Model-Driven Development of Reconfigurable
Mechatronic Systems with MECHATRONIC UML*

Sven Burmester™*, Holger Giese, and Matthias Tichy

Software Engineering Group, University of Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany
{burmi, hg, mtt}@upb.de

Abstract. Today, advanced technical systems are complex, reconfigurable
mechatronic systems where most control and reconfiguration functionality is rea-
lized in software. A number of requirements have to be satisfied in order to ap-
ply the model-driven development approach and the UML for mechatronic sys-
tems: The UML design models must support the specification of the required
hard real-time event processing. The real-time coordination in the UML models
must embed the continuous control behavior in form of feedback-controllers to
allow for the specification of discrete and continuous hybrid systems. Advanced
solutions further require the dynamic exchange of feedback controllers at run-
time (reconfiguration). Thus, a modeling of rather complex interplays between
the information processing and the control is essential. Due to the safety-critical
character of mechatronic systems, the resulting UML models of complex, dis-
tributed systems and their real-time behavior must be verifiable in spite of the
complex structure and the embedded reconfigurable control elements. Finally, an
automatic code synthesis has to map the specification correctly to code. In this pa-
per, we will present our MECHATRONIC UML approach, which fulfills all these
requirements. The approach is motivated and illustrated by means of a running
example.

1 Introduction

An emerging field of software engineering research concerns complex, reconfigurable
mechatronic systems. Mechatronic systems [[1] combine technologies from mechani-
cal and electrical engineering as well as from computer science. They are real-time
systems because reactions to the environment usually have to be completed within a
specific, predictable time and they are hybrid systems because they usually consist of
discrete control modes as well as implementations of continuous feedback controllers.
As incorrect software can lead to failures with fatal consequences, they are also safety-
critical systems.

* This work was developed in the course of the Special Research Initiative 614 - Self-optimizing
Concepts and Structures in Mechanical Engineering - University of Paderborn, and was pub-
lished on its behalf and funded by the Deutsche Forschungsgemeinschaft.

** Supported by the International Graduate School of Dynamic Intelligent Systems. University
of Paderborn.

U. ABmann, M. Aksit, and A. Rensink (Eds.): MDAFA 2003/2004, LNCS 3599, pp. 47-{&1l 2005.
(© Springer-Verlag Berlin Heidelberg 2005

48 S. Burmester, H. Giese, and M. Tichy

Mechatronic systems, which had been single, autonomous systems, have been used
in distributed settings, which require extensive coordination, in recent times. Due to
the new requirements stemming from distribution and coordination scenarios, a new
generation of reconfigurable mechatronic systems has emerged. Those reconfigurable
mechatronic systems change their behavior in order to comply with certain roles, which
result from coordination and contracts with other mechatronic systems.

This reconfiguration leads to an increased complexity and thus makes it more diffi-
cult to fulfill safety-critical requirements. To guarantee safety for reconfigurable mecha-
tronic systems, we extend in this paper the Model Driven Architecture (MDA) ap-
proach [2]] for the design of hybrid mechatronic real-time systems with reconfiguration.

The today existing UML specification languages for technical systems [314/516478]]
only provide solutions for either modeling, verification, or code generation, but fail to
provide seamless support for all three requirements, which would be necessary for the
model-driven development of reconfigurable mechatronic systems. Therefore, a spec-
ification language (model) is required, that contains at first sufficient information to
specify the real-time behavior of the system in such a manner that high level modeling,
verification, and semantically correct source code generation are possible. Methods for
verification are required that guarantee the correctness of the whole distributed, hard
real-time system. Reconfigurable mechatronic systems are typically too complex to di-
rectly verify the whole system using model checking. Instead, the model must enable
the compositional model checking which considers just the component’s external vis-
ible behavior to verify the real-time coordination. When specifying the details of the
component’s behavior within the model, it must be possible to guarantee that adding
the details does not invalidate the component’s external behavior taken into account
during verification.

In this paper, we present the MECHATRONIC UML approach which allows the
model-driven development of complex, distributed, safety-critical real-time systems
which supports modeling, verification, and code generation by employing earlier in-
ventions namely hybrid mechatronic components [9] and real-time coordination pat-
terns [10]]. Two different views need to be distinguished: the structural view and the
behavioral view. The structural view describes the overall system that consists of mul-
tiple component instances, which are possibly distributed, interconnected with each
other, and which are exchanging messages via communication. In the behavioral view,
the behavior of single components is specified. As proposed in the MDA approach,
structure and behavior are specified with platform independent models which are trans-
formed to platform specific code, later. We apply UML diagrams [3] as platform inde-
pendent models. UML state machines are extended by more expressive constructs for
the description of real-time behavior [[11/12]. Component diagrams are refined such that
block diagrams [[13]], which are the most common description technique in the domain
of feedback control engineering, can be smoothly integrated [9].

