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Abstract. Software testing research has resulted in effective white-box
test generation techniques that can produce unit test suites achieving
high code coverage. However, research prototypes usually only cover sub-
sets of the basic programming language features, thus inhibiting practical
use and evaluation. One feature commonly omitted are Java’s generics,
which have been present in the language since 2004. In Java, a generic
class has type parameters and can be instantiated for different types;
for example, a collection can be parameterized with the type of values
it contains. To enable test generation tools to cover generics, two sim-
ple changes are required to existing approaches: First, the test generator
needs to use Java’s extended reflection API to retrieve the little informa-
tion that remains after type erasure. Second, a simple static analysis can
identify candidate classes for type parameters of generic classes. The pre-
sented techniques are implemented in the EvoSuite test data generation
tool and their feasibility is demonstrated with an example.
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1 Introduction

To support developers in the tedious task of writing and updating unit test
suites, white-box testing techniques analyze program source code and automati-
cally derive test cases targeting different criteria. These unit tests either exercise
automated test oracles, for example by revealing unexpected exceptions, or help
in satisfying a coverage criterion. A prerequisite for an effective unit test gen-
erator is that as many as possible language features of the target programming
language are supported, otherwise the quality of the generated tests and the
usefulness of the test generation tools will be limited.

A particular feature common to many modern programming languages such
as Java are generics [12]: Generics make it possible to parameterize classes and
methods with types, such that the class can be instantiated for different types. A
common example are container classes (e.g., list, map, etc.), where generics can
be used to specify the type of the values in the container. For example, in Java a
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List<String> denotes a list in which the individual elements are strings. Based
on this type information, any code using such a list will know that parameters
to the list and values returned from the list are strings. While convenient for
programmers, this feature is a serious obstacle for automated test generation.

In this short paper, we present a simple automated approach to generating
unit tests for code using generics by statically determining candidate types for
generic type variables. This approach can be applied in random testing, or in
search-based testing when exploring type assignments as part of a search for a
test suite that maximizes code coverage. We have implemented the approach in
the EvoSuite test generation tool and demonstrate that it handles cases not
covered by other popular test data generation tools. Furthermore, to the best of
our knowledge, we are aware of no technique in the literature that targets Java
generics.

2 Background

In this paper, we address the problem of Java generics in automated test genera-
tion. To this purpose, this section presents the necessary background information
on generics and test generation, and illustrates why generics are problematic for
automated test generation.

2.1 Java Generics

In Java, generics parameterize classes, interfaces, and methods with type pa-
rameters, such that the same code can be instantiated with different types. This
improves code reusability, and it helps finding type errors statically.

A generic class has one or more type parameters, similar to formal parame-
ters of methods. When instantiating a generic class, one specifies concrete values
for these type parameters. For example, consider the following simplistic imple-
mentation of a stack datastructure:

public class Stack<T> {

private T[] data = new T[100];

private int pos = 0;

public T pop() {

return data[pos--];

}

public void push(T value) {

data[pos++] = value;

}

}

The class Stack has one type parameter, T. Within the definition of class
Stack, T can be used as if it were a concrete type. For example, data is defined



Automated Test Generation for Java Generics 3

as an array of type T, pop returns a value of type T, and push accepts a parameter
of type T. When instantiating a Stack, a concrete value is assigned to T:

Stack<String> stringStack = new Stack<String>();

stringStack.push("Foo");

stringStack.push("Bar");

String value = stringStack.pop(); // value == "Bar"

Stack<Integer> intStack = new Stack<Integer>();

intStack.push(0);

Integer intValue = intStack.pop();

Thanks to generics, the Stack can be instantiated with any type, e.g., String
and Integer in this example. The same generic class is thus reused, and the
compiler can statically check whether the values that are passed into a Stack

and returned from a Stack are of the correct type.
It is possible to put constraints on the type parameters. For example, consider

the following generic interface:

public abstract class Foo<T extends Number> {

private T value;

public void set(T value) {

this.value = value;

}

public double get() {

return value.doubleValue();

}

}

This class can only be instantiated with types that are subclasses of Number.
Thus, Foo<Integer> is a valid instantiation, whereas Foo<String> is not. A
further way to restrict types is the super operator. For example, Foo<T super

Bar> would restrict type variable T to classes convertible to Bar or its super-
classes.

