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Abstract

We introduce a statistical model for times series data with nonlinear dynamics
which iteratively segments the data into regimes with approximately linear dynamics
and learns the parameters of each of those regimes. This model combines and gener-
alizes two of the most widely used stochastic time series models|the hidden Markov
model and the linear dynamical system|and is related to models that are widely used
in the control and econometrics literatures. It can also be derived by extending the
mixture of experts neural network model (Jacobs et al., 1991) to its fully dynamical
version, in which both expert and gating networks are recurrent. Inferring the pos-
terior probabilities of the hidden states of this model is computationally intractable,
and therefore the exact Expectation Maximization (EM) alogithm cannot be applied.
However, we present a variational approximation which maximizes a lower bound on
the log likelihood and makes use of both the forward{backward recursions for hidden
Markov models and the Kalman �lter recursions for linear dynamical systems.

1 Introduction

Most commonly used probabilistic models of time series can draw their lineage to either the
hidden Markov model (HMM) or to the stochastic linear dynamical system, also known as
the state-space model (SSM). Hidden Markov models represent information about the past
of a sequence through a single discrete random variable{the hidden state. The probability
distribution of this state is a function of the previous state represented by a stochastic
transition matrix. Knowing the state at any time renders the past, present and future
observations to be statistically independent. This is the Markov independence property that
gives the model its name.

State-space model represent information about the past though a real-valued hidden state
vector. Again, conditioned on this state vector, the past, present, and future observations are
rendered independent. The dependency between the present state vector and the previous
state vector is speci�ed through the dynamic equations of the system and the noise model.
When these equations are linear and the noise model is Gaussian, the state-space model is
also known as linear dynamical system or Kalman �lter model.
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Unfortunately, many real-world processes cannot be characterized by either purely dis-
crete or purely linear{Gaussian dynamics. For example, an industrial plant may have multi-
ple discrete modes of behavior, each of which is appropriately described by linear dynamics.
Similarly, the pixel intensities in an image of a translating object vary according to linear
dynamics for subpixel translations, but as the image moves over a larger range the dynamics
change signi�cantly and nonlinearly.

The goal of this paper is to model complex dynamical phenomena which may be charac-
terized by both discrete and continuous dynamics. To this e�ect, we introduce a probabilistic
model called the switching state-space model inspired by the divide-and-conquer principle
underlying the mixture of experts neural network (Jacobs et al., 1991). The switching state-
space model is a natural generalization of both the hidden Markov model and the state-space
model in which the dynamics can transition in a discrete manner from one linear operating
regime to another. There is in face a large literature on models of this kind in econometrics,
signal processing, and other �elds (Harrison and Stevens, 1976; Chang and Athans, 1978;
Hamilton, 1989; Shumway and Sto�er, 1991; Bar-Shalom and Li, 1993). In this paper we
extend some of these models to allow for multiple real-valued state vectors, draw connections
between these �elds and the literature on neural computation, and derive a learning algo-
rithm for all the parameters of the system based on a structured variational approximation
which rigorously maximizes a lower bound on the log likelihood of the model.

The paper is organized as follows. In the following section we review the background
material on state-space models, hidden Markov models, and recent hybrids of the two. In
section 3, we describe the generative model|i.e. the probability distribution de�ned over
the observation sequences|for switching state-space models. In section 4, we describe the
learning algorithm for switching state-space models which is based on a structured variational
approximation to the EM algorithm. In section 5 we present simulation results both in an
arti�cial domain, to assess the quality of the approximate inference method, and in a natural
domain. Finally, we conclude with section 6.

2 Background

2.1 State-space models

In a state-space model, a sequence of D-dimensional observation vectors fYtg where the
discrete time index t ranges from t = 1; : : : T , is modeled by specifying (1) a probabilistic re-
lation between the observations and a hidden state vectorXt, and (2) a probabilistic relation
between consecutive hidden state vectors.1 The hidden state vectors obey the Markov inde-
pendence property, so the joint probability for the sequences of states Xt and observations
Yt can be factored as:

P (fXt; Ytg) = P (X1)P (Y1jX1)
TY
t=2

P (XtjXt�1)P (YtjXt); (1)

The conditional independences speci�ed by equation (1) can be expressed graphically in the
form of Figure 1a. The simplest and most commonly used models of this kind assume that

1A table describing the variables and the notation used throughout the paper is provided in Appendix A.
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Figure 1: A directed acyclic graph (DAG) specifying conditional independence relations for
a state-space model. Each node is conditionally independent from its non-descendents given
its parents: The output Yt is conditionally independent from all other variables given the
state Xt; and Xt is conditionally independent from X1; : : : ;Xt�2 given Xt�1.

the the transition and output functions are linear and time-invariant and the distribution
of the state and observation variables is multivariate Gaussian. We will use the term state-
space model to refer to this simple form of the model. For such models, the state transition
function is written

Xt = AXt�1 + wt (2)

whereA is the state transition matrix and wt is zero-mean Gaussian state noise. Equation (2)
ensures that if P (Xt�1) is Gaussian, then so is P (Xt). P (X1) is assumed to be Gaussian.
The output function is written

Yt = CXt + vt (3)

where C is the output matrix and vt is zero-mean Gaussian output noise with covariance
matrix R; P (YtjXt) is therefore also Gaussian:

P (YtjXt) = (2�)�D=2jRj�1=2 exp
�
�
1

2
(Yt � CXt)

0R�1 (Yt � CXt)
�
: (4)

Often, the observation vector can be divided into input (or predictor) variables and
output (or response) variables. To model the input{output behavior of such a system|i.e.
the conditional probability of output sequences given input sequences|the linear Gaussian
SSM can be modi�ed to have a state-transition function

Xt = AXt�1 +BUt + wt; (5)

where Ut is the input observation vector and B is the (�xed) input matrix.2

The problem of inference for a state-space model with known parameters consists of
estimating the posterior probabilities of the hidden variables given a sequence of observed
variables. Since the local likelihood functions for the observations are Gaussian and the
priors for the hidden states are Gaussian, the resulting posterior is also Gaussian. The special
cases of the inference problem for state-space models play a prominent role in the engineering
literature: �ltering, smoothing, and prediction (Anderson and Moore, 1979; Goodwin and
Sin, 1984). The goal of �ltering is to compute the probability of the current hidden state Xt

given the sequence of inputs and outputs up to time t|P (XtjfY gt1; fUg
t
1).