The required steps during the model-driven development with the MECHA-
TRONIC UML approach can basically be divided into three phases which will be de-
scribed in detail in Section[3](see Figure[T). In the first two phases a correct platform in-
dependent model (PIM) is specified: In the first phase (steps 1-3), the system structure is
defined which is used to identify where in the system communication is required. Each

Model-Driven Development of Reconfigurable Mechatronic Systems 49

'a R
PIM specification

3) 2) D
Verification of Specification Real-Time
Real-Time Properties Coordination Pattern

<—| Specification Structure

4 3 6)
Verification of Refinement Relations
—=| between Roles and Component —=
Verification of the Component
\ | J
777 ‘ il .
[design step Step 1: Section 3.1 ! 7) V PSM & Code
Steps 2-3: Section 3.2 | Synthesizing | Generation

Steps 4-5: Section 3.3 !
I
I

. X Source Code
8 library Steps 6—7: Section 3.4

Composing Components
with Refined Pattern Roles

Refinement By
Compositional Embedding

i
|
| —= next design step
I
I
I
I

Fig. 1. Seamless support for the design of mechatronic systems

communication is described by an individual real-time coordination pattern. These co-
ordination patterns have different roles, which contain the real-time logic for the coordi-
nation, and a real-time constraint, which is proven w.r.t. certain communication network
properties. If such a coordination pattern has been designed and successfully verified,
it is added to a pattern library for reuse.

In the second phase (steps 4-6), the mechatronic components are built using the pre-
fabricated already verified coordination patterns, stored in the library of patterns. The
real-time behavior of the component is a refinement of the combination of pattern roles
and additional specified behavior. The employed refinement notion ensures the verified
real-time properties. In addition, the component’s internal coordination has to be veri-
fied to exclude inconsistent behavior or deadlocks. In the next step further components
(e.g. hybrid ones) are embedded into the superordinated component. Simple consistency
checks ensure again that the verified real-time properties of the coordination patterns
are still valid in spite of the embedding. Thus, a complete verification of the system is
not necessary, because the verification results of the individual patterns and components
still hold for the complete system. In the last phase, the platform specific model (PSM)
and finally platform specific source code is synthesized in step 7.

In the next section, we present the application scenario, which is used within this pa-
per to exemplify the application of our approach. In Section[3] we present our approach
w.r.t. system structure, real-time behavior, real-time coordination, and the integration
of hybrid behavior. Our approach is then compared with the UML 2.0 specification [3|]
in Section 4] and other related work in Section[5] We finally conclude in Section [6] and
present current and future work.

2 Application Example

As concrete example, we present the design of a self-optimizing version of the soft-
ware for the RailCab research projecﬂ which aims at using a passive track system with
self-optimizing shuttles that operate individually and make independent and decentral-
ized operational decisions. The vision of the railcab project is to provide the comfort of

! http://www-nbp.upb.de/en

50 S. Burmester, H. Giese, and M. Tichy

individual traffic concerning scheduling and on-demand availability of transportation
as well as individually equipped cars on the one hand and the cost and resource effec-
tiveness of public transport on the other hand. The modular railway system combines
sophisticated undercarriages with the advantages of new actuation techniques as em-
ployed in the Transrapicﬂ to increase passenger comfort while still enabling high speed
transportation and (re-)use of the existing railway tracks.

One particular problem is to reduce the energy consumption due to air resistance
by coordinating the autonomously operating shuttles in such a way that they build con-
voys whenever possible. Such convoys are built on-demand and require a small dis-
tance between the different shuttles such that a high reduction of energy consumption
is achieved. Coordination between speed control units of the shuttles becomes a safety-
critical aspect and results in a number of hard real-time constraints, which have to be
addressed when building the control software of the shuttles.