Note also that Foo is an abstract class. When creating a subclass or when
instantiating a generic interface, the type parameter can be concretized, or can
be assigned a new type parameter of the subclass. For example:

public class Bar extends Foo<Integer> {

// ...

}

public class Zoo<U extends Number, V> extends Foo<U> {

// ...

}
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The class Bar sets the value of T in Foo to Integer, whereas Zoo delays the
instantiation of T by creating a new type variable U. This means that inheri-
tance can be used to strengthen constraints on type variables. Class Zoo also
demonstrates that a class can have any number of type parameters, in this case
two.

Sometimes it is not known statically what the concrete type for a type vari-
able is, and sometimes it is irrelevant. In these cases, the wildcard type can be
used. For example, if we have different methods returning instances of Foo and
we do not care what the concrete type is as we are only going to use method
get which works independently of the concrete type, then we can declare this in
Java code as follows:

Foo<?> foo = ... // some method returning a Foo

double value = foo.get();

Generics are a feature that offers type information for static checks in the
compiler. However, this type information is not preserved by the compiler. That
is, at runtime, given a concrete instance of a Foo object, it is not possible to
know the value of T (the best one can do is guess by checking value). This is
known as type erasure, and is problematic for dynamic analysis tools.

The Java compiler also accepts generic classes without any instantiated
type parameters. This is what most dynamic analysis and test generation tools
use, and it essentially amounts to assuming that every type variable represents
Object.

✿✿✿✿✿

Stack
✿✿✿✿✿

stack
✿✿

=
✿✿✿✿

new
✿✿✿✿✿✿✿✿✿

Stack();

stack.push("test");

Object o = stack.pop();

As indicated with the waved underline, a compiler will issue a warning in
such a case, as static type checking for generic types is impossible this way.

Besides classes, it is also possible to parameterize methods using generics. A
generic method has a type parameter which is inferred from the values passed
as parameters. For example, consider the following generic method:

public class Foo {

public <T> List<T> getNList(T element, int length) {

List<T> list = new ArrayList<T>();

for(int i = 0; i < length; i++)

list.add(element);

return list;

}

}

The method getNList creates a generic list of length length with all ele-
ments equal to element. List is a generic class of the Java standard library, and
the generic parameter of the list is inferred from the parameter element. For
example:
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Foo foo = new Foo();

List<String> stringList = foo.getNList("test", 10);

List<Integer> intList = foo.getNList(0, 10);

In this example, the same generic method is used to generate a list of strings
and a list of numbers.

2.2 Automated Test Generation

Testing is a common method applied to ensure that software behaves as desired.
Developer testing involves writing test cases that exercise a program through its
application programmer interface (API). This has been particularly popularized
by the availability of convenient test automation frameworks for unit testing,
such as JUnit. Test cases may be written before the actual implementation such
that they serve as specification (test-driven development), they can be written
while explicitly testing a program in order to find bugs, or they can be written in
order to capture the software behavior in order to protect against future (regres-
sion) bugs. However, writing test cases can be a difficult and error-prone task,
and manually written suites of tests are rarely complete in any sense. Therefore,
researchers are investigating the task of automating test generation, such that
developer-written tests can be supplemented by automatically generated tests.

Technically, the task of automatically generating unit tests consists of two
parts: First, there is the task of generating suitable test inputs, i.e., individual
sequences of calls that collectively exercise the class under test (CUT) in a
comprehensive way. Second, there is the task of determining whether these tests
find any bugs, i.e., the generated test cases require test oracles.

Automatically generated test cases are particularly useful when there are au-

tomated oracles, such that finding faults becomes a completely automated task.
Fully automated oracles are typically encoded in code contracts or assertions,
and in absence of such partial specifications, the most basic oracle consists of
checking whether the program crashes [11] (or in the case of a unit, whether an
undeclared exception occurs).

