 518–535. Springer,
2020.

[88] Black Forest Labs. flux. https://github.com/black-forest-labs/flux, 2024.

[89] Christoph Lassner and Michael Zollhofer. Pulsar: Efficient sphere-based neural
rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1440–1449, 2021.

[90] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen.
Pointcnn: Convolution on x-transformed points. Advances in neural information
processing systems, 31, 2018.

111

https://github.com/black-forest-labs/flux


[91] Yangyan Li, Hao Su, Charles Ruizhongtai Qi, Noa Fish, Daniel Cohen-Or, and
Leonidas J Guibas. Joint embeddings of shapes and images via cnn image purification.
ACM transactions on graphics (TOG), 34(6):1–12, 2015.

[92] Yuyan Li, Yuliang Guo, Zhixin Yan, Xinyu Huang, Ye Duan, and Liu Ren. Omnifu-
sion: 360 monocular depth estimation via geometry-aware fusion. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2801–2810, 2022.

[93] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields
for space-time view synthesis of dynamic scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6498–6508, 2021.

[94] Yiyi Liao, Jun Xie, and Andreas Geiger. KITTI-360: A novel dataset and benchmarks
for urban scene understanding in 2d and 3d. arXiv preprint arXiv:2109.13410, 2021.

[95] Haojia Lin, Xiawu Zheng, Lijiang Li, Fei Chao, Shanshan Wang, Yan Wang,
Yonghong Tian, and Rongrong Ji. Meta architecure for point cloud analysis.
arXiv:2211.14462, 2022.

[96] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects
in context. In European conference on computer vision, pages 740–755. Springer,
2014.

[97] Jingguo Liu, Yijun Xu, Shigang Li, and Jianfeng Li. Estimating depth of monocular
panoramic image with teacher-student model fusing equirectangular and spherical
representations. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1262–1271, 2024.

[98] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt.
Neural sparse voxel fields. arXiv preprint arXiv:2007.11571, 2020.

[99] Minghua Liu, Ruoxi Shi, Linghao Chen, Zhuoyang Zhang, Chao Xu, Xinyue Wei,
Hansheng Chen, Chong Zeng, Jiayuan Gu, and Hao Su. One-2-3-45++: Fast single
image to 3D objects with consistent multi-view generation and 3D diffusion. arXiv
preprint arXiv:2311.07885, 2023.

[100] Minghua Liu, Ruoxi Shi, Kaiming Kuang, Yinhao Zhu, Xuanlin Li, Shizhong
Han, Hong Cai, Fatih Porikli, and Hao Su. OpenShape: Scaling Up 3D Shape
Representation Towards Open-World Understanding. In Annual Conference on
Neural Information Processing Systems (NeurIPS), 2023.

[101] Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Mukund Varma T, Zexiang Xu,
and Hao Su. One-2-3-45: Any single image to 3D mesh in 45 seconds without
per-shape optimization. Advances in Neural Information Processing Systems, 36,
2023.

112



[102] Minghua Liu, Yinhao Zhu, Hong Cai, Shizhong Han, Zhan Ling, Fatih Porikli, and
Hao Su. Partslip: Low-shot part segmentation for 3d point clouds via pretrained
image-language models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 21736–21746, 2023.

[103] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov,
and Carl Vondrick. Zero-1-to-3: Zero-shot one image to 3D object. International
Conference on Computer Vision, 2023.

[104] Yuan Liu, Cheng Lin, Zijiao Zeng, Xiaoxiao Long, Lingjie Liu, Taku Komura, and
Wenping Wang. SyncDreamer: Generating multiview-consistent images from a
single-view image. arXiv preprint arXiv:2309.03453, 2023.

[105] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 10012–10022, 2021.

[106] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas
Lehrmann, and Yaser Sheikh. Neural volumes: Learning dynamic renderable volumes
from images. arXiv preprint arXiv:1906.07751, 2019.

[107] Stephen Lombardi, Tomas Simon, Gabriel Schwartz, Michael Zollhoefer, Yaser
Sheikh, and Jason Saragih. Mixture of volumetric primitives for efficient neural
rendering. ACM Transactions on Graphics (TOG), 40(4):1–13, 2021.

