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Gaussian Sum Particle Filtering
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Abstract—In this paper, we use the Gaussian particle filter in- TABLE |
troduced in a companion paper to build several types of Gaussian Quick ROADMAP OF GPFAND GSPFS
sum particle filters. These filters approximate the filtering and pre-
dictive distributions by weighted Gaussian mixtures and are basi- Filter DSS model Densities
cally banks of Gaussian particle filters. Then, we extend the use approximated as

of Gaussian particle filters and Gaussian sum patrticle filters to

dynamic state space (DSS) models with non-Gaussian noise. With
non-Gaussian noise approximated by Gaussian mixtures, the non- GSPF-1I nonlinear, additive Gaussian noise | Gaussian mixture
Gaussian noise models are approximated by banks of Gaussian GSPF-II and III | nonlinear, additive non-Gaussian noise | Gaussian mixture
noise models, and Gaussian mixture filters are developed using
algorithms developed for Gaussian noise DSS modélisAs a re-

sult, problems involving heavy-tailed densities can be conveniently — ’

addressed. Simulations are presented to exhibit the application of Additive Gaussian
nonlinear DSS

GPF nonlinear, general noise Gaussian

the framework developed herein, and the performance of the algo-

i i : Filtering and Predictive ~—— ~ Fittering and Predictive

rithms is examined. donsies ot Gaussian_—— T~ ,\dggsities are non-Gaussian
Index Terms—Dynamic state-space models, extended Kalman — T

filter, Gaussian mixture, Gaussian particle filter, Gaussian sum . o ,

filter, Gaussian sum particle filter, Monte Carlo filters, nonlinear %?';‘:'ﬁg (Falggrs Galésss;?_T:Ar:;térgpF;I_trrs

non-Gaussian stochastic systems, particle filters, sequential

Bayesian estimation, sequential sampling methods. ]
Additive non- Gaussian
nonlinear DSS

. INTRODUCTION

N [1], we introduced the Gaussian particle filter (GPF), L
which is used for tracking filtering and predictive distri- G Parallel addiive
butions encountered in dynamic state-space models (DSS Gassian noninear DSS
The models there are characterized with additive Gaussia —

noises, but the functions that appear in the process and ol — —
servation equations are nonlinear functions. The underlying %‘”‘US;'E“"E%;‘W_“’GEELS gaar“ajlse'fgg;xlt”_%gﬁeﬁf
assumption in that paper is that the predictive and filtering P;;;GPF:;GSPF_" Epara||e|GspF_|_=GspF_|"
distributions can be approximated as Gaussians. Unlike the —_—
extended Kalman filter (EKF), which also assumes that these Fig. 1. Roadmap for GFs and GMFs.

distributions are Gaussians and employs linearization of the
functions in the process and observation equations, the GPF ) )
updates the Gaussian approximations by using particles tfaSPFs), and a quick roadmap that describes them together

are propagated through the process and observation equath$iig the GPF is given in Table I. .
without approximations. We extend the use of the new filters to encompass nonlinear

In this paper, we introduce three types of partic|e f||ter§nd additivenon-Gaussiamoise DSS models. Gaussian mix-

that are built from banks of particle filters. They approximatiire models are increasingly used for modeling non-Gaussian
the predictive and filtering distributions as Gaussian mixturégnsities [4]-[6]. We work with non-Gaussian noise thatis mod-
(GMs). We refer to them as Gaussian sum particle filtefed by a GM for a nonlinear DSS model [7], [8]. It is shown
that for Bayesian inference, the nonlingam-GaussiarDSS
model can be modeled as a bank of parallel nonliGsurssian
Manuscript received July 5, 2001; revised March 4, 2003. This work wadoise DSS models. Based on the GPF and GSPFs, we develop
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N},y € R™v are conditionally independent givex,,; n € We recall a theorem from [9].
N} and are represented by the distributiefy, | x,). The Theorem 1: For an additive Gaussian noise model in the ob-
model that we address is given by servation equation in (1), i.ey,, = h(x,) + v,, wherev,, ~

N(0,R,,), Vn andp(x, | yo.n—1) given by (2), the distribution

xn =f(%,-1) + u, p(X, | yo.n) @approaches the Gaussian sum

Yn :h(xn> +Vva (1) G
whereu,, andv,, are non-Gaussian noises. The signal and ob- Z WniN (X3 iy 2mi) 4)
servations up to time are denoted bxk,., andyy.,, respec- i=1
tively, wherexo., = {xo,...,Xn} @andyon = {yo,...;¥n}- uniformly in x,, andy, asS,; — 0fori = 1,...,G, where

As before, our objective is to estimate the filtering distribution - andX,,; are calculated using the following equations:
p(xn | yon) and the predictive distributiop(x,, 1 | yo.n) re- =

cursively in time. Bni =Bi + Kii(yn — h(x,,))

The list of abbreviations is as follows. Y= -K.H,.Z.

