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Gaussian Sum Particle Filtering
Jayesh H. Kotecha and Petar M. Djuric´, Senior Member, IEEE

Abstract—In this paper, we use the Gaussian particle filter in-
troduced in a companion paper to build several types of Gaussian
sum particle filters. These filters approximate the filtering and pre-
dictive distributions by weighted Gaussian mixtures and are basi-
cally banks of Gaussian particle filters. Then, we extend the use
of Gaussian particle filters and Gaussian sum particle filters to
dynamic state space (DSS) models with non-Gaussian noise. With
non-Gaussian noise approximated by Gaussian mixtures, the non-
Gaussian noise models are approximated by banks of Gaussian
noise models, and Gaussian mixture filters are developed using
algorithms developed for Gaussian noise DSS models.1 As a re-
sult, problems involving heavy-tailed densities can be conveniently
addressed. Simulations are presented to exhibit the application of
the framework developed herein, and the performance of the algo-
rithms is examined.

Index Terms—Dynamic state-space models, extended Kalman
filter, Gaussian mixture, Gaussian particle filter, Gaussian sum
filter, Gaussian sum particle filter, Monte Carlo filters, nonlinear
non-Gaussian stochastic systems, particle filters, sequential
Bayesian estimation, sequential sampling methods.

I. INTRODUCTION

I N [1], we introduced the Gaussian particle filter (GPF),
which is used for tracking filtering and predictive distri-

butions encountered in dynamic state-space models (DSS).
The models there are characterized with additive Gaussian
noises, but the functions that appear in the process and ob-
servation equations are nonlinear functions. The underlying
assumption in that paper is that the predictive and filtering
distributions can be approximated as Gaussians. Unlike the
extended Kalman filter (EKF), which also assumes that these
distributions are Gaussians and employs linearization of the
functions in the process and observation equations, the GPF
updates the Gaussian approximations by using particles that
are propagated through the process and observation equations
without approximations.

In this paper, we introduce three types of particle filters
that are built from banks of particle filters. They approximate
the predictive and filtering distributions as Gaussian mixtures
(GMs). We refer to them as Gaussian sum particle filters
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TABLE I
QUICK ROADMAP OF GPFAND GSPFS

Fig. 1. Roadmap for GFs and GMFs.

(GSPFs), and a quick roadmap that describes them together
with the GPF is given in Table I.

We extend the use of the new filters to encompass nonlinear
and additivenon-Gaussiannoise DSS models. Gaussian mix-
ture models are increasingly used for modeling non-Gaussian
densities [4]–[6]. We work with non-Gaussian noise that is mod-
eled by a GM for a nonlinear DSS model [7], [8]. It is shown
that for Bayesian inference, the nonlinearnon-GaussianDSS
model can be modeled as a bank of parallel nonlinearGaussian
noise DSS models. Based on the GPF and GSPFs, we develop
Gaussian mixture filters (GMFs) for nonlinear non-Gaussian
models. A roadmap of all the filters is given in Fig. 1. We elab-
orate on various specifics of these filters and provide numerical
results based on simulations.

Before we proceed, we briefly introduce the notation and a
list of abbreviations used throughout the paper. The signal of
interest is , and it represents an unob-
served Markov process with distribution . Its ini-
tial distribution is given by . The observations
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KOTECHA AND DJURIĆ: GAUSSIAN SUM PARTICLE FILTERING 2603

are conditionally independent given
and are represented by the distribution . The

model that we address is given by

(1)

where and are non-Gaussian noises. The signal and ob-
servations up to time are denoted by and , respec-
tively, where and .
As before, our objective is to estimate the filtering distribution

and the predictive distribution re-
cursively in time.

The list of abbreviations is as follows.
List of Abbreviations:

BOT Bearings-only tracking.
DSS Dynamic state space.
EKF Extended Kalman filter.
EM Expectation-maximization.
GS Gaussian sum.
GM Gaussian mixture.
GMF Gaussian mixture filter.
GMM Gaussian mixture model.
GPF Gaussian particle filter.
GSF Gaussian sum filter.
GSPF Gaussian sum particle filter.
MMSE Minimum mean square error.
MSE Mean square error.
SIS Sequential importance sampling.
SISR Sequential importance sampling with resampling.
UKF Unscented Kalman filter.
VLSI Very large scale integration.