3 The recursive
algorithm used to perform this computation is known as the Kalman �lter (Kalman and

2One can also de�ne the state such that Xt+1 = AXt + BUt + wt.
3The notation fY gt1 is short-hand for the sequence Y1; : : : ; Yt.
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Bucy, 1961). The goal of smoothing is to compute the probability of Xt given the sequence
of inputs and outputs up to time T , where T > t. The Kalman �lter recursions are used in
the forward direction to compute the probability of Xt given fY gt1 and fUg

t
1. A similar set of

backward recursions from T to t complete the computation by accounting for the observations
after time t (Rauch, 1963). We will refer to the combined forward and backward recursions
for smoothing as the Kalman smoothing recursions (also known as the RTS or Rauch-Tung-
Streibel smoother ). Finally, the goal of prediction is to compute the probability of future
states and observations given observations upto time t. Given P (XtjfY gt1; fUg

t
1) computed

as before, the model is simulated in the forward direction using equations (2) (or (5) if there
are inputs) and (3) to compute the probability density of the state or output at future time
t+ � .

The problem of learning the parameters of a state-space model is known in engineering
as the system identi�cation problem, and in its most general form assumes access only to
sequences of input and output observations. We focus on maximum likelihood learning, in
which a single (locally optimal) value of the parameters is estimated, rather than Bayesian
approaches which treat the parameters as random variables and compute or approximate
the posterior distribution of the parameters given the data. One can also distinguish be-
tween on-line and o�-line approaches to learning. On-line recursive algorithms, favored in
real-time adaptive control applications, can be obtained by computing the gradient or the
second derivatives of the log likelihood (Ljung and S�oderstr�om, 1983). Similar gradient-based
methods can be obtained for o�-line methods. An alternative method for o�-line learning
makes use of the Expectation Maximization (EM) algorithm (Dempster et al., 1977). This
procedure iterates between a step that �xes the current parameters and computes posterior
probabilities over the hidden states given the observations (the E-step), and a step that uses
these probabilities to maximize the expected log likelihood of the parameters (the M-step).
For linear Gaussian state-space models, the E-step is exactly the Kalman smoothing problem
as de�ned above, and the M-step simpli�es to a linear regression problem (Shumway and
Sto�er, 1982; Digalakis et al., 1993). Details on the EM algorithm for state-space models
can be found in Ghahramani and Hinton (1996b), as well as in the original Shumway and
Sto�er (1982) paper.

It is worth pointing out that the linear Gaussian state-space model is a generalization of
a statistical method known as factor analysis. Factor analysis models high dimensional data
through a smaller number of latent variables or factors (Everitt, 1984). The model relating
the factors to the observations is exactly as speci�ed by equation (3): Xt is a Gaussian
distributed vector of factor values; Yt is the observation vector; C is known as the factor
loading matrix, and vt is zero-mean Gaussian distributed noise with the further constraint
that the elements of the vector vt are uncorrelated. State-space models are therefore a
dynamic generalization of factor analysis which allow the current factor values to depend
linearly on the previous factor values.4

4X must have fewer dimensions that Y for the factor analysis problem to be well-posed. For a state-
space model, the equivalent constraint is that the dimensionality of X must be less than the product of
the dimension of Y and the length of the observation sequence. This constraint derives from the notion of
observability in linear system theory (Goodwin and Sin, 1984).
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2.2 Hidden Markov models

A hidden Markov models de�nes a probability distribution over sequences of observations
fYtg. This distribution over sequences is obtained by specifying the probability over observa-
tions at each time step t given a discrete hidden state St, and the probability of transitioning
from one hidden state to another from one time step to the next. Using the Markov property,
the joint probability for the sequences of states St and observation Yt, can be factored in
exactly the same manner as equation (1), with St taking the place of Xt:

P (fSt; Ytg) = P (S1)P (Y1jS1)
TY
t=2

P (StjSt�1)P (YtjSt): (6)

Similarly, the conditional independences in an HMM can be expressed graphically in the
same form as Figure 1a. The state is represented by a single multinomial variable that can
take one of K discrete values, St 2 f1; : : : ;Kg. The state transition probabilities, P (StjSt�1),
are speci�ed by a K �K transition matrix. If the observables are discrete symbols taking
on one of L values, the observation probabilities P (YtjSt) can be fully speci�ed as a K � L
observation matrix. For a continuous observation vector, P (YtjSt) can be modeled in many
di�erent forms, such as a Gaussian, mixture of Gaussians, or a neural network. HMMs
have been applied extensively to problems in speech recognition (Juang and Rabiner, 1991),
computational biology (Baldi et al., 1994), and fault detection (Smyth, 1994).

Given an HMM with known parameters and a sequence of observations, two algorithms
are commonly used to solve two di�erent forms of the inference problem (Rabiner and Juang,
1986). The �rst computes the posterior probabilities of the hidden states using a recursive
algorithm known as the forward{backward algorithm. The computations in the forward
pass are exactly analogous to the Kalman �lter for SSMs, while the computations in the
backward pass are analogous to the backward pass of the Kalman smoothing equations.
As noted by Bridle (personal communication, 1985) and Smyth, Heckerman and Jordan
(1997), the forward{backward algorithm is a special case of exact inference algorithms for
more general graphical probabilistic models (Lauritzen and Spiegelhalter, 1988; Pearl, 1988).
The same observation holds true for the Kalman smoothing recursions. The other inference
problem commonly posed for HMMs is to compute the single most likely sequence of hidden
states. The solution to this problem is given by the Viterbi algorithm, which also consists of
a forward and backward pass through the model.

To learn maximum likelihood parameters for an HMM given sequences of observations,
one can use the well-known Baum-Welch algorithm (Baum et al., 1970). This algorithm is a
special case of EM that uses the forward{backward algorithm to infer the posterior probabil-
ities of the hidden states in the E-step. The M-step uses expected counts of transitions and
observations to re-estimate the transition and output matrices (or linear regression equations
in the case where the observations are Gaussian distributed).

The HMM can be augmented to allow for input variables, such that it models the condi-
tional distribution of sequences of output observations given sequences of inputs (Cacciatore
and Nowlan, 1994; Bengio and Frasconi, 1995; Meila and Jordan, 1996). The approach used
in Bengio and Frasconi's Input Output HMMs (IOHMMs) suggests modeling P (StjSt�1; Ut),
where Ut is the input, as M separate neural networks, one for each setting of St�1. This de-
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composition ensures that, if a sum-to-one constraint is used on the output of these networks,
a valid probability transition matrix is de�ned at each point in input space.