List of Abbreviations: K, =%,H,; (HL,S,H,; + Rn)_l
BOT Bearings-only tracking. Ohy (x) m
DSS Dynamic state space. H,, =— lx=p. .
EKF Extended Kalman filter. 85}‘ e
EM Expectation-maximization. Wy =—g——— (5)
GS Gaussian sum. 2 j=1 WniCini
GM Gaussian mixture. where
GMF Gaussian mixture filter. _
GMM  Gaussian mixture model. ani = N(¥a;h(p,;), By 20 i + Ry). (6)
GPF Gaussian particle filter. Proof: See [9 pp. 214 and 215]. -
GSF Gaussian sum filter. 2) Time Update: With p(x,, | yo...) expressed as a Gaussian
GSPF  Gaussian sum particle filter. mixture, we would like to obtain the predictive distribution
MMSE  Minimum mean square error. p(Xnt1 | yon) @and approximate it also as a Gaussian mixture.
MSE Mean square error. _ This can be done according to
SIS Sequential importance sampling.
SISR Sequential importance sampling with resampling.(x,, ; ; | yo.n) Z/p(xn+1 | %,)p(Xn | Yoin)dXn
UKF Unscented Kalman filter. .
VLSI Very large scale integration.

G
%/Z wni-j\/(xn”l'nh Eni)p(xn+1 | Xn)dxn
Il. GAUSSIAN MIXTURE FILTERS FORGAUSSIAN NOISE i=1

G .
In this section, we assume that the noise processes are ad- = Zwm/N(xn;um, 30 P(Xnt1 | Xn)dXo,.
ditive Gaussian. This assumption is relaxed in the following i=1
section. (7)

Upon linearization off(x,) aboutu,,,, each integral on the

] ] ) ) ) right-hand side of the above equation can be approximated as
First, we briefly review the theory of Gaussian sum filters, g aussian. We recall a theorem from [9].

For the DSS model (1), assume that the distribuioy) is Theorem 2:For an additive Gaussian noise model in the

A. Gaussian Sum Filtering—I

expressed as a Gaussian mixture. It is given that we would IiﬂSF‘ocess equation in (1), i.ex, = f(xn_1) + u., where
to obtain the filtering and predictive distributions recursivel)ﬁn ~ N(0,Qn),Vn an'd p(xn | Yon) given by’(4) the
approximated as Gaussian mixtures. updated predictive distribution(x,,;1 | yo.n) approaches the

1) Measurement UpdateAssume that at time,, we have Gassian sum
the predictive distribution

G
¢ _ Zw(n-i-l)i-/\[ (Xn+1;ﬁ'(n+1)i7 2(n+1)i)
P (Xn | Yom—1) = Zu_)ni-/\/ (X’n;ﬁ'ni‘/ Em) . 2 i=1
i=1 uniformly inx,, as%,,; — 0 fori = 1,....G, where, , ,;
After receiving thenth observatiory,,, we obtain the filtering andg(n+l)i are updated using the following equations:
distribution from the predictive distribution according to

p(Xn | yU:n) = Onp (Yn | Xn)p(xn | y0:n71)
E(n+1)i :F(n+l)i2niF,(1;L+1)i + Qn

whereC,, is a normalizing constant. Using (2), we can write Ot (x)
G Fri=— = lx-n,,
_ X
P (Xn | Yon) = Cn anip (¥n | Xn)N (Xn;ﬂ‘ni? Eni) . W(n+t1)i =Wni- (8)
=1

3) Proof. See [9, pp. 215 and 216].
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3) Filter Implementation: The filter is initialized with TABLE I
p(x0) approximated by a weighted GM. In the measurement
and time-update equations described above, the updated m¢ Gaussian Sum Particle filter-I - Measurement
and covariance of each mixand follow from the EKF equations uPdate algorithm )

The GSF-Iis implemented by parallel EKFs, and the weights 1- For @ = 1,..., G, draw samples from the importance
are adjusted according to the given update equations. Howev function 7(x,|yo:n) and denote them as (xy) L

according to the theorems, the approximations are valid fc 2. Fori=1,...,G, j =1,..., M, compute weights by
“small” covariances. An increase in the covariances leads 1 G) G). - =
problems, which are discussed in Section I1-D. NO P(ynlXp )N (Xn = X537 5 Bnis Xni)
ni j :
. N ™ (xy5) [Yo:n)

B. Gaussian Sum Particle Filtering—I

For a nonlinear DSS with additive Gaussian noise, the GSF 3+ For @ = 1,..., G estimate the mean and covariance
approximates posterior distributions as Gaussian mixtures usit 2° TM 40 )
banks of parallel EKFs. Based on similar reasoning, the GSPF Bpi = —W—,
updates the mixands using banks of GPF's in parallel. s Zﬁtviﬁﬁx(jﬁ w9 )T

1) Measurement UpdateAssume that at time,, we have ni = SM AP :

the predictive distribution
predictive distribut 4. Update the weights as

G
_ M) '
P(Xn [ Yom-1) = D BniN (Xni iy Zni) - (9) Wni = W(n 1)1'27:2’5—1}'%7 i=1...,G.
P i=122 =1 Tni

After receivingy.,, the filtering distribution is given by (3). As - Normalize the weights according to

in the GPF, each term on the right-hand side of (3) given b

_ W s
p(Yn | Xn)N(Xpn; i, Xni) IS approximated as a Gaussian. Wpi = Zc—m~
This allows for the measurement update algorithm described i=1 Wni
Table II.

o o Gaussian Sum Particle filter-I - Time update
The updated filtering distribution can now be represented a algorithm

p 1. For ¢ = 1,...,G, obtain samples from

DM

% | Vo) & S wniN (%0 i) 10 N (Xn; Hpi> Zni) and denote them as {x,,/ }7Z;.
Pl [ Youn) ; N (s sy T (19) 2. Fori=1,...,G, j =1,...,M obtain samples from
_ _ P(X(nt1)ilXni = x7)) and denote them as {xgi)ﬂ)i M,
2) Time Update: Assume that at time,, we have 3. Fori=1,...,G, update weights W(, 11y = Wni.

p 4. Fori=1,...,G, gbtain B(nt1)i and E(n_IH)i by tak-

ing sample means and covariances respectively.