When shuttles approach each other, they use wireless communication to coordinate
the building of the convoy. Dependent on the position within the convoy they have to
change their behavior. For example a rear shuttle will no longer hold the velocity on
a constant level, but the distance to the front shuttle. Therefore, it dynamically has to
exchange the feedback controller which controls its acceleration. Further, a shuttle will
reduce the intensity of braking when another one drives in a short distance behind to
avoid a rear-end collision. Consequently, the shuttle design must ensure on the one hand
that the communication fulfills all safety requirements (e.g. safe coordination when
building or breaking convoys, no deadlocks) and that the exchange of the dynamic
controller (reconfiguration) guarantees safety and stability.

As a running example within this paper we consider a simplified version of the
convoy building problem. Namely we assume that only convoys of two shuttles are
built.

3 Model-Driven Development with MECHATRONIC UML

For the component-based development of mechatronic systems with UML, we extend
the UML by notions for the specification of continuous and real-time behavior. The
real-time extensions for the UML are specially geared towards verification of safety-
critical properties. In the following, we will describe our approach in detail using the
above mentioned example.

3.1 System Structure

UML component diagrams are used for the specification of the structure of our systems.
Component diagrams specify components and their interaction in form of connectors.
We distinguish component types and their instances during runtime. Connectors model
the communication between different components via the ports and interfaces and the
communication properties w.r.t. message loss, latency, etc. Ports are distinct interaction
points between components and are typed by provided and required interfaces.

2 http://www.transrapid.de/en

Model-Driven Development of Reconfigurable Mechatronic Systems 51

Shuttle @

RearRole Veur @ FrontRole
11 Vreq [—FO
Agur :AC ald
Areq o
UFront

Fig. 2. Type specification of component Shuttle

For our example scenario, Figure 2l shows the component type for the shuttle. The
Shuttle component contains a hybrid AccelerationControl (AC) component instance.
This component computes the acceleration needed to achieve a specific goal (keep-
ing a specified distance or keeping a specified speed level). The AccelerationControl
component has five incoming continuous ports for the current velocity v, the current
distance A.,;-, and the velocity of the front shuttle vg,..,,; provided by sensors, and the
required velocity v, and the required distance A,., which are parameterized refer-
ence inputs. Further, AccelerationControl has one outgoing continuous port that sends
the acceleration values to the appropriate hardware actuator devices. In addition (the
details are presented in Section [3.4)), the AC component contains discrete behavior to
switch between keeping distance or keeping velocity on a constant level, and, thus, is a
hybrid component. For clearer presentation, the sensors and actuators connected to the
input ports and the output port of the AC component have been hidden.

3.2 Real-Time Coordination

Interaction between component instances during runtime is a major part in the design
of complex, reconfigurable, mechatronic systems. In our scenario, a shuttle forms a
convoy with another shuttle via the RearRole and FrontRole interfaces. In the domain
of mechatronic systems, an autonomous unit like a shuttle reacts in a local environment
and the interfaces to its environment are strictly defined (as e.g. a shuttle trying to
build a convoy has to interact only with one other shuttle and not with a third one
which is a few kilometers away). This domain-specific restriction is the reason why
usually only relative simple coordination patterns have to be constructed, i.e. patterns
with simple coordination protocols between roles, limited numbers of input signals and
a fixed number of roles.

The interaction between two shuttles w.r.t. building a convoy is one such simple co-
ordination pattern. Figure 3] shows the ConvoyCoordination pattern between two shut-
tles. The protocol for building and breaking convoys is specified in the roles of this
pattern (see Figure). Components in the domain of mechatronic systems must meet
real-time requirements. Therefore, we use our real-time variant of UML state machines
called Real-Time Statecharts [[11112] for the specification of role behavior. They al-
low to apply constructs from timed automata [14/15] like clocks, time guards, time
invariants and further annotations like worst case execution times and deadlines (see

52 S. Burmester, H. Giese, and M. Tichy

o B sossssess B

distance

Fig. 3. Component Diagram and Patterns

a) Rear Role \ noConvoy frontRole.convoyProposalRejected /

]
\ / frontRole.convoyProposal P
default) wait

@

frontRole.breakConvoy / frontRole.startConvoy /

convoy
Wa? / frontRole.breakConvoyProposal e def

[
c

frontRole.breakConvoyProposalRejected / 4\

b) Front Role \ noConvoy / rearRole.convoyProposalRejected
rearRole.convoyProposal / [1 <ty <1000]

S default wait {to} answer

/ rearRole.startConvoy

convoy rearRole.breakConvoyProposal
/ rearRole.breakConvoy e default

rearRole.breakConvoyProposal
/ rearRole.breakConvoyRejected

Fig. 4. Statechart of the RearRole role and the FrontRole role

Section[3.3). As shown in [11]], these annotations enable an automatic implementation
on a real physical machine with limited resources.