II. GAUSSIAN MIXTURE FILTERS FORGAUSSIAN NOISE

In this section, we assume that the noise processes are ad-
ditive Gaussian. This assumption is relaxed in the following
section.

A. Gaussian Sum Filtering—I

First, we briefly review the theory of Gaussian sum filters.
For the DSS model (1), assume that the distribution is
expressed as a Gaussian mixture. It is given that we would like
to obtain the filtering and predictive distributions recursively
approximated as Gaussian mixtures.

1) Measurement Update:Assume that at time , we have
the predictive distribution

(2)

After receiving the th observation , we obtain the filtering
distribution from the predictive distribution according to

where is a normalizing constant. Using (2), we can write

(3)

We recall a theorem from [9].
Theorem 1: For an additive Gaussian noise model in the ob-

servation equation in (1), i.e., , where
and given by (2), the distribution

approaches the Gaussian sum

(4)

uniformly in and as for , where
and are calculated using the following equations:

(5)

where

(6)

Proof: See [9 pp. 214 and 215].
2) Time Update:With expressed as a Gaussian

mixture, we would like to obtain the predictive distribution
and approximate it also as a Gaussian mixture.

This can be done according to

(7)

Upon linearization of about , each integral on the
right-hand side of the above equation can be approximated as
a Gaussian. We recall a theorem from [9].

Theorem 2: For an additive Gaussian noise model in the
process equation in (1), i.e., , where

and given by (4), the
updated predictive distribution approaches the
Gaussian sum

uniformly in as for , where
and are updated using the following equations:

(8)

Proof: See [9, pp. 215 and 216].
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3) Filter Implementation:The filter is initialized with
approximated by a weighted GM. In the measurement-

and time-update equations described above, the updated mean
and covariance of each mixand follow from the EKF equations.
The GSF-I is implemented by parallel EKFs, and the weights
are adjusted according to the given update equations. However,
according to the theorems, the approximations are valid for
“small” covariances. An increase in the covariances leads to
problems, which are discussed in Section II-D.

B. Gaussian Sum Particle Filtering—I

For a nonlinear DSS with additive Gaussian noise, the GSF-I
approximates posterior distributions as Gaussian mixtures using
banks of parallel EKFs. Based on similar reasoning, the GSPF-I
updates the mixands using banks of GPF’s in parallel.

1) Measurement Update:Assume that at time , we have
the predictive distribution

(9)

After receiving , the filtering distribution is given by (3). As
in the GPF, each term on the right-hand side of (3) given by

is approximated as a Gaussian.
This allows for the measurement update algorithm described in
Table II.

The updated filtering distribution can now be represented as

(10)

2) Time Update:Assume that at time, we have

(11)

From (7), the predictive distribution is given by

(12)

The integral on the right-hand side is approximated by a
Gaussian using the time update algorithm of the GPF. The time
update algorithm is summarized in Table IV.

The time updated (predictive) distribution is now approxi-
mated as

(13)

C. Inference

The Gaussian mixture approximation lends an advantage that
MMSE estimates of the hidden state and its error covariance can
be obtained straightforwardly. From (10), the estimate of,

TABLE II

and can be
computed from

D. Discussion

The practical implementation of GSF-I and GSPF-I may
present difficulties that are discussed in the next few paragraphs.

1) The choice of the number of mixandsis often guided by
the problem at hand. In practical applications, the number
of mixands in the approximation of the prediction and fil-
tering distributions is usually small. As a result, diver-
gence may still occur in the GSF-I due to the lineariza-
tions in the EKF, as can happen in the standard EKF
because of the severe nonlinearities in the model. The
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GSPF-I can be effectively used to mitigate divergence due
to the use of GPFs in parallel.