P | Youn) = D iV (s s S) . (1) 1E2TP pectively

i=1
From (7), the predictive distribution is given by X, = E(xn | youn) andE,, = E(x, — X, )(xn — %,,)T can be

computed from
G .
Pt [ Yo) = 3o [ A (i B
=1 b

G
Xn = Wi oy
P(nst | Xa)dxn. (12) 2 ik
G
The integral on the right-hand side is approximated by a s, :Zwm(gm + (Rn = i) X — 1) 7).
Gaussian using the time update algorithm of the GPF. The time im1
update algorithm is summarized in Table IV.
The time updated (predictive) distribution is now approxi-
mated as D. Discussion

The practical implementation of GSF-I and GSPF-I may
present difficulties that are discussed in the next few paragraphs.

1) The choice of the number of mixan@ss often guided by
(13) the problem at hand. In practical applications, the number
of mixands in the approximation of the prediction and fil-
tering distributions is usually small. As a result, diver-
The Gaussian mixture approximation lends an advantage that gence may still occur in the GSF-I due to the lineariza-
MMSE estimates of the hidden state and its error covariance can tions in the EKF, as can happen in the standard EKF
be obtained straightforwardly. From (10), the estimatexf because of the severe nonlinearities in the model. The

G
P (Xnt1 | Yon) = Zw(n-i-l)i-/\[ (Xn+1;ﬂ'(n+1)i7 S(n—l—l)i) .
i=1

C. Inference
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GSPF-I can be effectively used to mitigate divergence dypeoximation to non-Gaussian densities. For example, in [4], it
to the use of GPFs in parallel. is shown that any density can be approximated “as closely as
2) The mostimportant limitation of the GSF-1 and GSPF-l ipossible” by a finite GM; see [1, Lemma 1]. Moreover, Mid-
the collapsingof the mixands. As the filtering proceedsdleton’s canonical class A model [15], [16], where probability
the covariance of the mixands can grow. Consequenttiensity functions are expressed as infinite sum of Gaussians, in
according to Theorems 1 and 2, the GM approximationsactical applications can be approximated by finite Gaussian
become increasingly coarse. More importantly, this camixtures. For example, impulsive noise approximated with two
cause collapsing of all the mixands, resulting in only onmixands in the GMM can be used to model acoustic noise for
distinct mixand. The result is that after several updatesnderwater channels [7], atmospheric noise in long range com-
the posterior distributions are approximated as a singleunications, or noise in seismic data. Impulsive noise is often
Gaussian, which may be a poor approximation. Morencountered in wireless applications in many indoor and out-
over, computation power is wasted in updating identicaloor environments; see [8] and the references therein, where the
mixands. When collapsing occurs, the posterior distribehannel noise is a finite GMM [17].
tions have to be re-expressed as Gaussian mixtures havin{n this work, we endeavor to provide a general framework to
small covariances [9]. In [10], a special algorithm for thi®iandle non-Gaussian noise in DSS models, where the under-
reinitialization was suggested for the particular problertying assumption is that the noise is represented as a finite GM.
of frequency and phase demodulation. However, re-eiker the DSS model with additive noise in (1), let the process
pressing the posterior distributions as a Gaussian mixeise be given by
ture with small covariances may itself be a challenging K
proble_m, especially in hlgh_er dlmenS|on§, besides pelng p(u,) = Z N (un;ﬂnb gnk) . (14)
undesirable and computationally expensive. There is no 1

general C“teT'O” o dgtermlne h.OW sma_l I"the covariancg simplification of presentation, we assume in the further dis-
should remain to avoid collapsing, and it has to be deter

mined based on the problem at hand. cussion that the observation noisg is Gaussian. From the

: . . iscussion and presented algorithm, it will be clear that the al-
3) The covariance of the mixands grows especially when the . : .
: 2 rithm can be straightforwardly generalized to non-Gaussian
covariance of the process noise is large compared w

the covariance of the mixands. To combat this roblerﬁase by modeling the observation noise as a finite GM. At time
' P zéro, our prior knowledge aboutd, is summarized by(xy).

n [4] it has been sugge sted to a_pproxlmate_the Gauss'f‘ﬁe predictive distribution ak; can then be written as
noise process as a finite Gaussian mixture itself. Inspec-

_t|on of the t|me_ update gquatlons shows_that this results p(x1) = /p(X1 | %0)p(x0)dx0
in an exponentially growing number of mixands. Several .

ad hocprocedures have been suggested in [11] to reduce K .
the number of mixands, but they may become inadequate = / > N (x1; £(x0) + fior,, Zor)p(X0)dxo
in many practical problems and, moreover, difficult to © k=1
implement. K L
4) In the update algorithms of the GSPF, at each time in- :Z“k /N(Xl?f(XU) + Hor,; Zor)p(Xo)dxo
k=1

stantn, particles from the filtering and predictive distri-
butions, which are used to obtain approximations for the X .
mixands, are obtained. These particles and their weights =>_ onr(x1)
represent samples from the filtering and posterior dis- k=1 ~
tributions, much like the particles in particle filters. Inwhere [ ' (x1; f(x0)+ for, Xok)p(x0)dxo = pr(x1) has been
an alternative approach, the EM [5] algorithm can bdefined.