If an event has the form interface.message it means that the transition is triggered
when message is received via the interface interface. Side-effects of the form inter-
face.message describe the sending of message to a receiver which is connected via
interface. Later, we will use events where no interface is specified. Then message is
local and sent or received within the same statechart.

Initially, both roles are in state noConvoy::default, which means that they are not
in a convoy. The rear role non-deterministically chooses whether to propose building a
convoy or not. After having chosen to propose a convoy, a message is sent to the other
shuttle resp. its front role. The front role chooses non-deterministically to reject or to
accept the proposal after max. 1000 msec. In the first case, both statecharts revert to
the noConvoy::default state. In the second case, both roles switch to the convoy::default
state.

Eventually, the rear shuttle non-deterministically chooses to propose a break of the
convoy and sends this proposal to the front shuttle. The front shuttle chooses non-

Model-Driven Development of Reconfigurable Mechatronic Systems 53

deterministically to reject or accept that proposal. In the first case, both shuttles remain
in convoy-mode. In the second case, the front shuttle replies by an approval message,
and both roles switch into their respective noConvoy::default states.

For the connector which represents the wireless network we do not apply an explicit
statechart, but instead specify its QoS characteristics such as throughput, maximal delay
etc. in the form of connector attributes. In our example, we assume that the connector
forwards incoming signals with a delay of 1 up to 5 msec. The connector is unsafe in
the sense that it might fail at any time, such that we set our specific QoS characteristic
reliable to false.

To provide safe behavior, the following RT-OCL [16] constraint must hold. It de-
mands that a combination of role states where the front role is in state noConvoy and
the rear role is in state convoy is not possible. This is required because such a situation
would allow the front shuttle to brake with full intensity although another shuttle drives
in short distance behind, which causes a rear-end collision.
context DistanceCoordination inv:

not (self.oclInState(RearRole::Main::convoy) and
self.oclInState(FrontRole: :Main: :noConvoy))

It is shown in [10], that this property holds. As mentioned there, those patterns are
individually constructed and verified. In the next section, we show how components are
developed without compromising the verification results by composing roles of differ-
ent coordination patterns and refining their behavior. In our example, the Shuttle com-
ponent is a combination of refined versions of the RearRole and the FrontRole. For a
component, which combines different patterns respective the roles, the verified proper-
ties still hold due to the approach presented in [[10]. Thus, components for mechatronic
systems are developed in a way similar to a construction kit using several proven and
verified building blocks and refine them to suit different requirements.

3.3 Local Real-Time Behavior

Figure Bl depicts the behavior of the Shuttle component from Figure 2] taken from [10]
and extended with real-time annotations. The Real-Time Statechart consists of three
orthogonal states FrontRole, RearRole, and Synchronization. FrontRole and RearRole
are refinements of the role behaviors from Figure] and specify in detail the commu-
nication that is required to build and to break convoys. Synchronization coordinates
the communication and is responsible for initiating and breaking convoys. The three
sub-states of Synchronization represent whether the shuttle is in the convoy at the first
position (convoyFront), at second position (convoyRear), or whether no convoy is built
at all (noConvoy). The whole statechart is a refinement of both role descriptions as it just
resolves the non-determinism from the roles from Figure[dland does not add additional
behavior.

As mentioned above, components in the domain of mechatronic systems must meet
real-time requirements. In the specific example it needs not only to be specified that,
e.g. RearRole has to send a startConvoy message after receiving convoyOK, but also that
this has to be finished within a specific, predictable time. Therefore, we apply our Real-
Time Statecharts [11]] for specification. Real-Time Statecharts respect that the firing of
transitions consumes time and that real physical, mechatronic systems can never react