2.3 Hybrids

For many time series applications, neither the linear Gaussian dynamics of the SSM nor
the purely discrete dynamics of the HMM can appropriately model the temporal structure
of the data. As a consequence, in �elds ranging from econometrics to control engineering,
an burgeoning literature has developed on models which combine the discrete transition
structure of HMMs with the linear dynamics of SSMs (Harrison and Stevens, 1976; Chang
and Athans, 1978; Hamilton, 1989; Shumway and Sto�er, 1991; Bar-Shalom and Li, 1993;
Deng, 1993; Kadirkamanathan and Kadirkamanathan, 1996; Chaer et al., 1997). These
models are known alternately as hybrid models, state-space models with switching, and
jump-linear systems. We briey review some of the main results in this literature including
some recent proposals in the �eld of neural computation.

The engineering literature on state estimation for state-space models with switching is
reviewed in Bar-Shalom and Li (1993). The state estimation problem consists of computing
the mean and covariance of the hidden real-valued state vector given the observations (i.e.
the �lering problem). Shortly after Kalman's results on linear Gaussian state-space mod-
els, much attention turned to the problem of state estimation with switching parameters.
For example, Ackerson and Fu (1970) consider the problem of state estimation in linear
state-space models which receive (unobserved) state and output disturbances coming from
Gaussian mixture distributions with Markov transition structure. Chang and Athans (1978)
derive the equations for computing the conditional mean and variance of the state when
the parameters of a linear state-space model switch according to arbitrary and Markovian
dynamics. The prior and transition probabilities of the switching process are assumed to
be known. They note that for M models (sets of parameters) and an observation length T ,
the exact conditional distribution of the state is a Gaussian mixture with MT components.
The conditional mean and variance, which require far less computation, are therefore only
summary statistics.

Shumway and Sto�er (1991) consider the problem of learning the parameters of state-
space models with a single real-valued hidden state vector and switching output matrices.
The probability of chosing a particular output matrix is a pre-speci�ed time-varying func-
tion, independent of previous choices. A pseudo-EM algorithm is derived in which the E-step,
which in its exact form would require computing a Gaussian mixture with MT components,
is approximated by a single Gaussian at each time step. Kim (1994) extends this to the case
where both the state dynamics and the output matrices switch, and where the switching
follows Markovian dynamics. Kim uses an approximation in which the exponential Gaus-
sian mixture is collapsed down to M Gaussians at each time step. Other authors have used
Markov chain Monte Carlo methods for state and parameter estimation in switching mod-
els (Carter and Kohn, 1994; Athaide, 1995) and in other more general dynamic probabilistic
networks (Dean and Kanazawa, 1989; Kanazawa et al., 1995).

One can also model nonlinear processes using nonlinear generalizations of the state-space
model which do not explicitly representing a switching state. The conditional mean and
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variance of the hidden states can then be estimated via the extended Kalman �lter (EKF;
Goodwin and Sin, 1984). At each time step, the EKF linearizes the system dynamics about
the current state estimate and uses the resulting Kalman Filter to estimate the next state.
Like the above approaches for hybrid models, this approach therefore also approximates the
non-Gaussian state distribution at each time step with a Gaussian. EKF-based approaches
have recently been used to address di�cult problems in computer vision, such as simultaneous
recognition and pose estimation (Rao and Ballard, 1996). The Gaussian approximation can
be improved upon by representing non-Gaussian state distributions via a set of samples
which are stochastically propagated and reweighted. This approach has been successfully
applied to the problem of contour tracking in computer vision (Isard and Blake, 1996; Blake
et al., 1995). We have explored elsewhere the use of the EKF in deriving an EM algorithm for
general stochastic nonlinear dynamical systems (Ghahramani and Roweis, in preparation).
Switching state-space models can be viewed as a nonlinear EKFs in which a �xed number of
linearizations are �t to the dynamics. Using the maximum likelihood criterion, the learning
algorithm iterates between selecting the points about which such a linearization is least costly
and �tting each linear model.

Another related proposal comes from Fraser and Dimitriadis (1993), who combine real-
valued and discrete states in a system they call a hidden �lter HMM (HFHMM). As a simpli-
�cation these authors assume that the real-valued state is a known deterministic function of
the past observations (i.e. an embedding). The work in this paper departs signi�cantly from
Fraser and Dimitriadis' work in several ways. First, the state-space embedding in our paper
is learned rather than �xed a-priori. Second, the real-valued state vector is assumed to be
a random variable, therefore allowing the propagation of uncertainty in the state. Finally,
there are M real-valued state vectors, simultaneously representing M hypothesis that are
competing to explain the observations.

With regard to the literature on neural computation, the model presented in this paper
is a generalization of the mixtures of experts architecture (Jacobs et al., 1991; Jordan and
Jacobs, 1994).5 Previous dynamical generalizations of the mixture of experts architecture
consider the case in which the gating network has Markovian dynamics (Cacciatore and
Nowlan, 1994; Kadirkamanathan and Kadirkamanathan, 1996; Meila and Jordan, 1996).
One limitation of this generalization is that the entire past sequence is summarized in the
value of a single discrete variable (the gating activation), which for a system withM experts
can convey on average at most logM bits of information about the past. In the general-
ization we consider in this paper both the experts and the gating network have Markovian
dynamics. The past is therefore summarized by a state composed of the cross-product of
this discrete variable with the combined real-valued state-space of all the experts. This pro-
vides a much wider information channel from the past. One advantage of this representation
is that the real-valued state can contain componential structure. Thus, attributes such as
the position, orientation, and scale of an object in an image, which are most naturally en-
coded as independent real-valued variables, can be accommodated in the state without the
exponential growth required of discrete HMM-like representations.

Before we proceed with the de�nition of the probabilistic model, it is important to place

5It can also be seen as a generalization of mixtures of factor analyzers (Hinton et al., 1996; Ghahramani
and Hinton, 1996b).
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the work in this paper in the context of the literature we have just reviewed. \Hybrid mod-
els", state-space with switching and jump-linear systems all assume that there is a single
real-valued state vector. The model considered in this paper generalizes this to multiple
real-valued state vectors.6 We present a learning algorithm for all of the parameters of the
model, including the Markov switching parameters. Using a structured variational approxi-
mation (Saul and Jordan, 1996), we show that this algorithm maximizes a strict lower bound
on the log likelihood of the data, rather than a heuristically motivated pseudo-likelihood. The
resulting algorithm has a simple and intuitive avor: It decouples into forward-backward re-
cursions on a hidden Markov model, and Kalman smoothing recursions on each state-space
model. The states of the HMM determine the soft assignment of each observation to a
state-space model; the prediction errors of the state-space models determine the observation
probabilities for the HMM.