used to obtain GM approximations from these particles After the arrival ofy, the posterior distribution can be ex-
and weights, and a recursive algorithm can be developptessed as

based on this idea. With this mechanism, the collapsing
problem will not arise. The advantages of using EM to

(15)

p(x1|y1) =Cip(y1 | x1)p(x1)

K
obtain GM approximations compared with the SIS algo- _ .
rithms are that the resampling procedure can be avoided =G ; axp (Y1 | x1) P (x1)
and that the tails of the distributions can be better repre- x
sented than by the SIS approximations. _ Zﬂlkpk (x1 | y1) (16)

k=1
I11. N ON-GAUSSIAN NOISE AND GAUSSIAN MIXTURE MODELS where( is a proportionality constant

Non-Gaussian noise in general is more difficult to handle than Cr = -
Gaussian noise. The “nice” properties for estimators and detec- 1= (/p (y1 [x1)p (X1)>
tors in Gaussian noise do not carry over to non-Gaussian noise K ' -1
problems. Gaussian mixture models (GMMs) have been sug- (Z g /p(y1 | x1) Pk (x1) dX1>
k=1 :

gested by many researchers [4]-[6], [8], [12]-[14] as an ap-
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the constantg; are normalized weights, and TABLE Il
Pr (X1 | y1) < p(y1 | x1) pr (x1) - Resampling ' . o
1. Sort the GK mixands according to their weights [
At the arrival of thenth observation, we can write in descending order. Retain only the first G mixands and
[ denote the weights and mixands as B, and pg(Xn|yn).
- . g=1,...,G.
P(Xn | Yim—1) = Z Z akﬂ(nfl)Jka (%n | Y1:n-1) If the smallest weight Bg < Bthreshotd, then follow steps
k=t a=t 17 2 and 3; otherwise go to step 3.
(17) 2. For g = 1,...,G, draw a number j € {1,...,G}
and with probabilities proportional to {fBn1,...,08nc}. Let
P
{Bng> Eng} = {#nj> nj} and set Bng = 1/G.
P (Xn | y1n) :Zﬂ”jpj(x" | ¥1:n) (18) 3. ?%r g = 1,...,G, reinitialize weights according to
= ﬁng - Zj'=nl Bnj’
which indicates that the number of mixands grows exponentially
with the arrival of new observations. For practical applications,
updating an exponentially growing number of mixands can tgd
cumbersome and prohibitive, and hence, Bayesian inference be- GEK
comes increasingly complex. However, it is possible to reduce P(Xn+1 | Y1:nt1) ~ Zﬂ(n-{-l)jpj (Xnt1 | Y1ing1) - (20)
the complexity of the problem, as discussed in the sequel. j=1

Typically, in practical situations, it is advantageous to keep the

number of mixands constant at each timéaVe export the idea

of “resampling” from the particle filter methods to keep the
An interesting perspective is developed by looking at theumber of mixands constant. Resampling throws out mixands

process equation of the DSS model (1). The process noise isa&ing insignificant weights and duplicates the remaining, in

GMM with K mixands. Hence, we can view theocesf the proportion to their weights. In Table Ill, we outline one “simple

DSS model being excited bi different Gaussianexcitation resampling” scheme; for other possible schemes, see [18].

noises\ (u,; ft,,x., Xnk ), €ach with probabilityy;,. As a result, The value 0f3;5.¢sn01a depends on the problem and should be

the nonlinear non-Gaussian noise DSS model is equivalémtenerak: 0.05. Resampling is applied to (20) afidnixands

to a weighted sum of nonlinear Gaussian noise DSS modedse retained. Then, the new approximation is written as

Consequently, from (18), at time, there areK™ parallel G

nonlinear Gaussign noise DSS model_s each having wgjght P (Xnt1 | Yimg1) & Z Brgpj (Xni1 | Yimi1) - (21)

However, for a given set of observatiogs.,, only a few of =

these parallel models will have “significant” weights. This can . : .

be anticipated from the observation update (16), where tlh Resampling keeps the number of mixands at each time

. . o ; Nétantn limited to G, and hence, computational power is not
welg_hts_ of the mixands are redlstrlbgted[ipj_, depem_jmg_ ON \vasted in generating mixands that have insignificant weights.
the likelihoodp(y.. | x,). As a result, in practical applications

. . . . ‘In addition, by duplicating mixands in proportion to their
it is possible to approximate the posterjgix,, | y1.,) as a y cup 9 prop

i ) . . ~weights, only mixands with significant weights are propagated
}’xi:g:;f?gar:;ﬁlgieﬁ;sﬁfléné);aer:]d;’i:nvrnii éh?gn|xands h"’ngl‘urther, which can possibly make significant contribution to
9 9 T the inference process. Since resampling throws away mixands,

A. Parallel DSS Models and Resampling

G it should be applied carefully. From the above discussion,
p(Xn | Yin) = Zﬂnjpj (Xn | Y1n) - (19) it is clear that a nonlineanon-Gaussiamoise DSS model
j=1 problem has been converted to a weighted sum of nonlinear

Gaussiamoise DSS models, where resampling is used to keep
the number of mixands constant.

A few more remarks are in order.