2) The most important limitation of the GSF-I and GSPF-I is
thecollapsingof the mixands. As the filtering proceeds,
the covariance of the mixands can grow. Consequently,
according to Theorems 1 and 2, the GM approximations
become increasingly coarse. More importantly, this can
cause collapsing of all the mixands, resulting in only one
distinct mixand. The result is that after several updates,
the posterior distributions are approximated as a single
Gaussian, which may be a poor approximation. More-
over, computation power is wasted in updating identical
mixands. When collapsing occurs, the posterior distribu-
tions have to be re-expressed as Gaussian mixtures having
small covariances [9]. In [10], a special algorithm for this
reinitialization was suggested for the particular problem
of frequency and phase demodulation. However, re-ex-
pressing the posterior distributions as a Gaussian mix-
ture with small covariances may itself be a challenging
problem, especially in higher dimensions, besides being
undesirable and computationally expensive. There is no
general criterion to determine how “small” the covariance
should remain to avoid collapsing, and it has to be deter-
mined based on the problem at hand.

3) The covariance of the mixands grows especially when the
covariance of the process noise is large compared with
the covariance of the mixands. To combat this problem,
in [4] it has been suggested to approximate the Gaussian
noise process as a finite Gaussian mixture itself. Inspec-
tion of the time update equations shows that this results
in an exponentially growing number of mixands. Several
ad hocprocedures have been suggested in [11] to reduce
the number of mixands, but they may become inadequate
in many practical problems and, moreover, difficult to
implement.

4) In the update algorithms of the GSPF, at each time in-
stant , particles from the filtering and predictive distri-
butions, which are used to obtain approximations for the
mixands, are obtained. These particles and their weights
represent samples from the filtering and posterior dis-
tributions, much like the particles in particle filters. In
an alternative approach, the EM [5] algorithm can be
used to obtain GM approximations from these particles
and weights, and a recursive algorithm can be developed
based on this idea. With this mechanism, the collapsing
problem will not arise. The advantages of using EM to
obtain GM approximations compared with the SIS algo-
rithms are that the resampling procedure can be avoided
and that the tails of the distributions can be better repre-
sented than by the SIS approximations.

III. N ON-GAUSSIAN NOISE AND GAUSSIAN MIXTURE MODELS

Non-Gaussian noise in general is more difficult to handle than
Gaussian noise. The “nice” properties for estimators and detec-
tors in Gaussian noise do not carry over to non-Gaussian noise
problems. Gaussian mixture models (GMMs) have been sug-
gested by many researchers [4]–[6], [8], [12]–[14] as an ap-

proximation to non-Gaussian densities. For example, in [4], it
is shown that any density can be approximated “as closely as
possible” by a finite GM; see [1, Lemma 1]. Moreover, Mid-
dleton’s canonical class A model [15], [16], where probability
density functions are expressed as infinite sum of Gaussians, in
practical applications can be approximated by finite Gaussian
mixtures. For example, impulsive noise approximated with two
mixands in the GMM can be used to model acoustic noise for
underwater channels [7], atmospheric noise in long range com-
munications, or noise in seismic data. Impulsive noise is often
encountered in wireless applications in many indoor and out-
door environments; see [8] and the references therein, where the
channel noise is a finite GMM [17].

In this work, we endeavor to provide a general framework to
handle non-Gaussian noise in DSS models, where the under-
lying assumption is that the noise is represented as a finite GM.
For the DSS model with additive noise in (1), let the process
noise be given by

(14)

For simplification of presentation, we assume in the further dis-
cussion that the observation noise is Gaussian. From the
discussion and presented algorithm, it will be clear that the al-
gorithm can be straightforwardly generalized to non-Gaussian
case by modeling the observation noise as a finite GM. At time
zero, our prior knowledge about is summarized by .
The predictive distribution of can then be written as

(15)

where has been
defined.

After the arrival of , the posterior distribution can be ex-
pressed as

(16)

where is a proportionality constant
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the constants are normalized weights, and

At the arrival of the th observation, we can write

(17)

and

(18)

which indicates that the number of mixands grows exponentially
with the arrival of new observations. For practical applications,
updating an exponentially growing number of mixands can be
cumbersome and prohibitive, and hence, Bayesian inference be-
comes increasingly complex. However, it is possible to reduce
the complexity of the problem, as discussed in the sequel.