3 The Generative Model

In switching state-space models, the sequence of observations fYtg is modeled by specifying
a probabilistic relation between the observations and a hidden state space comprising M
real-valued state vectors, X(m)

t , and one discrete state vector St. The discrete state, St, is
modeled as a multinomial variable that can take on M values: St 2 f1; : : : ;Mg; for reasons
that will become obvious we refer to it as the switch variable. The joint probability of
observations and hidden states can be factored as

P (fSt;X
(1)
t ; : : : ;X

(M)
t ; Ytg) = P (S1)

TY
t=2

P (StjSt�1) �
MY
m=1

P (X(m)
1 )

TY
t=2

P (X(m)
t jX(m)

t�1 )

�
TY
t=1

P (YtjX
(1)
t ; : : : ;X

(M)
t ; St); (7)

which corresponds graphically to the conditional independences represented by Figure 2.
Conditioned on a setting of the switch state, St = m, the observable is multivariate Gaussian
with output equation given by state-space modelm. The probability of the observation vector
Yt is therefore

P (YtjX
(1)
t ; : : : ;X

(M)
t ; St = m) = (2�)�

D

2 jRj�
1
2 exp

�
�
1

2

�
Yt � C(m)X

(m)
t

�0
R�1

�
Yt � C(m)X

(m)
t

��
(8)

where D is the dimension of the observation vector, R is the observation noise covariance
matrix, and C(m) is the output matrix for state-space model m (cf. equation (4) for a
single linear-Gaussian state-space model). Each real-valued state vector evolves according
to the linear Gaussian dynamics of a state-space model with di�ering initial state, transition
matrix, and state noise (equation (2)). The switch state itself evolves according to the
discrete Markov transition structure speci�ed by the initial state probabilities P (S1) and the
M �M state transition matrix P (StjSt�1).

6Note that the state vectors could be concatenated into one large state vector with factorized (block-
diagonal) transition matrices (cf. factorial hidden Markov model; Ghahramani and Jordan, 1997). However,
this obscures the decoupled structure of the model.
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Figure 2: a) Graphical model representation for switching state-space models. St is the

discete switch variable and X
(m)
t are the real-valued state vectors. b) Switching state-space

model depicted as a generalization of the mixture of experts. The light arrows correspond
to the connections in a mixture of experts. In a switching state-space model, the states of
the experts and of the gating network also depend on their previous states (dark arrows).

An exact analogy can be made to the \mixture of experts" architecture for modular
learning in neural networks (�gure 2b; Jacobs et al, 1991). Each state space model is a
linear expert with Gaussian output noise model and linear-Gaussian dynamics. The switch
state \gates" the outputs of the M state-space models, and therefore plays the role of a
gating network with Markovian dynamics.

We also wish to consider the following three straightforward extensions of the above
model:

(Ex1) Di�ering output covariances, R(m), for each state-space model;

(Ex2) Di�ering output means, �
(m)
Y , for each state-space model, such that each model is

allowed to capture observations in a di�erent operating range;

(Ex3) Conditioning on a sequence of observed input vectors, fUtg.

Other extensions are also possible.

4 Learning

An e�cient learning algorithm for the parameters of a switching state-space model can
be derived by generalizing the Expectation Maximization (EM) algorithm (Baum et al.,
1970; Dempster et al., 1977). EM alternates between optimizing a distribution over the
hidden states (the E-step) and optimizing the parameters given the distribution over hidden
states (the M-step). Any distribution over the hidden states, Q(fSt;Xtg), where Xt =

[X(1)
t ; : : :X

(M)
t ] is the combined state of the state-space models, can be used to de�ne a

lower bound, B, on the log probability of the observed data:

logP (fYtgj�) = log
X
fStg

Z
P (fSt;Xt; Ytgj�) dfXtg (9)
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= log
X
fStg

Z
Q(fSt;Xtg)

"
P (fSt;Xt; Ytgj�)

Q(fSt;Xtg)

#
dfXtg (10)

�
X
fStg

Z
Q(fSt;Xtg) log

"
P (fSt;Xt; Ytgj�)

Q(fSt;Xtg)

#
dfXtg = B(Q; �); (11)

where � denotes the parameters of the model and we have made use of Jensen's inequal-
ity (Cover and Thomas, 1991) to establish (11). Both steps of EM increase the lower bound
on the log probability of the observed data. The E-step holds the parameters �xed and sets
Q to be the posterior distribution over the hidden states given the parameters,

Q(fSt;Xtg) = P (fSt;XtgjfYtg; �): (12)

This maximizes B with respect to the distribution, turning the lower bound into an equality.
The M-step holds the distribution �xed and computes the parameters that maximize B for
that distribution. Since B = logP (fYtgj�) at the start of the M-step, and since the E-step
does not a�ect log P , the two steps combined can never decrease log P . Given the change in
the parameters produced by the M-step, the distribution produced by the previous E-step
is typically no longer optimal, so the whole procedure must be iterated.

Unfortunately, the exact E-step for switching state-space models is intractable. Like the
related hybrid models described in section 2.3, the posterior probability of the real-valued
states is a Gaussian mixture withMT terms. This can be seen with reference to the semantics
of directed graphs, in particular the d-separation criterion (Pearl, 1988), which implies that
the hidden state variables in Figure 2, while marginally independent, become conditionally
dependent given the observation sequence. This induced dependency e�ectively couples all
of the real-valued hidden state variables to the discrete switch variable, as a consequence of
which the exact posteriors become Gaussian mixtures with an exponential number of terms.7

In order to derive an e�cient learning algorithm for this system, we relax the EM al-
gorithm by approximating the posterior probability of the hidden states. The basic idea is
that, since expectations with respect to P are intractable, rather than setting Q = P in the
E-step, a tractable distribution Q is used to approximate P . This results in an EM learning
algorithm which maximizes a lower bound on the log likelihood. The di�erence between the
bound B and the log likelihood is given by the Kullback-Liebler (KL) divergence between Q
and P (Cover and Thomas, 1991):

KL(QkP ) =
X
fStg

Z
Q(fSt;Xtg) log

"
Q(fSt;Xtg)

P (fSt;XtgjfYtg)

#
dfXtg: (13)

Since the complexity of exact inference in the approximation given by Q is determined
by its conditional independence relations, not by its parameters, we can choose Q to have a
tractable structure|a graphical representation which eliminates some of the dependencies in
P . Given this structure, the parameters of Q are varied to obtain the tightest possible bound
by minimizing (13). Therefore, the algorithm alternates between optimizing the parameters

7The intractability of the E-step or smoothing problem in the simpler single-state switching model has
also been noted in the engineering literature (Chang and Athans, 1978; Bar-Shalom and Li, 1993).
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of the distribution Q to minimize (13) (the E-step) and optimizing the parameters of P given
the distribution over the hidden states (the M-step). Like in exact EM, both steps increase
the lower bound B on the log likelihood, however equality is not reached in the E-step.