[108] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks
for semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3431–3440, 2015.

[109] Zhuqiang Lu, Kun Hu, Chaoyue Wang, Lei Bai, and Zhiyong Wang. Autoregressive
omni-aware outpainting for open-vocabulary 360-degree image generation. arXiv
preprint arXiv:2309.03467, 2023.

[110] Keyang Luo, Tao Guan, Lili Ju, Haipeng Huang, and Yawei Luo. P-mvsnet: Learning
patch-wise matching confidence aggregation for multi-view stereo. In Proceedings of
the ICCV, pages 10452–10461, 2019.

[111] Lingni Ma, Jörg Stückler, Christian Kerl, and Daniel Cremers. Multi-view deep
learning for consistent semantic mapping with rgb-d cameras. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 598–605.
IEEE, 2017.

[112] Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design
and local geometry in point cloud: A simple residual mlp framework. arXiv preprint
arXiv:2202.07123, 2022.

113



[113] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron,
Alexey Dosovitskiy, and Daniel Duckworth. Nerf in the wild: Neural radiance fields
for unconstrained photo collections. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7210–7219, 2021.

[114] John McCormac, Ankur Handa, Andrew Davison, and Stefan Leutenegger. Se-
manticfusion: Dense 3d semantic mapping with convolutional neural networks. In
2017 IEEE International Conference on Robotics and automation (ICRA), pages
4628–4635. IEEE, 2017.

[115] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for
view synthesis. In European conference on computer vision, pages 405–421. Springer,
2020.

[116] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for
view synthesis. Communications of the ACM, 65(1):99–106, 2021.

[117] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural
graphics primitives with a multiresolution hash encoding. ACM Trans. Graph.,
41(4):102:1–102:15, July 2022.

[118] Gaku Narita, Takashi Seno, Tomoya Ishikawa, and Yohsuke Kaji. Panopticfusion:
Online volumetric semantic mapping at the level of stuff and things. In 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 4205–4212. IEEE, 2019.

[119] Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, and Francis Engelmann.
Mix3d: Out-of-context data augmentation for 3d scenes. In 2021 International
Conference on 3D Vision (3DV), pages 116–125. IEEE, 2021.

[120] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David
Kim, Andrew J Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and Andrew
Fitzgibbon. Kinectfusion: Real-time dense surface mapping and tracking. In 2011
10th IEEE international symposium on mixed and augmented reality, pages 127–136.
IEEE, 2011.

[121] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Marc Stamminger. Real-
time 3d reconstruction at scale using voxel hashing. ACM Transactions on Graphics
(ToG), 32(6):1–11, 2013.

[122] Changgyoon Oh, Wonjune Cho, Yujeong Chae, Daehee Park, Lin Wang, and Kuk-Jin
Yoon. Bips: Bi-modal indoor panorama synthesis via residual depth-aided adversarial
learning. In ECCV, pages 352–371. Springer, 2022.

114



[123] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil
Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby,
et al. Dinov2: Learning robust visual features without supervision. arXiv preprint
arXiv:2304.07193, 2023.

[124] Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin. Matching
3d models with shape distributions. In Proceedings International Conference on
Shape Modeling and Applications, pages 154–166. IEEE, 2001.

[125] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and Felix Heide. Neural
scene graphs for dynamic scenes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2856–2865, 2021.

[126] Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu, Yonghong Tian, and Li Yuan.
Masked autoencoders for point cloud self-supervised learning. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part II, pages 604–621. Springer, 2022.

[127] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman,
Steven M Seitz, and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance
fields. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 5865–5874, 2021.

[128] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T Barron, Sofien Bouaziz,
Dan B Goldman, Ricardo Martin-Brualla, and Steven M Seitz. Hypernerf: A higher-
dimensional representation for topologically varying neural radiance fields. arXiv
preprint arXiv:2106.13228, 2021.

[129] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A
Efros. Context encoders: Feature learning by inpainting. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2536–2544, 2016.