1) Non-Gaussian Observation Nois&he non-Gaussian
observation noise can be handled similarly, that is, by ex-
pressing it as a finite GM. Appropriate changes to (17) and (18)

Clearly,G depends on the model equations and the weights
for a given error cost function. Now, assume that at time
p(X. | ¥1.») IS given by the above approximation. With the
arrival of a new observatio,, 11, it follows thatp(x,, | y1.n)
hasG K mixands, or

K & can be made and incorporated in the algorithms given below,
P(Xnt1 | Yim) & Z Z kO which show an increase in the number of mixands even at the
k=1 j=1 observation update steps.
' L 2) Choice ofG: This depends on the particular application
’ / N (X"“; £(xn) + B 2”’“) and has to determined by trial and error. Underestimafimg-
p; (Xn | Y1m) dx,, sults in elimination of mixands with significant weights during

G resampling, and the Gaussian mixture approximation becomes
> e Bnibin(Xn | y1m) coarser. As a result, underestimatitigmay lead to loss of
1=1 tracking or divergence.

M)~

>~
Il
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B. Nonlinear Filtering For Additive Non-Gaussian Noise DSSA. Gaussian Sum Filter—II

A difficulty that still remains is that of solving the integra- 1) Time-Update: Assume at time: — 1 we have
tions in the time update steps to ggk(x,—1 | y1.n—1) and G
obtainingp;(x, | y1..) and the weightsj,,; in the observa- p (x,—1|y1n-1) = Zw(n_l)ij\/' (anl;ll'(n—l)i'/ E(n_)i).
tion update steps. In other words, it is required to obtain predic- i=1

tive and filtering distributions for each of the parallel nonlinear . o (22)
Gaussian noise DSS models and their weights. This can be da—ll?g predictive distribution is given by
by EKFs, GPFs, or GSPFs, and these possibilities are illustrated K G
in Fig. 1. P (Xn | yin-1) ZZ Zakw(n—l)]’
One set of methods approximates the mixture components k=1j=1
of the pred@ctive and fiIFering distributions as Gaussians. The % /N (Xn;f(xn_l) + ﬂ(n_l)mi(nq)k)
approximation can be implemented by the EKF (or the un- .
scented Kalman filter) and the GPF, resulting in a parallel bank N (Xn—13 B(n—1)j> B(n-1)j)dXn-1.  (23)

of Gaussian filters. Thugjx (X, | y1:n—1) andp;(x, | y1.n) As in the EKF, the integral on the right is approximated by a

are approximated as Gaussians and the posterior densifigg,ssian. Then, the predictive distribution can be approximated
p(Xn | Y1in—1), @andp(x,, | y1..) are then Gaussian mixtures.5q

The resulting filters will be called GSF-Il and GSPF-II, when .

EKF and GPF are used, respectively. The problem now reduces - o . SN

to updating a Gaussian mixture, where the mean, covariance, PG [ yin-1) ~ ;w’”N (x”’p'(n)i’ 2(W) (24)
and weights are tracked with each new observation. Resampli
is applied to keep the number of mixands constant at each i
n. Detajls of the algorithm are given in_the next section, and By =Bn_1yk + F(B(n_1);)
simulation results are presented in Section V.

The second set of methods approximates the mixture
components of the predictive and filtering distributions
Djk(Xn—1 | Y1m—1) @andp;(x, | y1.»), as Gaussian mixtures
by using the GSF-I or the GSPF-I. The resulting filters will be
called GSF-IlIl and GSPF-IIl, when GSF-l and GSPF-| are usefdy appropriatei = 1,....GK, 7 = 1,...,G and
respectively. Hence, the posterior distributigiig,, | y1..—1) k=1,...,Kandi =j+ (k- 1)K.
and p(x, | yi.) are approximated by weighted sum of 2) Measurement-UpdateAssume that at time,, we have
Gaussian mixtures and, therefore, are Gaussian mixtutBg predictive distribution
themselves. The GSF-lll and GSPF-Ill algorithms are very GK
similar to the GSF-I and GSPF-I, where Gaus§ian.mixtur.es are »(Xp | Yom—1) = Z WiN (X3 Byis Somi)- (25)
updated. As for GSF-Il and GSPF-II, resampling is applied to i—1

keep the number of mixands constant at each tm&hese afer receiving thenth observationy.,, we obtain the filtering
algorithms are discussed further in Section IV-C. distribution from the predictive distribution by

fere the parameters of the mixture are obtained according to

Zi =F(ne1)iZ (1) F o1y + S (n—1)k

of (x)
Fo-ni ==

|x:l’v(n—1)j

Wni =QpW(n—1)j

G

=1
(26)
the measurement-update steps consist of the

IV. GAUSSIAN MIXTURE FILTERS FORNON-GAUSSIAN NOISE

The GSF-lIfilter is a bank of EKFs running in parallel, whererpqrefore
the filtering and predictive distributions are updated using tI?SIIowing. '

EKF_equ_atlons. Similarly, the G_SP_F—II filter is a_bgnk o_f GPFS 1) Obtainw,,, g,; andX,,; from the measurement update
running in parallel, where the filtering and predictive distribu- equations of the GSPE-I

tions are updated using the GPF algorithms. The number of2) Resample to retain only? mixands from theGK
mixands is kept constant by resampling after the measurement * ... 4 nds.

