Parallel evolution across replicate populations has provided evolutionary biologists with iconic examples of adaptation. When multiple populations colonize seemingly similar habitats, they may evolve similar genes, traits, or functions. Yet, replicated evolution in nature or in the laboratory often yields inconsistent outcomes: Some replicate populations evolve along highly similar trajectories, whereas other replicate populations evolve to different extents or in distinct directions. To understand these heterogeneous outcomes, biologists are increasingly treating parallel evolution not as a binary phenomenon but rather as a quantitative continuum ranging from parallel to nonparallel. By measuring replicate populations’ positions along this (non)parallel continuum, we can test hypotheses about evolutionary and ecological factors that influence the extent of repeatable evolution. We review evidence regarding the manifestation of (non)parallel evolution in the laboratory, in natural populations, and in applied contexts such as cancer. We enumerate the many genetic, ecological, and evolutionary processes that contribute to variation in the extent of parallel evolution.