A. Parallel DSS Models and Resampling

An interesting perspective is developed by looking at the
process equation of the DSS model (1). The process noise is a
GMM with mixands. Hence, we can view theprocessof the
DSS model being excited by different Gaussianexcitation
noises , each with probability . As a result,
the nonlinear non-Gaussian noise DSS model is equivalent
to a weighted sum of nonlinear Gaussian noise DSS models.
Consequently, from (18), at time, there are parallel
nonlinear Gaussian noise DSS models each having weight.
However, for a given set of observations , only a few of
these parallel models will have “significant” weights. This can
be anticipated from the observation update (16), where the
weights of the mixands are redistributed to , depending on
the likelihood . As a result, in practical applications,
it is possible to approximate the posterior as a
weighted mixture of say mixands, where the mixands having
insignificant weights have been eliminated, i.e.,

(19)

Clearly, depends on the model equations and the weights
for a given error cost function. Now, assume that at time,

is given by the above approximation. With the
arrival of a new observation , it follows that
has mixands, or

TABLE III

and

(20)

Typically, in practical situations, it is advantageous to keep the
number of mixands constant at each time. We export the idea
of “resampling” from the particle filter methods to keep the
number of mixands constant. Resampling throws out mixands
having insignificant weights and duplicates the remaining, in
proportion to their weights. In Table III, we outline one “simple
resampling” scheme; for other possible schemes, see [18].

The value of depends on the problem and should be
in general 0.05. Resampling is applied to (20) andmixands
are retained. Then, the new approximation is written as

(21)

Resampling keeps the number of mixands at each time
instant limited to , and hence, computational power is not
wasted in generating mixands that have insignificant weights.
In addition, by duplicating mixands in proportion to their
weights, only mixands with significant weights are propagated
further, which can possibly make significant contribution to
the inference process. Since resampling throws away mixands,
it should be applied carefully. From the above discussion,
it is clear that a nonlinearnon-Gaussiannoise DSS model
problem has been converted to a weighted sum of nonlinear
Gaussiannoise DSS models, where resampling is used to keep
the number of mixands constant.

A few more remarks are in order.
1) Non-Gaussian Observation Noise:The non-Gaussian

observation noise can be handled similarly, that is, by ex-
pressing it as a finite GM. Appropriate changes to (17) and (18)
can be made and incorporated in the algorithms given below,
which show an increase in the number of mixands even at the
observation update steps.

2) Choice of : This depends on the particular application
and has to determined by trial and error. Underestimatingre-
sults in elimination of mixands with significant weights during
resampling, and the Gaussian mixture approximation becomes
coarser. As a result, underestimatingmay lead to loss of
tracking or divergence.
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B. Nonlinear Filtering For Additive Non-Gaussian Noise DSS

A difficulty that still remains is that of solving the integra-
tions in the time update steps to get and
obtaining and the weights in the observa-
tion update steps. In other words, it is required to obtain predic-
tive and filtering distributions for each of the parallel nonlinear
Gaussian noise DSS models and their weights. This can be done
by EKFs, GPFs, or GSPFs, and these possibilities are illustrated
in Fig. 1.

One set of methods approximates the mixture components
of the predictive and filtering distributions as Gaussians. The
approximation can be implemented by the EKF (or the un-
scented Kalman filter) and the GPF, resulting in a parallel bank
of Gaussian filters. Thus, and
are approximated as Gaussians and the posterior densities

, and are then Gaussian mixtures.
The resulting filters will be called GSF-II and GSPF-II, when
EKF and GPF are used, respectively. The problem now reduces
to updating a Gaussian mixture, where the mean, covariance,
and weights are tracked with each new observation. Resampling
is applied to keep the number of mixands constant at each time

. Details of the algorithm are given in the next section, and
simulation results are presented in Section V.