[130] Songyou Peng, Kyle Genova, Chiyu Jiang, Andrea Tagliasacchi, Marc Pollefeys,
Thomas Funkhouser, et al. Openscene: 3d scene understanding with open vocabular-
ies. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 815–824, 2023.

[131] Quang-Hieu Pham, Thanh Nguyen, Binh-Son Hua, Gemma Roig, and Sai-Kit Yeung.
Jsis3d: joint semantic-instance segmentation of 3d point clouds with multi-task
pointwise networks and multi-value conditional random fields. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 8827–8836,
2019.

[132] Matia Pizzoli, Christian Forster, and Davide Scaramuzza. Remode: Probabilistic,
monocular dense reconstruction in real time. In 2014 IEEE International Conference
on Robotics and Automation (ICRA), pages 2609–2616. IEEE, 2014.

115



[133] Julius Plucker. Xvii. on a new geometry of space. Philosophical Transactions of the
Royal Society of London, pages 725–791, 1865.

[134] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfusion:
Text-to-3D using 2D diffusion. arXiv, 2022.

[135] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning
on point sets for 3d classification and segmentation. In Proc. CVPR, 2017.

[136] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Advances in neural
information processing systems, pages 5099–5108, 2017.

[137] Zekun Qi, Runpei Dong, Guofan Fan, Zheng Ge, Xiangyu Zhang, Kaisheng Ma, and
Li Yi. Contrast with reconstruct: Contrastive 3d representation learning guided by
generative pretraining. arXiv preprint arXiv:2302.02318, 2023.

[138] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan Hammoud, Mohamed
Elhoseiny, and Bernard Ghanem. Pointnext: Revisiting pointnet++ with improved
training and scaling strategies. Advances in Neural Information Processing Systems,
35:23192–23204, 2022.

[139] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision. In International
conference on machine learning, pages 8748–8763. PMLR, 2021.

[140] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision. In International
conference on machine learning, pages 8748–8763. PMLR, 2021.

[141] Haoxi Ran, Jun Liu, and Chengjie Wang. Surface representation for point clouds.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18942–18952, 2022.

[142] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. Kilonerf: Speed-
ing up neural radiance fields with thousands of tiny mlps. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 14335–14345, 2021.

[143] Google Research. Google scanned objects.

[144] Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k
pretraining for the masses. arXiv preprint arXiv:2104.10972, 2021.

[145] Gernot Riegler and Vladlen Koltun. Free view synthesis. In ECCV, 2020.

116



[146] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning deep
3d representations at high resolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3577–3586, 2017.

[147] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234–241. Springer, 2015.

[148] Darius Rückert, Linus Franke, and Marc Stamminger. Adop: Approximate differen-
tiable one-pixel point rendering. arXiv preprint arXiv:2110.06635, 2021.

[149] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. International journal of computer vision,
115(3):211–252, 2015.

[150] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm.
Pixelwise View Selection for Unstructured Multi-View Stereo. In European Confer-
ence on Computer Vision (ECCV), 2016.

[151] Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, and
Bastian Leibe. Mask3d for 3d semantic instance segmentation. arXiv preprint
arXiv:2210.03105, 2022.

[152] Steven M Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Richard Szeliski.
A comparison and evaluation of multi-view stereo reconstruction algorithms. In 2006
IEEE computer society conference on CVPR, volume 1, pages 519–528. IEEE, 2006.

[153] Ruoxi Shi, Hansheng Chen, Zhuoyang Zhang, Minghua Liu, Chao Xu, Xinyue Wei,
Linghao Chen, Chong Zeng, and Hao Su. Zero123++: a single image to consistent
multi-view diffusion base model. arXiv preprint arXiv:2310.15110, 2023.

[154] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, and
Hongsheng Li. Pv-rcnn: Point-voxel feature set abstraction for 3d object detection.
arXiv preprint arXiv:1912.13192, 2019.

[155] Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, and Xiao Yang. MVDream:
Multi-view diffusion for 3d generation. arXiv preprint arXiv:2308.16512, 2023.

[156] Karen Simonyan. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[157] Gowri Somanath and Daniel Kurz. Hdr environment map estimation for real-time
augmented reality. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11298–11306, 2021.