The alternative to such automated oracles consists of adding oracles in terms
of test assertions to the generated unit tests. In a scenario of regression testing
where the objective is simply to capture the current behaviour, this process
is fully automated. Alternatively, the developer is expected to manually add
assertions to the generated unit tests. This process can further be supported by
suggesting possible assertions [6], such that the developer just needs to confirm
whether the observed behaviour is as expected, or erroneous.

Popular approaches to automated unit test generation include random test-

ing [11], dynamic symbolic execution [7], and search-based testing [10]. In random
testing, sequences of random calls are generated up to a given limit. A simple
algorithm to generate a random test for an object oriented class is to randomly
select methods of the class to add, and for each parameter to randomly select
previously defined assignable objects in the test, or to instantiate new objects of
the required type by calling one of its constructors or factory methods (chosen
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randomly). Given that random tests can be very difficult to comprehend, the
main application of such approaches lies in exercising automated oracles. Dy-
namic symbolic execution systematically tries to generate inputs that cover all
paths for a given entry function by applying constraint solvers on path condi-
tions. Consequently, entry functions need to be provided, for example in terms
of parameterized unit tests [13]. Finally, search-based testing has the flexibility
of being suitable for almost any testing problem, and generating unit tests is an
area where search-based testing has been particularly successful.

In search-based testing [1,10], the problem of test data generation is cast as a
search problem, and search algorithms such as hillclimbing or genetic algorithms
are used to derive test data. The search is driven by a fitness function, which
is a heuristic that estimates how close a candidate solution is to the optimum.
When the objective is to maximize code coverage, then the fitness function does
not only quantify the coverage of a given test suite, but it also provides guidance
towards improving this coverage. To calculate the fitness value, test cases are
usually executed using instrumentation to collect data. Guided by the fitness
function, the search algorithm iteratively produces better solutions until either
an optimal solution is found, or a stopping condition (e.g., timeout) holds.

The use of search algorithms to automate software engineering tasks has been
receiving a tremendous amount of attention in the literature [8], as they are well
suited to address complex, non-linear problems.

2.3 The Woes of Generics in Automated Testing

So why are generics a problem for test generation? Java bytecode has no informa-
tion at all about generic types — anything that was generic on the source code
is converted to type Object in Java bytecode. However, many modern software
analysis and testing tools work with Java bytecode rather than sourcecode. Some
information can be salvaged using Java reflection: It is possible to get the exact
signature of a method. For example, in the following snippet we can determine
using Java reflection that the parameter of method bar is a list of strings:

public class Foo {

public void bar(List<String> stringList) {

// ...

}

}

However, consider the following variation of this example:

public class Foo<T> {

public void bar(List<T> stringList) {

// ...

}

}

If we now query the signature of method bar using Java reflection, we learn
that the method expects a list of T. But what is T? Thanks to type erasure, for a
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given object, it is impossible to know for a given instance of Foo what the type
of T is1.

Our only hope is if we know how Foo was generated. For example, as part
of the test generation we might instantiate Foo ourselves — yet, when doing
so, what should we choose as concrete type for type variable T? We did not
specify a type boundary for T in the example, and the implicit default boundary
is Object. Consequently, we have to choose a concrete value for type T out of
the set of all classes that are assignable to Object. In this example, this means
all classes on the classpath are candidate values for T, and typically there are
many classes on the classpath.

However, things get worse: It is all too common that methods are declared to
return objects or take parameters of generic classes where the type parameters
are given with a wildcard type. Even worse, legacy or sloppily written code
may even completely omit type parameters in signatures. A wildcard type or
an omitted type parameter looks like Object when we inspect it with Java
reflection. So if we have a method that expects a List<?>, what type of list
should we pass as parameter? If we have received a List<?>, all we know is that
if we get a value out of it, it will be an Object. In such situations, if we do not
guess the right type, then likely we end up producing useless tests that end up in
ClassCastExceptions and cover no useful code. To illustrate this predicament,
consider the following snippet of code:

@Test

public void testTyping(){

List<String> listString = new LinkedList<String>();

listString.add("This is a list for String objects");

listString.add("Following commented line would not

compile");