We will refer to the general strategy of using a parameterized approximating distribution
as a variational approximation and refer to the free parameters of the distribution as varia-
tional parameters. A completely factorized approximation is often used in statistical physics,
where it provides the basis for simple yet powerful mean �eld approximations to statistical
mechanical systems (Parisi, 1988). Theoretical arguments motivating approximate E-steps
were presented by Neal and Hinton (1993). Saul and Jordan (1996) showed that approxi-
mate E-steps could be used to maximize a lower bound on the log likelihood, and proposed
the powerful technique of structured variational approximations to intractable probabilistic
networks. The key insight of Saul and Jordan's work, which the present paper makes use
of, is that by judicious use of an approximation Q, exact inference algorithms can be used
on the tractable substructures in an intractable network. A general tutorial on variational
approximations can be found in Jordan et al. (1998).

The parameters of the switching state-space model are � = fA(m), C(m);Q(m); �
(m)
X1
;Q(m)

1 ;
R;�; �g, where A(m) is the state dynamics matrix for model m, C(m) is its output matrix,

Q(m) is its state noise covariance, �
(m)
X1

is the mean of the initial state, Q(m)
1 is the covariance

of the initial state, R is the (tied) output noise covariance, � = P (S1) is the prior for the
discrete Markov process, and � = P (StjSt�1). Inclusion of extensions (Ex1){(Ex3) would

result in substituting R for R(m), adding means �(m)
Y and input matrices B(m).

While there are many possible approximations to the posterior distribution of the hidden
variables that one could use for learning and inference in switching state-space models, we
focus on the following:

Q(fSt;Xtg) =
1

ZQ

"
 (S1)

TY
t=2

 (St�1; St)

#
MY
m=1

 (X(m)
1 )

TY
t=2

 (X(m)
t�1 ;X

(m)
t ); (14)

where the  are non-negative potential functions which we will de�ne soon, and ZQ is a
normalization constant ensuring that Q integrates to one. Although Q has been written
in terms of potential functions rather than conditional probabilities, it corresponds to the
simple graphical model shown in Figure 3. The terms involving the switch variables St
de�ne a discrete Markov chain and the terms involving the state vectors X

(m)
t de�ne M

uncoupled state-space models. Like in mean �eld approximations we have approximated
the stochastically coupled system by removing some of the couplings of the original system.
Speci�cally, we have removed the stochastic coupling between the chains that results from the
fact that the observation at time t depends on all the hidden variables at time t. However, we
retain the coupling between the hidden variables at successive time steps since these couplings
can be handled exactly using the forward{backward and Kalman smoothing recursions. This
approximation is therefore structured, in the sense that not all variables are uncoupled.

The discrete switching process is de�ned by

 (S1 = m) = P (S1 = m) q(m)
1 (15)

 (St�1; St = m) = P (St = mjSt�1) q
(m)
t ; (16)

11
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Figure 3: Graphical model representation for the structured variational approximation to
the posterior distribution of the hidden states of a switching state-space model.

where the q(m)
t are variational parameters of the Q distribution. These parameters scale the

probabilities of each of the states of the switch variable at each time step, so that q
(m)
t plays

exactly the same role as the observation probability P (YtjSt = m) would play in a regular
hidden Markov model. We will soon see that minimizing KL(QkP ) results in an equation

for q(m)
t which supports this intuition.
The uncoupled state-space models in the approximation Q are also de�ned by potential

functions which are related to probabilities in the original system. It is easier to express the
log potentials:

log (X
(m)
1 ) = log P (X

(m)
1 ) + h

(m)
1 logP (Y1jX

(m)
1 ; S1 = m) (17)

log (X(m)
t�1 ;X

(m)
t ) = log P (X(m)

t jX(m)
t�1 ) + h

(m)
t logP (YtjX

(m)
t ; St = m); (18)

where the h
(m)
t are also variational parameters of Q. The vector ht plays a role very similar

to the switch variable St. Each component h(m)
t can range between 0 and 1. When h(m)

t = 0

the posterior probability of X
(m)
t under Q does not depend on the observation at time Yt.

When h(m)
t = 1, the posterior probability of X(m)

t under Q includes a term which assumes

that state-space model m generated Yt. Therefore, h
(m)
t is the responsibility assigned to

state-space model m for the observation vector Yt. The di�erence between h
(m)
t and S(m)

t is

that h(m)
t is a deterministic parameter, while S(m)

t is a stochastic random variable.
To maximize the lower bound on the log likelihood, KL(QkP ) is minimized with respect

to the variational parameters h
(m)
t and q

(m)
t separately for each sequence of observations.

Using the de�nition of P for the switching state-space model (equation (7) and (8)) and
the approximating distribution Q, the minimum of KL satis�es the following �xed point
equations for the variational parameters (see Appendix B):

h
(m)
t = Q(St = m) (19)

q
(m)
t = exp

�
�
1

2

��
Yt � C(m)X

(m)
t

�0
R�1

�
Yt � C(m)X

(m)
t

���
(20)

where h�i denotes expectation over the Q distribution. Intuitively,

� h
(m)
t is the responsibility assigned to state-space model m for observation vector Yt

12



� q
(m)
t is a function of the expected squared error if state-space model m were to generate
Yt

To compute h(m)
t it is necessary to sum Q over all the S� variables not including St. This

can be done e�ciently using the forward{backward algorithm on the switch state variables,
with q

(m)
t playing exactly the same role as an observation probability associated with each

setting of the switch variable. Since q(m)
t is related to the prediction error of model m on

data Yt, this has the intuitive interpretation that the switch state associated with models
with smaller expected prediction error on a particular observation will be favored at that
time step. However, the forward{backward algorithm ensures that the �nal responsibilities
for the models are obtained after considering the entire sequence of observations.