117



[158] Liangchen Song, Liangliang Cao, Hongyu Xu, Kai Kang, Feng Tang, Junsong Yuan,
and Zhao Yang. Roomdreamer: Text-driven 3d indoor scene synthesis with coherent
geometry and texture. In Abdulmotaleb El-Saddik, Tao Mei, Rita Cucchiara, Marco
Bertini, Diana Patricia Tobon Vallejo, Pradeep K. Atrey, and M. Shamim Hossain,
editors, ACM MM, pages 6898–6906. ACM, 2023.

[159] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas
Funkhouser. Semantic scene completion from a single depth image. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 1746–1754,
2017.

[160] Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben Mildenhall,
and Jonathan T. Barron. Nerv: Neural reflectance and visibility fields for relighting
and view synthesis. In CVPR, 2021.

[161] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wijmans, Simon
Green, Jakob J. Engel, Raul Mur-Artal, Carl Ren, Shobhit Verma, Anton Clarkson,
Mingfei Yan, Brian Budge, Yajie Yan, Xiaqing Pan, June Yon, Yuyang Zou, Kimberly
Leon, Nigel Carter, Jesus Briales, Tyler Gillingham, Elias Mueggler, Luis Pesqueira,
Manolis Savva, Dhruv Batra, Hauke M. Strasdat, Renzo De Nardi, Michael Goesele,
Steven Lovegrove, and Richard Newcombe. The Replica dataset: A digital replica of
indoor spaces. arXiv preprint arXiv:1906.05797, 2019.

[162] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization:
Super-fast convergence for radiance fields reconstruction. In CVPR, 2022.

[163] Jiaming Sun, Yiming Xie, Linghao Chen, Xiaowei Zhou, and Hujun Bao. Neu-
ralRecon: Real-time coherent 3D reconstruction from monocular video. CVPR,
2021.

[164] Stanislaw Szymanowicz, Eldar Insafutdinov, Chuanxia Zheng, Dylan Campbell,
João F. Henriques, Christian Rupprecht, and Andrea Vedaldi. Flash3d: Feed-forward
generalisable 3d scene reconstruction from a single image, 2024.

[165] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V Le. Mnasnet: Platform-aware neural architecture search for
mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2820–2828, 2019.

[166] Haotian Tang, Zhijian Liu, Shengyu Zhao, Yujun Lin, Ji Lin, Hanrui Wang, and
Song Han. Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution.
In European Conference on Computer Vision (ECCV), 2020.

[167] Shitao Tang, Fuyang Zhang, Jiacheng Chen, Peng Wang, and Yasutaka Furukawa.
Mvdiffusion: Enabling holistic multi-view image generation with correspondence-
aware diffusion. In NeurIPS, 2023.

118



[168] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui,
François Goulette, and Leonidas J Guibas. Kpconv: Flexible and deformable
convolution for point clouds. In Proceedings of the IEEE International Conference
on Computer Vision, pages 6411–6420, 2019.

[169] Haithem Turki, Deva Ramanan, and Mahadev Satyanarayanan. Mega-nerf: Scalable
construction of large-scale nerfs for virtual fly-throughs. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12922–
12931, 2022.

[170] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Duc Thanh Nguyen, and
Sai-Kit Yeung. Revisiting point cloud classification: A new benchmark dataset and
classification model on real-world data. In International Conference on Computer
Vision (ICCV), 2019.

[171] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in neural information processing systems, pages 5998–6008, 2017.

[172] Vibhav Vineet, Ondrej Miksik, Morten Lidegaard, Matthias Nießner, Stuart Golodetz,
Victor A Prisacariu, Olaf Kähler, David W Murray, Shahram Izadi, Patrick Pérez,
et al. Incremental dense semantic stereo fusion for large-scale semantic scene
reconstruction. In 2015 IEEE international conference on robotics and automation
(ICRA), pages 75–82. IEEE, 2015.

[173] Suhani Vora, Noha Radwan, Klaus Greff, Henning Meyer, Kyle Genova, Mehdi SM
Sajjadi, Etienne Pot, Andrea Tagliasacchi, and Daniel Duckworth. NeSF: Neural
semantic fields for generalizable semantic segmentation of 3d scenes. arXiv preprint
arXiv:2111.13260, 2021.