update. Recall that each of the distributigns(x,— | y1:n-1) 3) The filtering distribution is approximated as
andp;(x, | y1.») in (17) and (18) are approximated as Gaus-
sians. Assume that at time = 0, p(xo) = N (xo; g, Xo)-
Following the development of the equations in Section Ill and
the algorithms given below, we run the filteithoutthe resam-
pling part in the measurement update until we ob@ifor just
greater than G) mixands. Once the requi€edhixands are ob-
tained, resampling is applied to keep the number of mixandsl) Time-Update:Following (22) and (23), fronp(x, -1 |
constant, as described below. In the sequel, we describe theXip-1) = Y51 W(n—1);N (Xn—1 B(n_1)j> D(n—1);), We 0b-
date algorithms. tain p(xn | yin1) & 208 WniN (Xn; s, Sni). Define

GK
P (Xn | You) B Y iV (%ot Soi) . (27)
=1

B. Gaussian Sum Particle Filter-II
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TABLE IV

Gaussian Sum Particle Filter-IT - Time update

algorithm

1. For 5 = 1,...,G, obtain samples from
N(xn 158, 1)j5Z(n 1);) and denote them as
{XEZ)l)]}%zl-

2. Forj=1,....G,k=1,...,Kandm=1,..., M,
obtain samples from N(x,;f(x, 1 = XE:)I)]) +

By, 1)k,2(n k) and denote them as {x (myM_

wherei=j+(k 1)K.

3. For i = 1,...,GK, obtain fi,; and %,; by tak-
ing sample mean and sample covariance of the particles
{x! (m) M

4. FOI’_] = l yo.Gik=1,...,Kandi=1,...,GK,

where i = j+ (k
according to

1)K, update weights for each mixand

K G
Wi = W(n l)jak/zzw(n 1) Qk-

k=1 j=1

Gaussian Sum Particle Filter-II - Measurement
update algorithm

1. For i = 1,...,GK, draw samples from the impor-
tance function 7r(xn|y0 n) and denote them as {x(j)}jzl.
2. Forj=1,...,M, i =1,...,GK compute weights
by

( (€)]

(7)) _ (ynlemjz)) Xn = X4 ’H'm’ 2_: )

’Ynz
W(X(])b’om)
3. Fori=1,...,GK, estimate the mean and covariance
as M () ()
z T~ l J
“ni Z}All 1 ’YY(IJ’L) ’ -
PR SR T (C i
" ZM 1 'Yr(zJL) '
4. Fori=1,...,GK, update the weights as
~ ZA{1 'Y(j) .
Wpi = W —7——7— i=1,...,G.
(n 1 ch 1 =1 ’an ’ ’

5. Normalize the weights according to

G
Wns = 'lD'm/ § wni-
i=1

6. Resample to retain G mixands from GK mixands.

i=j+(k—-1)Ksothatj =1,...,G,k =1,...,K and
i = 1,...,GK, and leti imply reference to the respective

andk. The time-update algorithm is given in Table IV.

2) Measurement-UpdateEFrom (25) and (27) ang(x,, |
= 3 50iN (X B> S ), We obtainp(x,, | Yon)
(X B;» Zni). The measurement-update algo-

Yon— 1)
= Y wil

rithm is then described in Table IV.
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Remarks:

1) If the DSS model in (1) islinear with additive
non-Gaussian noise, then it is clearly approximated
as a bank of weighted parallehear additive Gaussian
noise DSS models. The standard Kalman filter equations
can be used to update the predictive and filtering distri-
butions for each of the parallel linear additive Gaussian
noise DSS models, resulting in a near-optimal solution.
Thus, in this case, the GSF-Il becomes a bank of weighted
parallel Kalman filters, which becomes a special case of
the mixture Kalman filter [19]. This method has been
used to track an impulsive fading channel in [2], where a
sequential Monte Carlo sampling algorithm is proposed
for joint channel estimation and data detection. This
example is also discussed in the simulations in Section V.
A similar example was used in [20].

2) Target tracking in clutter involves associating possibly
multiple observations arising due to clutter to the moving
target. Various techniques are applied to accomplish this
[21], most of which result in filters that are “similar” to
the GSF-Il and GSPF-II. However, the growing mixands
are discarded imd hocways, resulting in the different
filters, whereas we suggest here a systematic way to ac-
complish the task. Hence, these filters can in principle be
used in target tracking applications.

C. GSF-Ill and GSPF-III

For these filtersp;x(x» | Y1:n—1) andp; (X» | y1:n) are ap-
proximated as GMs by using the GSF-I or the GSPF-I. Inspec-
tion of (17) and (18) shows that the GSF-IIl and GSPF-IIl are
banks of GSF-Is and GSPF-Is running in parallel, respectively.
As a result, the filtering and predictive distribution in (17) and
(18) are also GMs. Hence, both algorithms essentially update
a Gaussian mixture by approximating the new means, covari-
ances, and weights using the EKF and GPF in parallel, respec-
tively. The resulting algorithms are similar to the ones obtained
in Section IV-A and B and are not repeated here.

V. SIMULATION RESULTS

Some of the filtering methods proposed in this paper were
applied to three different problems and here we present some of
the obtained results.