54 S. Burmester, H. Giese, and M. Tichy

FrontRole
noCoNnvoy noGonvoy / RearRole.convoyProposalRejected
d
L |
RearRole.convoyProposal / isConvoyOK -
defaultJ yrop Y wait
—
de RearRole.breakConvoy convoyOk
/ breakConvoy / RearRole.startConvoy
Convoy Ldv d, —
PP doBreakConvoy (
wait / RearRole.breakConvoyProposal default
RearRole.breakConvoyProposalRejected / ~¢ —*
Synchronization 0
‘ isConvoyOK
convoyFront / convoyOK isConvoyOk
when(convoyNotUseful) d1 / noConvoy
/ doBreakConvoy when(convoyUseful)‘ o d @
/ buildConvoy !
—
dy - 4, (noConvoy convoyRear
default wait 1o breakConvoy /
— - {to} breakConvoy / T
dy [15 < to] 1
RearRole

noConvoy FrontRole.convoyProposalRejected / breakConvoy

¢ .\ de \L buildConvoy / FrontRole.convoyProposal
default wait
gdc d. ?L

FrontRole.startConvoy /

FrontRole.breakConvoyProposal d.
convoy / FrontRole.breakConvoy

A c
breakConvoy (
default
FrontRole.breakConvoyProposal ‘(7
c

/ FrontRole.breakConvoyRejected

Fig. 5. Behavior of the Shuttle component

in zero time, but always with a delay. To represent this in the model, we make use of the
deadline construct:

In Figure [3] so called deadline intervals d. and d; are used to specify a minimum
and a maximum duration for the time between triggering a transition and finishing its
execution. E.g. sending the message convoyProposalRejected to RearRole has to be
finished within the time specified by d. after receiving the message noConvoy in state
FrontRole::noConvoy::wait. As another example for predictable timing behavior (real-
time behavior) the change in Synchronization from noConvoy to convoyFront has to be
finished within d;.

3.4 Controller Integration

The Acceleration Control (AC) component contained in the Shuttle component (cf.
Figure 2)) is a hybrid component. It consists of two discrete control modes which rep-
resent whether the shuttle is under velocity control or under distance control (see Fig-
ure[6). Further it has continuous in- and outputs. Dependent on the active discrete mode
either the current and the required velocity are used for the velocity controller or the cur-

Model-Driven Development of Reconfigurable Mechatronic Systems 55

applyDC

V fades dp, —* ¢
VelocityControl DistanceControl
UcuT —= AUU" —=
:Velocity Controller —=% Areq —=| :Distance Controller |—=¢
Vpeq —=| — VFirst — —
ﬁk dy, applyVC
fades

Fig. 6. Behavior of the AC component

applyDC

? | T
Ve Acur
B @ a Areq @ a

Ureq . UFront
ac:AC [VelocityControl] ac:AC [DistanceControl]

T =~ dy applyVC ‘

Fig. 7. Interface Statechart of the AC component

rent and required distance to the front shuttle as well as the velocity of the first shuttle
are used for the distance controller. The output a is the acceleration in any mode.

In order to embed the continuous controllers into the discrete states, the Real-Time
Statecharts are extended to hybrid ones. In Hybrid Statecharts each discrete state is
associated with a configuration of embedded component instances [9]]. In this example,
each configuration consists of just one single feedback controller.

When a change occurs between the discrete states, a discrete switch between the
controllers could lead to an unsteadiness in the output signal a. This unsteadiness will
stimulate additional excitations which could lead to instability even when both con-
trollers are stable on their own. In order to avoid these unsteadinesses, output cross-
fading is applied [9]. This is specified by a fading function ftqde, 1€sp. frade, and a
minimal and a maximal fading duration (dy, resp. dy,) which is specified as an interval
as well.

Although the hybrid AC component has five different continuous input signals,
never all of them are required. When the component is in velocity control mode only
Veyr and vy.qq are required, in distance control mode only Ay, Apeq, and vpypq are
required. These dynamic interfaces are visualized by the so called Interface Statechart
in Figure[7l

The Interface Statechart abstracts from the component’s internals as it just contains
the externally relevant behavior: the different control modes, the modes’ continuous
in- and outputs, and the deadline information for switches between the control modes.
Whether fading is required and which kind of fading function is applied and which
components are associated to the discrete states is not important for the external view.

56 S. Burmester, H. Giese, and M. Tichy

isConvoyOk

Synchronization / noConvoy
isConvoyOK h —
/ convoyOK when(convoyUseful) ("convoyRear
ull IV
q 4 when(convoyNotUseful)
\L " / doBreakConvoy

e

convoyFront noConvoy d

di—*
@—={ default
di—* after (15 msec)

a a Acur

Vreq Ureg
ac:AC [VelocityControl] ac:AC [VelocityControl] A”,q @ a

UFront
‘ d14¢ ﬁ ﬁ\k dy ac:AC [DistanceControl]

breakConvoy /

breakConvoy /

Fig. 8. Behavioral embedding

This interface representation is used when the different components are embedded into
each other (see below).