[174] Suhani Vora, Noha Radwan, Klaus Greff, Henning Meyer, Kyle Genova, Mehdi SM
Sajjadi, Etienne Pot, Andrea Tagliasacchi, and Daniel Duckworth. Nesf: Neural
semantic fields for generalizable semantic segmentation of 3d scenes. arXiv preprint
arXiv:2111.13260, 2021.

[175] Thang Vu, Kookhoi Kim, Tung M Luu, Thanh Nguyen, and Chang D Yoo. Softgroup
for 3d instance segmentation on point clouds. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2708–2717, 2022.

[176] Guangcong Wang, Yinuo Yang, Chen Change Loy, and Ziwei Liu. Stylelight: Hdr
panorama generation for lighting estimation and editing. In ECCV, pages 477–492.
Springer, 2022.

[177] Hai Wang, Xiaoyu Xiang, Yuchen Fan, and Jing-Hao Xue. Customizing 360-degree
panoramas through text-to-image diffusion models. In WACV, 2024.

119



[178] Haiyang Wang, Shaocong Dong, Shaoshuai Shi, Aoxue Li, Jianan Li, Zhenguo Li,
Liwei Wang, et al. Cagroup3d: Class-aware grouping for 3d object detection on
point clouds. Advances in Neural Information Processing Systems, 35:29975–29988,
2022.

[179] Jionghao Wang, Ziyu Chen, Jun Ling, Rong Xie, and Li Song. 360-degree panorama
generation from few unregistered nfov images. In Abdulmotaleb El-Saddik, Tao Mei,
Rita Cucchiara, Marco Bertini, Diana Patricia Tobon Vallejo, Pradeep K. Atrey,
and M. Shamim Hossain, editors, ACM MM, pages 6811–6821. ACM, 2023.

[180] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srinivasan, Howard Zhou,
Jonathan T. Barron, Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser.
Ibrnet: Learning multi-view image-based rendering. In CVPR, 2021.

[181] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun
Zhu. Prolificdreamer: High-fidelity and diverse text-to-3d generation with variational
score distillation. In NeurIPS, 2023.

[182] Zhengyi Wang, Yikai Wang, Yifei Chen, Chendong Xiang, Shuo Chen, Dajiang Yu,
Chongxuan Li, Hang Su, and Jun Zhu. Crm: Single image to 3d textured mesh with
convolutional reconstruction model, 2024.

[183] Silvan Weder, Johannes Schonberger, Marc Pollefeys, and Martin R Oswald. Rout-
edfusion: Learning real-time depth map fusion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4887–4897, 2020.

[184] Xinyue Wei, Kai Zhang, Sai Bi, Hao Tan, Fujun Luan, Valentin Deschaintre, Kalyan
Sunkavalli, Hao Su, and Zexiang Xu. Meshlrm: Large reconstruction model for
high-quality mesh, 2024.

[185] Yi Wei, Shaohui Liu, Yongming Rao, Wang Zhao, Jiwen Lu, and Jie Zhou. Nerfing-
mvs: Guided optimization of neural radiance fields for indoor multi-view stereo. In
ICCV, 2021.

[186] Bo Wu, Yang Liu, Bo Lang, and Lei Huang. Dgcnn: Disordered graph convolutional
neural network based on the gaussian mixture model. Neurocomputing, 321:346–356,
2018.

[187] Liwen Wu, Jae Yong Lee, Anand Bhattad, Yuxiong Wang, and David Forsyth. Diver:
Real-time and accurate neural radiance fields with deterministic integration for
volume rendering, 2021.

[188] Tianhao Wu, Chuanxia Zheng, and Tat-Jen Cham. Ipo-ldm: Depth-aided 360-
degree indoor rgb panorama outpainting via latent diffusion model. arXiv preprint
arXiv:2307.03177, 2023.

[189] Tianhao Wu, Chuanxia Zheng, and Tat-Jen Cham. Panodiffusion: 360-degree
panorama outpainting via diffusion, 2024.