To compute q(m)
t it is necessary to calculate the expectations of X(m)

t and X
(m)
t X

(m)
t

0

under Q:

q
(m)
t = exp

�
�
1

2
Y 0
tR

�1Yt + Y 0
tR

�1C(m) hX(m)
t i �

1

2
tr
h
C(m)0R�1C(m) hX(m)

t X(m)0

ti
i�
; (21)

where tr is the matrix trace operator and we have used tr(AB) = tr(BA). This can be
done e�ciently using the Kalman smoothing algorithm on each state-space model, where for
model m at time t, the data is weighted by the responsibilities h(m)

t .8 Since the h parameters
depend on the q parameters, and vice-versa, the whole process has to be iterated, where each
iteration involves calls to the forward{backward and Kalman smoothing algorithms. The
learning algorithm for switching state-space models using the above structured variational
approximation is summarized in Figure 4.

Deterministic Annealing

The KL divergence minimized in the E step of the variational EM algorithm can have
multiple minima in general. One way to visualize these minima is to consider the space of
all possible segmentations of an observation sequence of length T , where by segmentation
we mean a discrete partition of the sequence between the state space models. If there
are M SSMs, then there are MT possible segmentations of the sequence. Given one such
segmentation, inferring the optimal distribution for the real-valued states of the SSMs is a
convex optimization problem, since these real-valued states are conditionally Gaussian. So
the di�culty in the KL minimization lies in trying to �nd the best (soft) partition of the
data.

Like in other combinatorial optimization problems, the possibility of getting trapped in
local minima can be reduced by gradually annealing the cost function. We can employ a
deterministic variant of the annealing idea by making the following simple modi�cations to
the variational �xed point equations (19) and (20):

h
(m)
t =

1

T
Q(St = m) (22)

8Weighting the data by h
(m)
t

is equivalent to running the Kalman smoother on the unweighted data using

a time-varying observation noise covariance matrix R
(m)
t

= R=h
(m)
t

.
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1. Initialize parameters of the model

2. Repeat until bound on log likelihood has converged:

E step Repeat until convergence of KL(QkP ):

E.1 Compute q
(m)
t from the prediction error of state-space

model m on observation Yt

E.2 Compute h
(m)
t using the forward-backward algorithm on the

HMM, with observation probabilities q
(m)
t

E.3 For m = 1 to M

Run Kalman smoothing recursions, using the data

weighted by h
(m)
t

M step

M.1 Re-estimate parameters for each state-space model using

the data weighted by h
(m)
t

M.2 Re-estimate parameters for the switching process using

Baum-Welch update equations

Figure 4: Learning algorithm for switching state-space models.

q
(m)
t = exp

�
�

1

2T

��
Yt �C(m)X

(m)
t

�0
R�1

�
Yt � C(m)X

(m)
t

���
: (23)

Here T is a temperature parameter, which is initialized to a large value and gradually reduced
to 1. The above equations maximize a modi�ed form of the bound B in (11), where the
entropy of Q has been multiplied by T (Ueda and Nakano, 1995).

5 Simulations

5.1 Experiment 1: Variational Segmentation and Deterministic

Annealing

The goal of this experiment was to assess the quality of solutions found by the variational
inference algorithm, and the e�ect of using deterministic annealing on these solutions. We
generated 200 sequences of length 200 from a simple model which switched between two
SSMs. These SSMs and the switching process were de�ned by:

X
(1)
t = 0:99 X

(1)
t�1 + w

(1)
t w

(1)
t � N (0; 1) (24)

X
(2)
t = 0:9 X

(2)
t�1 + w

(2)
t w

(2)
t � N (0; 10) (25)

Yt = X
(m)
t + vt vt � N (0; 0:1) (26)

where the switch state m was chosen using priors �(1) = �
(2) = 1=2 and transition proba-

bilities �11 = �22 = 0:95; �12 = �21 = 0:05. Five sequences from this data set are shown
in in Figure 5, along with the true state of the switch variable.
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Figure 5: Five data sequences of length 200, with their true segmentations below them. In the
segmentations, switch states 1 and 2 are represented with dark and light dots, respectively.
Notice that correctly segmenting the sequences based only on the prior knowledge of the
dynamics of the two processes is very di�cult.

For each sequence, we initialized the inference algorithms with equal responsibilities for
the two SSMs and ran the algorithms for 12 iterations. The non-annealed inference algorithm
ran at a �xed temperature of T = 1; while the annealed algorithm was initialized to a
temperature of T = 100 which was decayed down to 1 over the 12 iteration, using the decay
function Ti+1 =

1
2
Ti+

1
2
. To eliminate the e�ect of model inaccuracies, we gave both inference

algorithms the true parameters of the generative model.
The segmentations found by the non-annealed variational inference algorithm showed

little similarity to the true segmentations of the data (Figure 6). Furthermore, the non-
annealed algorithm generally underestimated the number of switches, often converging on
solutions with no switches at all. The annealed algorithm found segmentations that were
more similar to the true segmentations of the data. In fact, annealing signi�cantly increased
the mutual information between the estimated and true segmentations (Figure 7).

In light of this, one would expect that the values of the lower bounds B found with
annealing would be higher than those found without annealing. Surprisingly, this was not
the case. The mean bounds found with annealing were lower by 13:7 bits over the 200 runs|
a statistically signi�cant e�ect (p < 0:01; Wilcoxon signed rank test) although small when
compared to the standard deviation of the di�erences of 83:4 bits. We also computed the
value of B given the true segmentation of the data, which was on average 131:4 bits higher
than the bounds found without annealing.
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Figure 6: For ten di�erent sequences of length 200, segmentations are shown as sequences of
light and dark dots corresponding to the two SSMs generating this data. The rows are the
true segmentations (T), the corresponding segmentations found using deterministic annealing
(A) and not using annealing (N). These hard segmentations were obtained by thresholding

the �nal h(m)
t values at 0.5. The �rst �ve sequences are the ones shown in �gure 5.

5.2 Experiment 2: Modelling respiration in a patient with sleep

apnea

Switching state-space models should prove useful in modelling time series which have nonlin-
ear dynamics characterized by several di�erent regimes. To illustrate this point we examined
a physiological data set from a patient tentatively diagnosed with sleep apnea, which is a
medical condition in which patients intermittently stop breathing during sleep, which results
in a reex arousal and gasps of breath. The data was obtained from the repository of time
series data sets associated with Santa Fe Time Series Analysis and Prediction Competi-
tion (Weigend and Gershenfeld, 1993) and is described in detail in Rigney et al. (1993).9 We
simply wish to highlight the fact that the respiration pattern in sleep apnea is characterized
by at least two regimes|no breathing and gasping breathing. Furthermore, in this patient
there are also seem to be periods of normal rhythmic breathing (Figure 8).