The second set of methods approximates the mixture
components of the predictive and filtering distributions

and , as Gaussian mixtures
by using the GSF-I or the GSPF-I. The resulting filters will be
called GSF-III and GSPF-III, when GSF-I and GSPF-I are used,
respectively. Hence, the posterior distributions
and are approximated by weighted sum of
Gaussian mixtures and, therefore, are Gaussian mixtures
themselves. The GSF-III and GSPF-III algorithms are very
similar to the GSF-I and GSPF-I, where Gaussian mixtures are
updated. As for GSF-II and GSPF-II, resampling is applied to
keep the number of mixands constant at each time. These
algorithms are discussed further in Section IV-C.

IV. GAUSSIAN MIXTURE FILTERS FORNON-GAUSSIAN NOISE

The GSF-II filter is a bank of EKFs running in parallel, where
the filtering and predictive distributions are updated using the
EKF equations. Similarly, the GSPF-II filter is a bank of GPFs
running in parallel, where the filtering and predictive distribu-
tions are updated using the GPF algorithms. The number of
mixands is kept constant by resampling after the measurement
update. Recall that each of the distributions
and in (17) and (18) are approximated as Gaus-
sians. Assume that at time , .
Following the development of the equations in Section III and
the algorithms given below, we run the filterwithoutthe resam-
pling part in the measurement update until we obtain(or just
greater than G) mixands. Once the requiredmixands are ob-
tained, resampling is applied to keep the number of mixands
constant, as described below. In the sequel, we describe the up-
date algorithms.

A. Gaussian Sum Filter—II

1) Time-Update:Assume at time we have

(22)
The predictive distribution is given by

(23)

As in the EKF, the integral on the right is approximated by a
Gaussian. Then, the predictive distribution can be approximated
as

(24)

where the parameters of the mixture are obtained according to

for appropriate , and
and .

2) Measurement-Update:Assume that at time , we have
the predictive distribution

(25)

After receiving the th observation , we obtain the filtering
distribution from the predictive distribution by

(26)
Therefore, the measurement-update steps consist of the
following.

1) Obtain and from the measurement update
equations of the GSPF-I.

2) Resample to retain only mixands from the
mixands.

3) The filtering distribution is approximated as

(27)

B. Gaussian Sum Particle Filter-II

1) Time-Update:Following (22) and (23), from
, we ob-

tain . Define
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TABLE IV

so that , and
, and let imply reference to the respective

and . The time-update algorithm is given in Table IV.
2) Measurement-Update:From (25) and (27) and

, we obtain
. The measurement-update algo-

rithm is then described in Table IV.

Remarks:

1) If the DSS model in (1) islinear with additive
non-Gaussian noise, then it is clearly approximated
as a bank of weighted parallellinear additive Gaussian
noise DSS models. The standard Kalman filter equations
can be used to update the predictive and filtering distri-
butions for each of the parallel linear additive Gaussian
noise DSS models, resulting in a near-optimal solution.
Thus, in this case, the GSF-II becomes a bank of weighted
parallel Kalman filters, which becomes a special case of
the mixture Kalman filter [19]. This method has been
used to track an impulsive fading channel in [2], where a
sequential Monte Carlo sampling algorithm is proposed
for joint channel estimation and data detection. This
example is also discussed in the simulations in Section V.
A similar example was used in [20].

2) Target tracking in clutter involves associating possibly
multiple observations arising due to clutter to the moving
target. Various techniques are applied to accomplish this
[21], most of which result in filters that are “similar” to
the GSF-II and GSPF-II. However, the growing mixands
are discarded inad hocways, resulting in the different
filters, whereas we suggest here a systematic way to ac-
complish the task. Hence, these filters can in principle be
used in target tracking applications.

C. GSF-III and GSPF-III

For these filters, and are ap-
proximated as GMs by using the GSF-I or the GSPF-I. Inspec-
tion of (17) and (18) shows that the GSF-III and GSPF-III are
banks of GSF-Is and GSPF-Is running in parallel, respectively.
As a result, the filtering and predictive distribution in (17) and
(18) are also GMs. Hence, both algorithms essentially update
a Gaussian mixture by approximating the new means, covari-
ances, and weights using the EKF and GPF in parallel, respec-
tively. The resulting algorithms are similar to the ones obtained
in Section IV-A and B and are not repeated here.