120



[190] Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, and
Hengshuang Zhao. Towards large-scale 3d representation learning with multi-dataset
point prompt training. arXiv preprint arXiv:2308.09718, 2023.

[191] Xiaoyang Wu, Xin Wen, Xihui Liu, and Hengshuang Zhao. Masked scene contrast:
A scalable framework for unsupervised 3d representation learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9415–9424, 2023.

[192] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1912–1920, 2015.

[193] Fanbo Xiang, Zexiang Xu, Milos Hasan, Yannick Hold-Geoffroy, Kalyan Sunkavalli,
and Hao Su. Neutex: Neural texture mapping for volumetric neural rendering.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7119–7128, 2021.

[194] Saining Xie, Jiatao Gu, Demi Guo, Charles R Qi, Leonidas Guibas, and Or Litany.
Pointcontrast: Unsupervised pre-training for 3d point cloud understanding. In
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part III 16, pages 574–591. Springer, 2020.

[195] Chenfeng Xu, Bichen Wu, Ji Hou, Sam Tsai, Ruilong Li, Jialiang Wang, Wei Zhan,
Zijian He, Peter Vajda, Kurt Keutzer, et al. Nerf-det: Learning geometry-aware
volumetric representation for multi-view 3d object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 23320–23330, 2023.

[196] Hu Xu, Saining Xie, Xiaoqing Ellen Tan, Po-Yao Huang, Russell Howes, Vasu
Sharma, Shang-Wen Li, Gargi Ghosh, Luke Zettlemoyer, and Christoph Feichtenhofer.
Demystifying clip data, 2023.

[197] Yinghao Xu, Zifan Shi, Wang Yifan, Hansheng Chen, Ceyuan Yang, Sida Peng,
Yujun Shen, and Gordon Wetzstein. Grm: Large gaussian reconstruction model for
efficient 3d reconstruction and generation, 2024.

[198] Yinghao Xu, Hao Tan, Fujun Luan, Sai Bi, Peng Wang, Jiahao Li, Zifan Shi, Kalyan
Sunkavalli, Gordon Wetzstein, Zexiang Xu, and Kai Zhang. Dmv3d: Denoising
multi-view diffusion using 3d large reconstruction model, 2023.

[199] Le Xue, Mingfei Gao, Chen Xing, Roberto Martín-Martín, Jiajun Wu, Caiming
Xiong, Ran Xu, Juan Carlos Niebles, and Silvio Savarese. Ulip: Learning a unified
representation of language, images, and point clouds for 3d understanding. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 1179–1189, 2023.

121



[200] Le Xue, Ning Yu, Shu Zhang, Junnan Li, Roberto Martín-Martín, Jiajun Wu, Caim-
ing Xiong, Ran Xu, Juan Carlos Niebles, and Silvio Savarese. Ulip-2: Towards scalable
multimodal pre-training for 3d understanding. arXiv preprint arXiv:2305.08275,
2023.

[201] Bangbang Yang, Wenqi Dong, Lin Ma, Wenbo Hu, Xiao Liu, Zhaopeng Cui, and
Yuewen Ma. Dreamspace: Dreaming your room space with text-driven panoramic
texture propagation. arXiv preprint arXiv:2310.13119, 2023.

[202] Bangbang Yang, Yinda Zhang, Yinghao Xu, Yijin Li, Han Zhou, Hujun Bao, Guofeng
Zhang, and Zhaopeng Cui. Learning object-compositional neural radiance field for
editable scene rendering. In International Conference on Computer Vision (ICCV),
October 2021.

[203] Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham,
and Niki Trigoni. Learning object bounding boxes for 3d instance segmentation
on point clouds. In Advances in Neural Information Processing Systems, pages
6737–6746, 2019.

[204] Yu-Qi Yang, Yu-Xiao Guo, Jian-Yu Xiong, Yang Liu, Hao Pan, Peng-Shuai Wang,
Xin Tong, and Baining Guo. Swin3d: A pretrained transformer backbone for 3d
indoor scene understanding. arXiv preprint arXiv:2304.06906, 2023.

[205] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan. MVSnet: Depth inference
for unstructured multi-view stereo. In Proc. ECCV, pages 767–783, 2018.