We trained switching state-space models, varying the random seed, the number of com-
ponents in the mixture (M = 2 to 5) and the dimensionality of the state space in each
component (K = 1 to 10), on a data set consisting of 1000 consecutive measurements of the
chest volume. As controls we also trained simple state-space models (i.e. M = 1) varying

9The data is available on the web at http://www.cs.colorado.edu/ �andreas/ Time-Series/

SantaFe.html#setB. We used samples 6201{7200 for training and 5201-6200 for testing.
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Figure 7: Histogram of the mutual information (in bits per observation) between the seg-
mentations found without annealing (a) and with annealing (b).

the dimension of the state-space from K = 1 to 10, and simple hidden Markov models (i.e.
K = 0) varying the number of discrete hidden states from M = 2 to M = 50. Simulations
were run until convergence or for 200 iterations, whichever came �rst; convergence was as-
sessed by measuring the change in likelihood (or bound on the likelihood) over consecutive
steps of EM.

The likelihood of the simple SSMs and the HMMs was calculated on a test set, which also
consisted of 1000 consecutive measurements of the chest volume. For the switching SSMs the
likelihood is intractable, so we calculated the lower bound on the likelihood, B. The simple
SSMs modeled the data very poorly for K = 1, and the performance was at for values of
K = 2 to 10 (Figure 9a). The large majority of runs of the switching state-space model
resulted in models with higher likelihood than those of the simple SMMs (Figure 9b-e). One
consistent exception should be noted: for values of M = 2 and K = 6 to 10, the switching
SSM performed almost identically to the simple SSM. Exploratory experiments suggest that
in these cases a single component takes responsibility for all the data, so the model has
M = 1 e�ectively. This may be a local minimum problem or a result of poor initialization
heuristics. Looking at the learning curves for simple and switching state space models it
is easy to see that there are plateaus at the solutions found by the simple one-component
SSMs which the switching SSM can get caught in (Figure 10).

The likelihoods for hidden Markov models with aroundM = 15 were comparable to those
of the best switching state-space models (Figure 9f). So purely in terms of coding e�ciency,
there is no advantage to using a switching SSM to model this data. However, it is useful to
consider the nature of the solutions learned by the switching SSM.

We illustrate this by showing the segmentation produced by a fairly typical switching
SSM with M = 2 components of state space dimension K = 2. The thick dots at the
bottom of the Figures 8a and b indicate the responsibility assigned the one of the two
components. This component has clearly specialized to modeling the data during periods
of apnea, while the other component models the gasps and periods of rhythmic breathing.
These two switching components provide a somewhat more satisfying explanation of the
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Figure 9: Log likelihood on the test data from a total of almost 400 runs of simple state-space
models, switching state-space models with di�ering numbers of components, and hidden
Markov models.
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data than the 10-20 discrete components needed in a comparable HMM.

6 Discussion

The main conclusion we can draw from the �rst series of experiments is that even when
given the correct model parameters, the problem of segmenting a switching time series into
its components is di�cult. There are combinatorially many alternatives to be considered,
and the energy surface su�ers from many local minima, so local optimization approaches
like the variational method we used are limited by the quality of the initial conditions.
Deterministic annealing can be thought of as a sophisticated initialization procedure for the
hidden states: the �nal solution at each temperature provides the initial conditions at the
next. We found that annealing substatially improved the quality of the segmentations found.

The second series of experiments suggests that on a real data set believed to have switch-
ing dynamics, the switching state-space model can indeed uncover multiple regimes. When
it captures these regimes, it generalizes to the test set much better than the simple linear
dynamical model. Similar coding e�ciency can be obtained by using hidden Markov models,
which due to the discrete nature of the state space can model nonlinear dynamics. However,
in doing so, the hidden Markov models had to use 10-20 discrete states, which makes their
solutions less interpretable.

Variational approximations provide a very powerful tool for inference and learning in
complex probabilistic models. We have seen that when applied to the switching state-space
model they can incorporate within a single framework well-known exact inference methods
like Kalman smoothing and the forward-backward algorithm. However, training more com-
plex models also makes apparent the importance of good methods for model selection and
initialization. Bayesian approaches o�er a principled way in which a priori knowledge can
be used for initialization and models can be selected or weighted using their a posteriori
probabilities.

To summarize, the switching state-space model is a fully dynamical extension of the
mixture of experts network, which is closely related to well-known models in econometrics
and control, and merges ideas underlying hidden Markov models and linear dyanamical
systems. While it is clearly not an appropriate model for all time series, in situations where
we have some a priori knowledge of multiple approximately linear dynamical regimes, the
switching state space model can be used to exploit this knowledge. For example, in the sleep
apnea problem it may be possible to train separate models for each of the known regimes in
a small labelled portion of the data, and then unleash the full learning algorithm to obtain
a better �t using both labelled and unlabelled data. Variational approximations overcome
the single most di�cult problem in learning switching SSMs, which is that the inference
step is intractable. Deterministic annealing further improves on the solutions found by the
variational method.
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A Notation

Symbol Size Description
variables

Yt D � 1 observation vector at time t
fYtg D � T sequence of observation vectors [Y1; Y2; : : : YT ]

X
(m)
t K � 1 state vector of state-space model (SSM) m at time t

Xt KM � 1 entire real-valued hidden state at time t: Xt =
[X(1)

t ; : : : ;X
(M)
t ]

St M � 1 switch state variable (represented either as discrete vari-
able taking on values in f1; : : :Mg, or as anM�1 vector

St = [S(1)
t ; : : : S

(M)
t ]0 where S(m)

t 2 f0; 1g)
model parameters

A(m) K �K state dynamics matrix for SSM m
C(m) D �K output matrix for SSM m
Q(m) K �K state noise covariance matrix for SSM m

�
(m)
X1

K � 1 initial state mean for SSM m

Q(m)
1 K �K initial state noise covariance matrix for SSM m

R D �D output noise covariance matrix
� M � 1 initial state probabilities for switch state
� M �M state transition matrix for switch state
variational parameters

h
(m)
t 1 � 1 responsibility of SSM m for Yt
q
(m)
t 1 � 1 related to expected squared error if SSM m generated Yt
miscellaneous

X 0 matrix transpose of X
jXj matrix determinant of X
hXi expected value of X under the Q distribution
dimensions

D size of observation vector
T length of a sequence of observation vectors
M number of state-space models
K size of state vector in each state-space model
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B Derivation of the variational �xed-point equations

In this appendix we derive the variational �xed-point equations used in the learning algorithm
for switching state space models. The plan is the following. First we write out the probability
density P de�ned by a switching state space model. For convenience we will express this
probability density in the log domain, through its associated energy function or hamiltonian,
H. The probability density is related to the hamiltonian through the usual Boltzmann
distribution (at a temperature of 1),

P (�) =
1

Z
expf�H(�)g;

where Z is a normalization constant required such that P (�) integrates to unity. Expressing
the probabilities in the log domain does not a�ect the resulting algorithm. We then similarly
express the approximating distribution Q through its hamiltonian HQ. Finally, we obtain
the variational �xed point equations by setting to zero the derivatives of the KL divergence
between Q and P with respect to the variational parameters of Q.