//List<Integer> listStringButIntegerType = listString;

List erasedType = listString;

List<Integer> listStringButIntegerType = erasedType;

listStringButIntegerType.get(0).intValue();

}

If we define a parametrized list as to contain only String objects, then it
is not possible to assign it to a list for integers; the compiler will not allow it.
But, if we first assign it to a generic list, then this generic list can be assigned
to an integer list without any compilation error. In other words, a reference to
an integer list does not give any guarantee that it will contain only integers.
This is a particular serious problem for automated test data generation because,
if generics are not properly handled, we would just end up in test cases that
are full of uninteresting ClassCastExceptions. For example, if a method of the
CUT takes as input a list of Strings, then it would be perfectly legit (i.e., it will
compile) to give as input a generic list that rather contains integers.

1 Except if we know the implementation of Foo and List such that we can use reflec-
tion to dig into the low level details of the list member of Foo to find out what the
type of the internal array is.
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Considering all this, it is not surprising that research tools on automated test
generation have steered clear of handling generics so far.

3 Generating Tests for Generic Classes

The problem of generics becomes relevant whenever a test generation algorithm
attempts to instantiate a new object, or to satisfy a parameter for a newly in-
serted method call. For example, this can be the case of a random test generation
algorithm exploring sequences of calls, but it can just as well be part of a ge-
netic algorithm evolving test suites. Assume that our test generation algorithm
decides to add a call to the method bar defined as follows:

public class Foo<T> {

public void bar(T baz) {

// ...

}

}

The signature of bar does not reveal what the exact type of the parameter
should be. In fact, given an object of type Foo, when we query the method
parameters of method bar using Java’s standard reflection API reveals that
baz is of type Object! Fortunately, the reflection API was extended starting
in Java version 1.5, and the extended API adds for each original method a
variant that returns generic type information. For example, whereas the standard
way to access the parameters of a java.lang.reflect.Method object is via
method getParameters, there is also a generic variant getGenericParameters.
However, this method only informs us that the type of baz is T.

Consequently, the test generator needs to consider the concrete instance of
Foo on which this method is called, in order to find out what T is. Assume the
test generator decides to instantiate a new object of type Foo. At this point, it
is necessary to decide on the precise type of the object, i.e., to instantiate the
type parameter T. As discussed earlier, any class on the classpath is assignable
to Object, so any class qualifies as candidate for T. As randomly choosing a type
out of the entire set of available classes is not a good option (i.e., the probability
of choosing an appropriate type would be extremely low), we need to restrict
the set of candidate classes.

To find a good set of candidate classes for generic type parameters, we can
exploit the behaviour of the Java compiler. The compiler removes the type in-
formation as part of type erasure, but if an object that is an instance of a type
described by a type variable is used in the code, then before the use the compiler
inserts a cast to the correct type. For example, if type variable T is expected to
be a string, then there will be a method call on the object representing the string
or it is passed as a string parameter to some other method. Consequently, by
looking for casts in the bytecode we can identify which classes are relevant. Be-
sides explicit casts, a related construct giving evidence of the concrete type is the
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instanceof operator in Java, which takes a type parameter that is preserved in
the bytecode.

The candidate set is initialized with the default value Object. To collect
the information about candidate types, we start with the dedicated class under
test (CUT), and inspect the bytecode of each of its methods for castclass or
instanceof operators. In addition to direct calls in the CUT, the parameters
may be used in subsequent calls, therefore this analysis needs to be interproce-
dural. Along the analysis, we can also consider the precise method signatures,
which may contain concretizations of generic type variables. However, the fur-
ther away from the CUT the analysis goes, the less related the cast may be to
covering the code in the CUT. Therefore, we also keep track of the depth of the
call tree for each type added to the set of candidate types.

Now when instantiating a generic class Foo, we randomly choose values for
its type parameters out of the set of candidate classes. The probability of a type
being selected is dependent on the depth in the call tree, and in addition we
need to determine the subset of the candidate classes that are compatible with
the bounds of the type variable that is instantiated. Finally, it may happen that
a generic class itself ends up in the candidate set. Thus, the process of instan-
tiating generic type parameters is a recursive process, until all type parameters
have received concrete values. To avoid unreasonably large recursions, we put
an upper boundary on the number of recursive calls, and use a wildcard type if
the boundary has been reached.