[206] Yao Yao, Zixin Luo, Shiwei Li, Tianwei Shen, Tian Fang, and Long Quan. Recurrent
mvsnet for high-resolution multi-view stereo depth inference. In Proceedings of the
CVPR, pages 5525–5534, 2019.

[207] Jianglong Ye, Naiyan Wang, and Xiaolong Wang. Featurenerf: Learning generalizable
nerfs by distilling foundation models. arXiv preprint arXiv:2303.12786, 2023.

[208] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural
radiance fields from one or few images. In CVPR, 2021.

[209] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural
radiance fields from one or few images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4578–4587, 2021.

[210] Jason J. Yu, Fereshteh Forghani, Konstantinos G. Derpanis, and Marcus A. Brubaker.
Long-term photometric consistent novel view synthesis with diffusion models. In
ICCV, 2023.

[211] Xianggang Yu, Mutian Xu, Yidan Zhang, Haolin Liu, Chongjie Ye, Yushuang Wu,
Zizheng Yan, Tianyou Liang, Guanying Chen, Shuguang Cui, and Xiaoguang Han.
Mvimgnet: A large-scale dataset of multi-view images. In CVPR, 2023.

122



[212] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu.
Point-bert: Pre-training 3d point cloud transformers with masked point modeling.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19313–19322, 2022.

[213] Karim Abou Zeid, Jonas Schult, Alexander Hermans, and Bastian Leibe. Point2vec
for self-supervised representation learning on point clouds. arXiv preprint
arXiv:2303.16570, 2023.

[214] Cheng Zhang, Zhi Liu, Guangwen Liu, and Dandan Huang. Large-scale 3d semantic
mapping using monocular vision. In 2019 IEEE 4th International Conference on
Image, Vision and Computing (ICIVC), pages 71–76. IEEE, 2019.

[215] Cheng Zhang, Qianyi Wu, Camilo Cruz Gambardella, Xiaoshui Huang, Dinh Phung,
Wanli Ouyang, and Jianfei Cai. Taming stable diffusion for text to 360-degree
panorama image generation, 2024.

[216] Chubin Zhang, Hongliang Song, Yi Wei, Yu Chen, Jiwen Lu, and Yansong Tang.
Geolrm: Geometry-aware large reconstruction model for high-quality 3d gaussian
generation, 2024.

[217] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi Zhang,
Yue Sun, Tong He, Jonas Mueller, R Manmatha, et al. Resnest: Split-attention
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2736–2746, 2022.

[218] Kai Zhang, Sai Bi, Hao Tan, Yuanbo Xiangli, Nanxuan Zhao, Kalyan Sunkavalli,
and Zexiang Xu. Gs-lrm: Large reconstruction model for 3d gaussian splatting,
2024.

[219] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Analyzing
and improving neural radiance fields. arXiv preprint arXiv:2010.07492, 2020.

[220] Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xupeng Miao, Bin Cui, Yu Qiao,
Peng Gao, and Hongsheng Li. Pointclip: Point cloud understanding by clip. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 8552–8562, 2022.

[221] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization.
In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part III 14, pages 649–666. Springer,
2016.

[222] Xiaoshuai Zhang, Sai Bi, Kalyan Sunkavalli, Hao Su, and Zexiang Xu. Nerfusion:
Fusing radiance fields for large-scale scene reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5449–
5458, 2022.

123



[223] Xiaoshuai Zhang, Abhijit Kundu, Thomas Funkhouser, Leonidas Guibas, Hao Su,
and Kyle Genova. Nerflets: Local radiance fields for efficient structure-aware 3d scene
representation from 2d supervision. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8274–8284, 2023.

[224] Zaiwei Zhang, Rohit Girdhar, Armand Joulin, and Ishan Misra. Self-supervised
pretraining of 3d features on any point-cloud. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 10252–10263, 2021.

[225] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia.
Pyramid scene parsing network. In CVPR, 2017.

[226] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao
Wang, Yanwei Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr, et al. Rethinking
semantic segmentation from a sequence-to-sequence perspective with transformers. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 6881–6890, 2021.