V. SIMULATION RESULTS

Some of the filtering methods proposed in this paper were
applied to three different problems and here we present some of
the obtained results.

A. Example 1—Univariate Non-Stationary Growth Model

We consider the univariate nonstationary growth model
(UNGM) [22]–[24], whose DSS equations are given by

where , and the distribution of is specified
below. The data were generated using , ,

and in each simulation. The
process noise distribution is a Gaussian mixture given by
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By varying and the variances, heavy-tailed densities can be
modeled quite well. We show results where , ,
and .

We compare the estimation and prediction performance of the
GSF-II, GSPF-II, and SISR filters. For the present example, we
had for both GSF-II and GSPF-II. The number of parti-
cles chosen for each mixand update in the GSPF was .
The prior density was . We compare performance
of the filters based on MSE , MSE and MSE , which are
defined by

MSE (28)

MSE (29)

MSE (30)

where , , and
. The MMSE estimate of is given by

or

For this example, we obtain

The GSPF-II is used here because the noise is heavy-tailed
non-Gaussian, and heavy-tailed densities can be modeled as
Gaussian mixtures [7], [25]. For the GSPF-II, where the GPF
is used for updating each mixand and resampling is used, we
expect better performance than the GSF-II.

A large number of simulations were performed to compare
the three filters. Results are discussed below for 50 random re-
alizations. Note from the figures that for the 46th realization, the
GSF-II diverged.

Figs. 2 and 3 show the MSE for 50 random realizations.
The numbers of particles were and 100 per mixand
for GSPF-II and and 5000 for SISR, respectively (the
total number of particles used for inference in both filters was
about the same). From the figures, it is evident that the GSPF-II
and SISR filters perform significantly better than the GSF-II,
whereas the MSE for the GSPF-II is marginally higher than that
of SISR. The performance changed negligibly as the number of
particles was increased.

Similar behavior was observed for the MSEand MSE
metrics, as seen in Figs. 4 and 5, where the average MSEs are
shown for the same 50 realizations. The MSEis plotted on
a logarithmic scale; note that the MSEfor the GSF-II is a
few orders higher than the other filters (this can be justified by
looking at the observation equation of the model; any error in

is raised to the power of 2 in the observation).
A comparison of the computation times is shown in Fig. 6,

for simulations implemented on a 450-MHz Intel Pentium III

Fig. 2. Performance comparison of GSF-II, GSPF-II, and SISR filters.
MSEx is plotted for 50 random realizations. M=20 (per mixand) for GSPF-II,
and M=640 for SISR filter.

Fig. 3. Performance comparison of GSF-II, GSPF-II, and SISR filters.
MSEx is plotted for 50 random realizations. M= 100 (per mixand) for
GSPF-II and M= 5000 for SISR filter.

processor using MATLAB. The computation time for GSPF-II
and SISR filters is much higher than that of the GSF-II. More
importantly, the GSPF-II has much shorter computation time
than the SISR, even though their MSEs are comparable. The
difference in computation time increases with the number of
particles. This is due to the additional resampling required by the
SISR filter, which has computational complexity of for
the systematic resampling scheme used here. However, as noted
before, these times indicate those obtained on a serial computer,
and much reduction in computation times can be expected for
the GPF and SISR when implemented in parallel.

B. Example 2—Frequency Demodulation

We consider demodulation of a frequency (or phase) modu-
lated signal , which has a first-order Butterworth spectrum
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Fig. 4. Performance comparison of GSF-II, GSPF-II, and SISR filters.
MSEx is plotted for 50 random realizations. Left side—M = 20 (per
mixand) for GSPF-II andM = 640 for SISR filter. Right side—M = 100

(per mixand) for GSPF-II andM = 5000 for SISR filter.

