Introduction
This is the first published report of a young girl with co-inherited sickle cell-β+ thalassemia and cystic fibrosis. Although a small subset of patients with co-inherited cystic fibrosis and other hemoglobinopathies have been reported, this patient developed early hematologic and pulmonary complications that were more severe than the previous cases. To assess pulmonary co-morbidities, we used infant pulmonary function testing through the raised volume rapid thoracoabdominal compression technique as both an established study of early cystic fibrosis and also as a newer study of mechanism for early sickle cell lung disease. This further serves as the first report of the raised volume rapid thoracoabdominal compression technique to determine raised volume forced expiratory flows and fractional lung volumes in a patient with a hemoglobinopathy.Case presentation
A 2-year-old African-American girl with co-inherited cystic fibrosis and sickle cell-β+ thalassemia developed severe hematologic complications (recurrent vaso-occlusive events, hepatic sequestration, and acute chest syndrome) during periods of cystic fibrosis pulmonary exacerbations and weight loss. Because cystic fibrosis and sickle cell-β+ thalassemia both confer distinct patterns of pulmonary disease, infant pulmonary function testing with the raised volume rapid thoracoabdominal compression technique was used to define respiratory pathophysiology and guide treatment options. Infant pulmonary function testing data demonstrated moderate-to-severe lower airways obstruction, moderate air trapping, and no evidence of restrictive lung disease.Conclusions
Infant pulmonary function testing with the raised volume rapid thoracoabdominal compression technique guided therapy in this patient with cystic fibrosis and sickle cell-β+ thalassemia. Although this is an original case report on a unique patient, this case highlights the need to evaluate early respiratory pathophysiology in a broader population of young patients with hemoglobinopathies and screen those at risk for early pulmonary co-morbidities.