A. Example 1—Univariate Non-Stationary Growth Model

We consider the univariate nonstationary growth model
(UNGM) [22]-[24], whose DSS equations are given by

Ty =QTp_1 + ﬂlj—nﬁ +ycos(1.2(n — 1)) + uy
22
yn_%‘i‘vn n:1N

wherewv,, ~ N(0,02), and the distribution of., is specified
below. The data were generated using= 0.1,0%2 = 1, a =
05,6 = 25~ = 8and N = 500 in each simulation. The
process noise d|str|but|on is a Gaussian mixture given by

p (un) =eN (u Ovo—ul) (1 - 6)-/\/ (u; 07 OuZ) '
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Performance Comparision of Filters for UNGM model with impulsive noise

By varying ¢ and the variances, heavy-tailed densities can t 7 ; : : : ; : ; ‘ :

modeled quite well. We show results where 0.8, 02, = 0.1, ¥, x~—  GSPF-Il
> i* « ¥ |o--o SISR 5 ¥
andO'UZ = 1. 60 1 X ¥ ! \*\ o GSEA 1/\’ 7
We compare the estimation and prediction performance of tl A R R  F N Rt
. / ! !

GSF-II, GSPF-II, and SISR filters. For the present example, v _ | * A J A\ AN P
hadG = 8 for both GSF-Il and GSPF-II. The number of parti- b [~ y ouT L
cles chosen for each mixand update in the GSPFMias 100. ; 5 ¢

The prior density(x,) wasA/ (0, 1). We compare performance's “°| |

of the filters based on MSE;, MSEz,, and MSHy,,, which are

Mean Square Error

defined by 3o ]
1 N
~ 2 L i
MSEr; =+ > (w0 — i) (28) =
n=1
1 N . 10k
MSE.’BI, :N Z(:Ln — :i’n)z (29) R0 XOO00e8 e 0508 009690‘9@rz‘lo@9oi}o@‘;"%o@<">00@U@("(
n=1 . . . . ! . . s .
1 N C'0 5 10 15 20 25 30 35 40 45 50
Realization
MSEy, = D (4 — i)’ (30)
n=1 Fig. 2. Performance comparison of GSF-Il, GSPF-Il, and SISR filters.
. MSE: ; is plotted for 50 random realizations. M=20 (per mixand) for GSPF-II,
wherez,, = E(z, | yon), Tn = E(Tn | Yon—-1), @ndg, = and M=640 for SISR filter.
E(yn | yo.n)- The MMSE estimate of,, is given by, =
E(U | Y0 1) or Performance Comparision of Filters for UNGM model with impulsive noise
Jgn b n— 70 T T T T T T T T
J *f¥ =  GSPF-II
0, = . ¥ | --o SISR *
Yn YnD (yn | yo.n71) Yn sl ,’ \\ 4 X M0 Gse |, /,\\ /* ]
* FK X xooox X Vo*
¥ \ LK \ x * / *y N
://ynp (yn | xn)p(fb’n | yom) dxndyn. 50—*/ \*l \\ */ - y\ % - * \\ 4* *\ Il \‘ u‘ \\‘/ *; 7“36
Je 7 | !
% y‘f/ % ék% “,l * \¥,
1

For this example, we obtain

ZCZ

The GSPF-Il is used here because the noise is heavy-tai
non-Gaussian, and heavy-tailed densities can be modeled ,,
Gaussian mixtures [7], [25]. For the GSPF-II, where the GP
is used for updating each mixand and resampling is used, " ol
expect better performance than the GSF-II.

A large number of simulations were performed to compat
the three filters. Results are discussed below for 50 random % 5 05 @ s 4 45 w0
alizations. Note from the figures that for the 46th realization, the
GSF-Il diverged. Fig. 3. Performance comparison of GSF-Il, GSPF-Il, and SISR filters.

Figs. 2 and 3 show the MS for 50 random realizations. 'é'ggfé{“'Zn%'cl’\;tédsggoigr‘g‘g’g%é‘:’a"za“ons- M 100 (per mixand) for
The numbers of particles wefd = 20 and 100 per mixand
for GSPF-Il andM = 640 and 5000 for SISR, respectively (the ) o
total number of particles used for inference in both filters wa¥ocessor using MATLAB. The computation time for GSPF-II
about the same). From the figures, it is evident that the GSPF2{1d SISR filters is much higher than that of the GSF-II. More
and SISR filters perform significantly better than the GSF-ljmportantly, the GSPF-II has much shorter computation time
whereas the MSE for the GSPF-Il is marginally higher than thitan the SISR, even though their MSEs are comparable. The
of SISR. The performance changed negligibly as the numberdifférence in computation time increases with the number of
particles was increased. particles. Thisis due to the additional resampling required by the

Similar behavior was observed for the M§Eand MSE), SISR filter, which has c_omputational complexity @ M) for
metrics, as seen in Figs. 4 and 5, where the average MSEsAgSystematic resampling scheme used here. However, as noted
shown for the same 50 realizations. The MSEs plotted on before, these times indicate those obtained on a serial computer,
a logarithmic scale; note that the MgEfor the GSF-Il is a and much reduction in cqmputation tim_es can be expected for
few orders higher than the other filters (this can be justified )€ GPF and SISR when implemented in parallel.
looking at the observation equation of the model; any error in )

,, is raised to the power of 2 in the observation). B. Example 2—Frequency Demodulation

A comparison of the computation times is shown in Fig. 6, We consider demodulation of a frequency (or phase) modu-

for simulations implemented on a 450-MHz Intel Pentium lllated signal\(¢), which has a first-order Butterworth spectrum

N
o
T
L

Mean Square Error
w
o
T
L
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Performance Comparision of Filters for UNGM model with impulsive noise — Average Predictive MSE of x
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Fig. 6. Performance comparison of GSF-1l, GSPF-Il, and SISR filters.