[227] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and Andrew Davison. In-Place
Scene Labelling and Understanding with Implicit Scene Representation. In ICCV,
2021.

[228] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and Andrew Davison. In-place
scene labelling and understanding with implicit scene representation. In Proceedings
of the International Conference on Computer Vision (ICCV), 2021.

[229] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and Andrew J. Davison. In-place
scene labelling and understanding with implicit scene representation. In ICCV, 2021.

[230] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva.
Learning deep features for scene recognition using places database. In Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 27. Curran Associates, Inc., 2014.

[231] Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and
Tao Kong. ibot: Image bert pre-training with online tokenizer. arXiv preprint
arXiv:2111.07832, 2021.

[232] Junsheng Zhou, Jinsheng Wang, Baorui Ma, Yu-Shen Liu, Tiejun Huang, and
Xinlong Wang. Uni3d: Exploring unified 3d representation at scale. arXiv preprint
arXiv:2310.06773, 2023.

[233] Qian-Yi Zhou and Vladlen Koltun. Color map optimization for 3D reconstruction
with consumer depth cameras. ACM Transactions on Graphics, 33(4):155, 2014.

[234] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo
magnification: Learning view synthesis using multiplane images. ACM Trans. Graph.
(Proc. SIGGRAPH), 37, 2018.

124



[235] Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He,
Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, et al. Ponderv2: Pave the way
for 3d foundataion model with a universal pre-training paradigm. arXiv preprint
arXiv:2310.08586, 2023.

[236] Xiangyang Zhu, Renrui Zhang, Bowei He, Ziyu Guo, Ziyao Zeng, Zipeng Qin,
Shanghang Zhang, and Peng Gao. Pointclip v2: Prompting clip and gpt for powerful
3d open-world learning. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 2639–2650, 2023.

125


	Dissertation Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Learning to Capture, Understand, and Generate Large-Scale 3D Scenes
	Challenges in Large-Scale 3D Scene Capturing and Understanding
	Data Acquisition and Processing
	Representation and Storage
	Semantic Understanding and Interaction

	Overview of Techniques and Contributions
	Fast and Scalable Radiance Field Reconstruction for Indoor Scenes 
	Compact and Efficient 3D Scene Representation with Local Radiance Fields
	Large-Scale Consistent 2D-3D Pre-Training with Dense and Sparse Features
	Fast 3D Scene Generation by Lifting Panorama Images from 2D Diffusion Models


	Fast and Scalable Radiance Field Reconstruction for Indoor Scenes
	Introduction
	Related Work
	Method
	Sparse Volumes for Radiance Fields
	Reconstructing Local Volumes
	Fusing Volumes for Global Reconstruction
	Training and optimization

	Implementation Details
	Experiments
	Model Analysis and Discussions
	Limitations
	Conclusion

	Compact and Efficient 3D Scene Representation with Local Radiance Fields
	Introduction
	Related Work
	Method
	Scene Representation
	Loss Function
	Instance Label Assignment
	Efficient Nerflet Evaluation

	Implementation Details
	Experiments
	Novel View Synthesis
	2D Panoptic Segmentation
	Scene Editing
	3D Panoptic Reconstruction

	Model Analysis and Discussions
	Conclusion and Limitations

	Large-Scale Consistent 2D-3D Pre-Training with Dense and Sparse Features
	Introduction
	Related Work
	Preliminaries
	Method
	2D Encoding
	3D Encoding
	2D-3D Consensus with 2D Fidelity
	Key Point Extraction

	Implementation Details
	Experiments
	3D Tasks
	2D Tasks
	Cross-Modality Scene Query

	Model Analysis and Discussions
	Ablation Study
	Feature Visualization
	Cross-Modality Queries
	Effect of Data Amount
	Backbone Architecture
	Effect of NeRF Quality

	Conclusions and Limitations

	Fast 3D Scene Generation by Lifting Panorama Images from 2D Diffusion Models
	Introduction
	Related Work
	Method
	Panorama Image Generation
	Navigable 3D Scene from a Single Panorama Image

	Experiments
	3D Scene Generation
	Geometry Accuracy

	Conclusion and Limitations

	Bibliography