4 EvoSuite: A Unit Test Generator Supporting Generics

We have extended the EvoSuite unit test generation tool [3] with support for
Java generics according to the discussed approach. EvoSuite uses a genetic
algorithm (GA) to evolve test suites. The objective of the search inEvoSuite

is to maximize code coverage, so the fitness function does not only quantify the
coverage of a given test suite, but it also provides guidance towards improving
this coverage. For example, in the case of branch coverage, the fitness function
considers for each individual branching statement how close it was to evaluating
to true and to false (i.e., its branch distance), and thus can guide the search
towards covering both outcomes.

The GA has a population of candidate solutions, which are test suites, i.e.,
sets of test cases. Each test case in turn is a sequence of calls (like a JUnit test
case). EvoSuite generates random test suites as initial population, and these
test suites are evolved using search operators that mimic processes of natural
evolution. The better the fitness value of an individual, the more likely it is
considered for reproduction. Reproduction applies mutation and crossover, which
modify test suites according to predefined operators. For example, crossover
between two test suites creates two offspring test suites, each containing subsets
from both parents. Mutation of test suites leads to insertion of new test cases, or
change of existing test cases. When changing a test case, we can remove, change,
or insert new statements into the sequence of statements. To create a new test
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case, we simply apply this statement insertion on an initially empty sequence
until the test has a desired length. Generic classes need to be handled both, when
generating the initial random population, and during the search, when test cases
are mutated. For example, mutation involves adding and changing statements,
both of which require that generic classes are properly handled. For details on
these search operators we refer to [5].

To demonstrate the capabilities of the improved tool, we now show sev-
eral simple examples on which test generation tools that do not support gener-
ics fail (in particular, we verified this on Randoop [11], Dsc [9], Symbolic
PathFinder [2], and Pex [13]).

The first example shows the simple case where a method parameter specifies
the exact signature. As the method accesses the strings in the list (by writing
them to the standard output) outwitting the compiler by providing a list without
type information is not sufficient to cover all the code – anything but an actual
list of strings would lead to a ClassCastException. Thus, the task of the test
generation tool is to produce an instance that exactly matches this signature:

import java.util.List;

public class GenericParameter {

public boolean stringListInput(List<String> list){

for(String s : list)

System.out.println(s.toLowerCase());

if(list.size() < 3)

return false;

else

return true;

}

}

For this class, EvoSuite produces the following test suite to cover all
branches:

public class TestGenericParameter {
@Test
public void test0() throws Throwable {

GenericParameter genericParameter0 = new GenericParameter();
LinkedList<String> linkedList0 = new LinkedList<String>();
linkedList0.add("");
linkedList0.add("");
linkedList0.add("");
boolean boolean0 = genericParameter0.stringListInput(linkedList0);
assertEquals(true, boolean0);

}

@Test
public void test1() throws Throwable {

GenericParameter genericParameter0 = new GenericParameter();
LinkedList<String> linkedList0 = new LinkedList<String>();
boolean boolean0 = genericParameter0.stringListInput(linkedList0);
assertEquals(false, boolean0);

}
}
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As second example, consider a generic class that has different behavior based
on what type it is initialized to, such that a test generator needs to find appro-
priate values for type parameter T in order to cover all branches:

import java.util.List;

public class GenericsExample<T,K> {

public int typedInput(T in){

if(in instanceof String)

return 0;

else if(in instanceof Integer)

return 1;

else if(in instanceof java.net.ServerSocket)

return 2;

else

return 3;

}

}

Again EvoSuite is able to create a branch coverage test suite easily:

public class TestGenericsExample {
@Test
public void test0() throws Throwable {

GenericsExample<ServerSocket, ServerSocket> genericsExample0 = new
GenericsExample<ServerSocket, ServerSocket>();

ServerSocket serverSocket0 = new ServerSocket();
int int0 = genericsExample0.typedInput(serverSocket0);
assertEquals(2, int0);