The Shuttle and the AC component, which have been designed independent of each
other, are embedded hierarchically from the structural point of view (cf. Figure[2). As
their behavior is executed concurrently, we say AC is hierarchically, parallel embedded
into Shuttle. As it makes no sense for AC to be in state DistanceControl while Synchro-
nization is in state convoyFront, which represents the situation when there is no further
shuttle before, the two behavior descriptions have to be coordinated.

Therefore, the Shuttle statechart from Figure [3is extended to a Hybrid Statechart.
Figure[Bldepicts the orthogonal Synchronization state, whose sub-states embed different
configurations each consisting of one AC instance and its current internal state and con-
tinuous interface. So in Figure [§]is specified that AC has to be in state DistanceControl
when Synchronization is in state convoyRear. If Synchronization is in state noConvoy or
convoyFront, AC has to be in state VelocityControl. Consequently, a state change within
the orthogonal Synchronization state implies a state change in its embedded AC compo-
nent. As only the external visible information of the AC component is important when
it is embedded, the form of the embedded component is equal to the single states of the
Interface Statechart from Figure[7]

This kind of modeling has the advantage that it supports the decomposition into
multiple components that is required to handle the complexity in mechatronic systems.
Further the control engineering know-how is separated from the software engineering
know-how: The discrete coordination and communication is specified by the statechart
from Figure[3] the continuous behavior and the restrictions of the controller exchange is
specified in Figure[@land the later integration is specified in Figure[8l Another advantage
is the support for flexible continuous interfaces.

In order to ensure that the results of the compositional verification are not invali-
dated by the detailed realization of the Shuttle component, the component realization
has to be a refinement of the role behavior (see Section[3.2)). The statechart from Fig-
ure [3]is a refinement of the roles from Figure 4l Consequently, it needs to be ensured
that the embedding of AC still just refines the specified real-time behavior from Figure[3]
and is not adding additional behavior or is in conflict with the real-time specification of
this superordinated component.

Assume, for example, in Figures 3] and [§ is specified that a change from state no-
Convoy to convoyRear has to be finished after 200 msec and that this change implies a

Model-Driven Development of Reconfigurable Mechatronic Systems 57

change of the embedded AC component from VelocityControl to DistanceControl. Then
in Figure[7lthe minimal fading duration may not be above 200 msec.

This example demonstrates how consistency is approved by simple syntactical
checks between the superordinated component and the Interface Statecharts of the em-
bedded components: In the above example dy, C d. must be satisfied. Such checks
have to be enforced for every possible change of the global state (the current global
state consists of the current states of all components). Due to the hierarchically, parallel
embedding, the global state space is restricted: Although Synchronization consists of
3 states and AC of 2 states, the hierarchical parallel composition does not consist of
2 x 3 = 6 states, but just of 3 states This information is contained in the specification
in Figure [§] and does not need to be derived by a costly reachability analysis. Conse-
quently, the number of consistency checks to be enforced are thus not exponential in
the number of states. If these consistency checks are successful, the results of the com-
positional model checking presented in Section are valid even for components that
embed further components in the hierarchical, parallel manner (cf. [9]).

4 MECHATRONIC UML and Standard UML

The UML 2.0 [3] can be considered as the currently evolving de facto standard
for modeling complex software systems. Event though the standard UML 2.0 is not
specifically tailored for technical systems, it is frequently applied also in this domain
(cf. [1704018019]) and actually includes most of the concepts of the Real-Time Object-
Oriented Modeling (ROOM) approach [20]. However, as the ROOM concepts focus
on architectural design and do not address the real-time or hybrid behavior of the op-
erational model at all, UML supports real-time aspects only rudimentarily and hybrid
behavior not at all. In the presented MECHATRONIC UML approach, the architectural
design must employ standard UML components and patterns in a well-defined rigorous
manner. The real-time communication protocols of each port or pattern role have to be
specified. While UML 2.0 offers so called Protocol State Machines (PSM) to do so,
we require that our real-time extension of the UML state machines named Real-Time
Statecharts are employed.