Fig. 5. Performance comparison of GSF-II, GSPF-II, and SISR filters.
MSEx is plotted for 50 random realizations. Left side—M = 20 (per
mixand) for GSPF-II andM = 640 for SISR filter. Right side—M = 100

(per mixand) for GSPF-II andM = 5000 for SISR filter.

[9], [10], [26]. The signal is modeled as the output of a first
order, time-invariant linear system with one real pole driven
by continuous time white noise. This message is then passed
through an integrator to yield , which is then
employed to phase modulate a carrier signal with frequency
rad/s. The process equation can be written as

where is zero mean noise process with
. The signal at the receiver is given by

Fig. 6. Performance comparison of GSF-II, GSPF-II, and SISR filters.
Computation time (per realization) and average MSEx of 50 random
realizations. Left side—M = 20 (per mixand) for GSPF-II andM = 640 for
SISR filter. Right side—M = 100 (per mixand) for GSPF-II andM = 5000

for SISR filter.

At the receiver, the signal is sampled by in-phase and quadra-
ture-phase sampling, where the channel noise is mixture
Gaussian. Thus, we have

where is zero mean noise mixture Gaussian noise with two
mixands with weights and and covariances given by

The derivation of the discrete time process equation of the FM
system can be found in [26]. We compare the performance of the
GSF-II and GSPF-II filters, which were used for demodulation.
Note that the measurement noise was mixture Gaussian while
the process noise was Gaussian, as opposed to the assumptions
used for the algorithms presented for GSF-II and GSPF-II.

The performance measure frequently used for FM systems is
the steady-state inverse of the message error covariance given
by , where . We estimate

, where is the settling period,
and . This measure is plotted against the
carrier-to-noise ratio (CNR) given by 2 . For Fig. 7,

, , and . For the GSF-II and GSPF-II,
the number of mixands was , and for GSPF-II, the used
number of particles for updating each mixand was .
Note that the GSPF-II had at least a gain of 1 dB for lower CNR,
which increases for higher CNR.

C. Example 3—Joint Channel Estimation and Symbol
Detection for Impulsive Fading Channel

In [2], a particle-based filter was presented for joint channel
estimation and symbol detection. Transmitted dataare from
a discrete complex set over a frequency flat
fading channel. The complex impulsive fading channelis
modeled as an autoregressive process driven by impul-
sive noise, modeled as a GM with two mixands. The baseband
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Fig. 7. Performance comparison of GSF-II and GSPF-II filters for frequency
demodulation.

model of the above communication system can be represented
as a dynamic state space (DSS) system

(31)

where is the sampled signal at the receiver,
, , and

...
...

...
...

...

We assume that the components ofareknown. The symbol
denotes complex white Gaussian noise whose real and imag-

inary parts are zero mean and iid with variance . The vector
, where and , is white

with variance and distributed as a weighted sum of complex
Gaussians given by

(32)

The choice of and can be exploited to model and ap-
proximate a variety of channel characteristics. Here, the un-
known or hidden variables are . Given the data

, the model is linear with non-Gaussian process noise. The
GSF-II is used to track the impulsive fading channel, while the
data is estimated using SIS algorithm; see the references for
details. The bit-error-rates versus signal-to-noise ratio perfor-
mance curve is shown in Fig. 8. Pilot symbols are inserted every

th symbol interval to resolve phase ambiguity. Performance is
compared with the clairvoyant matched filter detector, which as-
sumes knowledge of the true channel, and its performance rep-
resents an unachievable lower bound. Good performance was
observed for channel tracking and detection.

VI. CONCLUSION

GSPFs that combine the principles of conventional Gaussian
sum filters and particle filters were introduced. A general frame-

Fig. 8. Bit error rate performance for flat fading channel for BPSK signaling.

work for DSS models with non-Gaussian noise was also pre-
sented, where the non-Gaussian DSS model was transformed to
a weighted sum of parallel Gaussian noise DSS models. Based
on EKFs, GPFs and GSPFs, we proposed algorithms for non-
Gaussian models. Simulations show that in general, particle-
based Gaussian mixture filters perform better than EKF-based
Gaussian mixture filters.
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