}

@Test
public void test1() throws Throwable {

GenericsExample<Integer, Object> genericsExample0 = new
GenericsExample<Integer, Object>();

int int0 = genericsExample0.typedInput((Integer) 1031);
assertEquals(1, int0);

}

@Test
public void test2() throws Throwable {

GenericsExample<String, ServerSocket> genericsExample0 = new
GenericsExample<String, ServerSocket>();

int int0 = genericsExample0.typedInput("");
assertEquals(0, int0);

}

@Test
public void test3() throws Throwable {

GenericsExample<Object, Object> genericsExample0 = new
GenericsExample<Object, Object>();

Object object0 = new Object();
int int0 = genericsExample0.typedInput(object0);
assertEquals(3, int0);

}
}
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To evaluate the examples, we compare with other test generation tools for
Java described in the literature. Research prototypes are not always freely avail-
able, hence we selected tools that are not only available online, but also popular
(e.g., highly cited and used in different empirical studies). In the end, we selected
Randoop [11], Dsc [9], Symbolic PathFinder [2], and Pex [13]).

Like for EvoSuite, setting up Randoop to generate test cases for GenericsExample
is pretty straightforward. Already after a few seconds, it has generated JUnit
classes with hundreds of test cases. However, Randoop generated no tests that
used a list as input for the stringListInput method (0% coverage) or a Server-
Socket for typedInput.

A popular alternative to search-based techniques in academia is dynamic
symbolic execution (DSE). For Java, available DSE tools are Dsc [9] and Sym-
bolic PathFinder [2]. However, these tools assume static entry functions (Dsc),
or appropriate test drivers that take care of setting up object instances and
selecting methods to test symbolically2. As choosing the “right” type for a
GenericsExample object instantiation is actually part of the testing problem
(e.g., consider typedInput method), then JPF does not seem to help in this
case.

To overcome this issue, we also investigated Pex, probably the most popular
DSE tool, but a tool that assumes C#. However, generics also exist in C#, so it
is a good opportunity to demonstrate that the problem addressed in this paper
is not a problem specific to Java.

We translated the GenericsExample class to make a comparison, resulting
in the following C# code.

using System;

using System.Collections.Generic;

public class GenericsExample<T> {

public int typedInput(T input){

if (input is String)

return 0;

else if (input is Int32)

return 1;

else if (input is System.Collections.Stack)

return 2;

else

return 3;

}

}

Note that we replaced the TCP socket class with a Stack class such that
the example can also be used with the web interface for Pex, PexForFun3. Like
the other DSE tools, Pex assumes an entry function, which is typically given

2 http://javapathfinder.sourceforge.net/, accessed June 2013.
3 http://www.pexforfun.com/, accessed June 2013.
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by a parameterized unit test. For example, the following code shows an entry
function that can be used to explore the example code using DSE:

using Microsoft.Pex.Framework;

[PexClass]

public class TestClass {

[PexMethod]

public void Test<T>(T typedInput) {

var ge = new GenericsExample<T>();

ge.typedInput(typedInput);

}

}

This test driver and the GenericsExample class can be used with Pex on
Pex4Fun, and doing so reveals that Pex does not manage to instantiate T at all
(it just attempts null).

5 Conclusions

Generics are an important feature in object-oriented programming languages like
Java. However, they pose serious challenges for automated test case generation
tools. In this short paper, we have presented a simple techniques to handle Java
generics in the context of test data generation. Although we implemented those
techniques as part of the EvoSuite tool, they could be used in any Java test
generation tool.

We showed the feasibility of our approach on artificial examples. While Evo-

Suite was able to achieve 100% coverage in all these examples quickly, other
test generation tools fail — even if they would be able to handle equivalent code
without generics (e.g., in the case of Randoop).

Beyond the simple examples of feasibility, as future work we will perform large
scale experiments to determine how significant the effect of generics support is
in practice, for example using the SF100 corpus of open source projects [4].

EvoSuite is a freely available tool. To learn more about EvoSuite, visit
our Web site:

http://www.evosuite.org
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