A relevant UML extension w.r.t. real-time is the UML Profile for Schedulability,
Performance, and Time [4]]. The profile defines general resource and time models which
are used to describe the real-time specific attributes of the modeling elements such as
schedulability parameters or quality of service (QoS) characteristics. Besides an ab-
stract logic model, a more concrete engineering model can be specified by using these
extensions. The engineering model is later used for the required model analysis and
code generation. However, appropriate concepts for the real-time modeling at the logic
model level are missing and real-time aspects are only present at the level of the engi-
neering model. Thus, the developer has to map his logical model onto the technical con-
cepts such as threads and periods manually. Then, he has to test and adjust the logical
model as well as its mapping to the engineering model manually until the engineering
model mets all real-time constraints.

3 This is because the state combinations (convoyFront, DistanceControl), (noConvoy, Dis-
tanceControl), and (convoyRear, VelocityControl) are not reachable.

58 S. Burmester, H. Giese, and M. Tichy

The presented approach in contrast addresses real-time aspects at the logical model
level. The employed Real-Time Statecharts support deadlines, worst case execution
times, clocks, clock resets, time guards, and time invariants. Therefore they provide
powerful abstract means to specify complex timing requirements. A formally defined
semantics for them further enables the compositional verification by means of model
checking. MECHATRONIC UML thus really enables the model-driven development of
real-time systems as all required timing requirements are contained in the (logical)
model and the synthesis of the mapping to threads and their periods can be done au-
tomatically.

A request for proposals for UML for System Engineering (UML for SE) [21] by the
OMG currently address UML in the context of technical systems. The idea of UML for
SE is to provide a language that supports the system engineer in modeling and analyzing
software, hardware, logical and physical subsystems, data, personnel, procedures, and
facilities. The presented approach addresses some of these issues, but mainly focuses
on the specific requirements of hybrid, reconfigurable, mechatronic systems.

One distinguishing proposal for UML for SE is the Systems Modelling Language
(SysML)H which extends a subset of the UML 2.0 specification. One extension, related
to the design of continuous and hybrid systems are Structured Classes, that describe the
fine structure of a class extended by continuous communication links between ports.
In Parametric Diagrams the parametric (arithmetic) relations between numerical at-
tributes of instances are specified and the nodes of Activity Diagrams are extended
with continuous functions and in- and outputs. This enables to model simple difference
equations, but using this approach to model complex feedback-controllers leads to an
overwhelming complexity. The specification or the integration of continuous behavior
in form of continuous components is not supported. Further SysML does not support
reconfiguration, as the specification of parametric relations is always static.

In contrast to UML 2.0 and the SysML proposal, our approach provides the re-
quired support for modeling of hybrid, reconfigurable systems by first refining UML
ports into discrete, continuous, and hybrid ones such that hybrid components can be
modeled with UML components. To specify the reconfiguration and hybrid behavior
of these components, we extended Real-Time Statecharts towards Hybrid Statecharts
which employ UML instance diagrams of the subordinated components to specify the
state-dependent embedding and coordination. The formal definition of the embedding
for Hybrid Statecharts enables to check efficiently whether an embedding is consistent.
A consistent embedding further ensures, that the real-time properties, verified through
compositional model checking, still hold for the more detailed hybrid system behavior.

5 Related Work

Besides UML and its profiles, a number of proprietary approaches for the modeling of
technical systems with UML exist.

Within the IST project AIT-WOODDES hierarchical timed automata (HTA) [3]]
have been invented to enable the modeling and verification of complex real-time be-
havior. HTA are a hierarchial extension of timed automata [135] and they provide most

4 http://www.sysml.org

Model-Driven Development of Reconfigurable Mechatronic Systems 59

of the powerful modeling concepts of statecharts as well as clocks. A mapping to multi-
ple parallel running flat timed automata permits to verify the model by using the model
checker UPPAAL [14]]. Code synthesis has also been addressed in [22], however, the
approach is restricted to flat automata and does not take into account the delays that
occur when transitions are fired. Our approach for code generation respects hierarchy,
parallelism, and the real-time specifications [11423]].

The aim of the IST OMEGA project [[6] is to ensure the correctness of embedded
systems. In the approach, the UML has been extended by additional time constructs and
a formally defined semantics is intended. However, unlike our approach, there is no sup-
port for hybrid behavior and compositional verification. Verification is only supported
for the semi-automatic verification via theorem proving.

Like the presented approach, HyROOM [7] and the underlying HyCharts [8]] sup-
port the component-based modeling of hybrid systems. The software’s architecture is
specified similar to ROOM/UML-RT and the behavior is specified by statecharts whose
states are associated with systems of ordinary differential equations and differential
constraints or Matlab/Simulink block diagrams. These approaches provide means for
the reconfiguration of systems in terms of changing the continuous behavior. But it is
only possible to reconfigure the model inside a component on one hierarchy-level. In
contrast to that, our approach allows for a complex reconfiguration altering the structure
and concerning more than one hierarchy-level. Support for compositional verification
of models is not addressed by any of these approaches.