The joint probability of observations and hidden states in a switching state-space model
is (equation (7))

P (fSt;Xt; Ytg) =

"
P (S1)

TY
t=2

P (StjSt�1)

#
MY
m=1

"
P (X

(m)
1 )

TY
t=2

P (X
(m)
t jX(m)

t�1 )

#
TY
t=1

P (YtjXt; St):

(27)
We proceed to dissect this expression into its constituent parts. The initial probability of
the switch variable at time t = 1 is given by

P (S1) =
MY
m=1

(�(m))S
(m)
1 ; (28)

where S1 is represented by an M � 1 vector [S
(1)
1 : : : S

(M)
1 ] where S

(m)
1 = 1 if the switch state

is in state m, and 0 otherwise. The probability of transitioning from a switch state at time
t� 1 to a switch state at time t is given by

P (StjSt�1) =
MY
m=1

MY
n=1

(�(m;n))S
(m)
t

S
(n)
t�1 : (29)

The initial distribution for the hidden state variable in state-space modelm is Gaussian with
mean �(m)

X1
and covariance matrix Q(m)

1 :

P (X(m)
1 ) = (2�)�K=2jQ(m)

1 j�1=2 exp
�
�
1

2

�
X1 � �

(m)
X1

�0
(Q(m)

1 )�1
�
X1 � �

(m)
X1

��
: (30)

The probability distribution of the state in state-space model m at time t given the state at
time t� 1 is Gaussian with mean A(m)X

(m)
t�1 and covariance matrix Q(m):

P (X(m)
t jX(m)

t�1 ) = (2�)�K=2jQ(m)j�1=2 exp
�
�
1

2

�
X

(m)
t �A(m)X

(m)
t�1

�0
(Q(m))�1

�
X

(m)
t �A(m)X

(m)
t�1

��
:

(31)
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Finally, using (8) we can write:

P (YtjXt; St) =
MY
m=1

�
(2�)�D=2jRj�1=2 exp

�
�
1

2

�
Yt � C(m)X

(m)
t

�0
R�1

�
Yt � C(m)X

(m)
t

���S(m)
t

(32)
since the terms with exponent equal to 0 vanish in the product.

Combining (27)-(32) and taking the negative of the logarithm, we obtain the hamiltonian
of a switching state-space model (ignoring constants):

H =
1

2

MX
m=1

log jQ(m)
1 j+

1

2

MX
m=1

�
X

(m)
1 � �

(m)
X1

�0
(Q(m)

1 )�1
�
X

(m)
1 � �

(m)
X1

�
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�
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S
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1 log�(m) �
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t=2
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m=1
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n=1

S
(m)
t S

(n)
t�1 log �

(m;n): (33)

The hamiltonian for the approximating distribution can be analogously derived from the
de�nition of Q (equation (14)):

Q(fSt;Xtg) =
1

ZQ

"
 (S1)

TY
t=2

 (St�1; St)

#
MY
m=1

 (X(m)
1 )

TY
t=2

 (X(m)
t�1 ;X

(m)
t ): (34)

The potentials for the initial switch state and switch state transitions are

 (S1) =
MY
m=1

(�(m)q
(m)
1 )S

(m)
1 (35)

 (St�1; St) =
MY
m=1

MY
n=1

�
�(m;n)q

(m)
t

�S(m)
t

S
(n)
t�1

(36)

The potential for the initial state of state-space model m is

 (X
(m)
1 ) = P (X

(m)
1 )

h
P (Y1jX

(m)
1 ; S1 = m)

ih(m)
1

(37)

and the the potential for the state at time t given the state at time t� 1 is

 (X
(m)
t�1 ;X

(m)
t ) = P (X

(m)
t jX

(m)
t�1 )

h
P (YtjX

(m)
t ; St = m)

ih(m)
t

: (38)

The hamiltonian for Q is obtained by combining these terms and taking the negative
logarithm:
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S
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t log q(m)
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Comparing HQ with H we see that the interaction between the S
(m)
t and the X

(m)
t variables

has been eliminated, while introducing two sets of variational parameters: the responsibil-
ities h

(m)
t and the bias terms on the discrete Markov chain, q

(m)
t . In order to obtain the

approximation Q which maximizes the lower bound on the log likelihood, we minimize the
KL divergence KL(QkP ) as a function of these variational parameters

KL(QkP ) =
X
fStg

Z
Q(fSt;Xtg) log

Q(fSt;Xtg)

P (fSt;XtgjfYtg)
dfXtg (40)

= hH �HQi � logZQ + logZ; (41)

where h�i denotes expectation over the approximating distribution Q and ZQ is the normal-
ization constant for Q. Both Q and P de�ne distributions in the exponential family. As a
consequence, the zeros of the derivatives of KL with respect to the variational parameters can
be obtained simply by equating derivatives of hHi and hHQi with respect to corresponding
su�cient statistics (Ghahramani, 1997):

@hHQ �Hi

@hS(m)
t i

= 0 (42)

@hHQ �Hi

@hX(m)
t i

= 0 (43)

@hHQ �Hi

@hP (m)
t i

= 0 (44)

where P (m)
t = hX(m)

t X
(m)
t

0
i � hX(m)

t ihX(m)
t i0 is the covariance of X(m)

t under Q. Many terms
cancel when we subtract the two hamiltonians
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Taking derivatives we obtain
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@hS(m)
t i

= � log q(m)
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��
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(47)
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=
1

2
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h
(m)
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From (46) we get the �xed-point equation (20) for q(m)
t . Both (47) and (48) are satis�ed

when h(m)
t = hS(m)

t i. Using the fact that hS(m)
t i = Q(St = m) we get (19).
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