Fig. 4. Performance comparison of GSF-Il, GSPF-II, and SISR filter€Omputation time (per realization) and average M$Eof 50 random

MSEz; is plotted for 50 random realizations. Left sidéd— = 20 (per
mixand) for GSPF-Il andi/ = 640 for SISR filter. Right side-&/ = 100
(per mixand) for GSPF-1l and/ = 5000 for SISR filter.

Performance Comparision of Filters for UNGM model with impulsive noise - Log10 Average Predictive MSE of y
4 T T

GSPF-II
SISR b
GSF-II

25F B

Log10 Average Predictive MSE of 50 Realizations
n
T

1 2
Number of samples: 20, 100 (GSPF-Il); 640, 5000 (SISR)

realizations. Left side-&4 = 20 (per mixand) for GSPF-1l and/ = 640 for
SISR filter. Right side—A/ = 100 (per mixand) for GSPF-Il and/ = 5000
for SISR filter.

At the receiver, the signal is sampled by in-phase and quadra-
ture-phase sampling, where the channel noise is mixture
Gaussian. Thus, we have

_ sin(6y,)
Zn = \ﬂ2) |:COS<0n):| +Un
whereu,, is zero mean noise mixture Gaussian noise with two
mixands with weightg and1 — ¢ and covariances given by
o2 0
E (ujul) = { 0 U?} ok, k=1,2.

The derivation of the discrete time process equation of the FM
system can be found in [26]. We compare the performance of the
GSF-1l and GSPF-Il filters, which were used for demodulation.
Note that the measurement noise was mixture Gaussian while
the process noise was Gaussian, as opposed to the assumptions
used for the algorithms presented for GSF-1l and GSPF-II.

The performance measure frequently used for FM systems is
the steady-state inverse of the message error covariance given

Fig. 5. Performance comparison of GSF-1l, GSPF-Il, and SISR filtersby 5;1 where¢, = lim E[)\ _ 5\ ]2 We estimate, =
S ’ S - n— 0o n mn|2. < ~

MSEzx is plotted for 50 random realizations. Left sidé4 = 20 (per

mixand) for GSPF-Il and/ = 640 for SISR filter. Right side—&/ = 100
(per mixand) for GSPF-1l and/ = 5000 for SISR filter.

[9], [10], [26]. The signal is modeled as the output of a fir:
order, time-invariant linear system with one real pole drive

by continuous time white noise. This message is then pasélé’dn .
dt. which is then Note that the GSPF-Il had at least a gain of 1 dB for lower CNR,

through an integrator to yielé(t) = fot A(t)

employed to phase modulate a carrier signal with frequency

rad/s. The process equation can be written as

AMHT _T=2 0] [A@) 1
i) =17 o Lota ]+ o]
whereu(t) is zero mean noise process wittv(t)v(t — 7)) =
(2/8)6(t — 7). The signal at the receiver is given by

@[

2(t) = /(2) sin (wet + 6(t)) + u(t).

5, 03 = 10007, ande =

1/N P4 (M, = An)2, whereP = 1000 is the settling period,
and )\, = E(\, | zo.n). This measure is plotted against the
carrier-to-noise ratio (CNR) given bys2r. For Fig. 7,5 =
0.9. For the GSF-Il and GSPF-II,
lil;le number of mixands was = 8, and for GSPF-II, the used

ber of particles for updating each mixand wids= 100.

which increases for higher CNR.

C. Example 3—Joint Channel Estimation and Symbol
Detection for Impulsive Fading Channel

In [2], a particle-based filter was presented for joint channel
estimation and symbol detection. Transmitted datare from
a discrete complex sét = {/1, ...,/ } over a frequency flat
fading channel. The complex impulsive fading channgelis
modeled as an autoregressive procégXp) driven by impul-
sive noise, modeled as a GM with two mixands. The baseband
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Performance Comparision of GSF and GSPF for Frequency Demodulation — MSE of frequency 10° :
14 T T
x——x  Clairvoyant Matched Filter
1351 x — —x SEEF 7 /_ & - -0  GSP detector with K=20
’ o- -8 GSP detector with K=10

1/MSE of frequency in dB
Bit Error Rate

I L 107 I L
20 25 5 10 15
Carrier to Noise Ratio in dB Signal to noise Ratio (dB)

20

9
10 15

Fig. 7. Performance comparison of GSF-Il and GSPF-II filters for frequendsig. 8.
demodulation.

Bit error rate performance for flat fading channel for BPSK signaling.

model of the above communication system can be representéfk for DSS models with non-Gaussian noise was also pre-
as a dynamic state space (DSS) system sented, where the non-Gaussian DSS model was transformed to

a weighted sum of parallel Gaussian noise DSS models. Based

yr =bj cx + vk on EKFs, GPFs and GSPFs, we proposed algorithms for non-

cp =Acp_1 +uy (31) Gaussian models. Simulations show that in general, particle-
h s th led sianal h vasT based Gaussian mixture filters perform better than EKF-based
where y; IS the s:’;mpe signal at the recelv i = Gaussian mixture filters.
[bk 0 0 ...0],Ck :[Ck Ck—1 ck_p],and
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