6 Conclusion and Future Work

Reconfigurable mechatronic systems in the domain of safety-critical distributed systems
must be designed with great care. MECHATRONIC UML not only supports the model-
driven development of such systems respecting real-time requirements, but also allows
for a mixture of discrete event-based as well as continuous behavior. In addition, the
applied modeling approach contains means for the compositional verification of safety-
critical properties. Finally, source code is synthesized from the models, which respects
the real-time constraints and safety requirements of the model.

MECHATRONIC UML further refines the industry standard UML where possible
and provides a well defined UML subset as well as a guideline how to develop safety-
critical reconfigurable mechatronic systems.

Tool support (in form of a number of plug-ins for the Fujaba Tool Suiteﬁ) for the
specification, verification and automatic source code synthesis of the Real-Time State-
charts and the real-time coordination patterns exists. For the support of hybrid behavior
a prototypic implementation exists and we are currently working on the tool support.

In the future, we plan to employ graph transformations [24] to describe the recon-
figuration of the behavior w.r.t. the online addition or removal of coordination pattern
roles. By this reconfiguration, the hybrid components reconfigure themselves to differ-
ent coordination scenarios to optimize their memory and processing power footprints.
These reconfigurations specified by graph transformations are also targets for the veri-
fication of safety-critical properties.

> http://www.fujaba.de

60

S. Burmester, H. Giese, and M. Tichy

We further plan to integrate MECHATRONIC UML with our approaches for auto-

matic deployment [25] and dependability [26] with UML.

Acknowledgements. The authors thank Oliver Oberschelp for the support in the con-
trol engineering domain.

References

10.

11.

12.

13.
14.

15.

16.

. Bradley, D., Seward, D., Dawson, D., Burge, S.: Mechatronics. Stanley Thornes (2000)
. Object Management Group: Model Driven Architecture (MDA) Edited by Joaquin Miller

and Jishnu Mukerji. (2001)

. Object Management Group: UML 2.0 Superstructure Specification. (2003) Document

ptc/03-08-02.

. OMG: UML Profile for Schedulability, Performance, and Time Specification. OMG Docu-

ment ptc/02-03-02 (2002)

. David, A., Moller, M., Yi, W.: Formal Verification of UML Statecharts with Real-Time

Extensions. In Kutsche, R.D., Weber, H., eds.: 5th International Conference on Fundamental
Approaches to Software Engineering (FASE 2002), April 2002, Grenoble, France. Volume
2306 of LNCS., Springer (2002) 218-232

. Graf, S., Hooman, J.: Correct Development of Embedded Systems. In Oquendo, F., Warboys,

B., Morrision, R., eds.: Proceedings of the First European Workshop on Software Architec-
ture, EWSA2004. Volume 3047 of Lecture Notes in Computer Science., St Andrews, UK,
Springer Verlag (2004) 241-249

. Stauner, T., Pretschner, A., Péter, I.: Approaching a Discrete-Continuous UML: Tool Sup-

port and Formalization. In: Proc. UML’2001 workshop on Practical UML-Based Rigorous
Development Methods — Countering or Integrating the eXtremists, Toronto, Canada (2001)
242-257

. Stauner, T.: Systematic Development of Hybrid Systems. PhD thesis, Technische Universitit

Miinchen (2001)

. Giese, H., Burmester, S., Schifer, W., Oberschelp, O.: Modular Design and Verification

of Component-Based Mechatronic Systems with Online-Reconfiguration. In: Proc. of 12th
ACM SIGSOFT Foundations of Software Engineering 2004 (FSE 2004), Newport Beach,
USA, ACM (2004)

Giese, H., Tichy, M., Burmester, S., Schifer, W., Flake, S.: Towards the Compositional
Verification of Real-Time UML Designs. In: Proc. of the European Software Engineering
Conference (ESEC), Helsinki, Finland. (2003)

Giese, H., Burmester, S.: Real-Time Statechart Semantics. Technical Report tr-ri-03-239,
University of Paderborn, Paderborn, Germany (2003)

Burmester, S., Giese, H.: The Fujaba Real-Time Statechart Plugln. In: Proc. of the Fujaba
Days 2003, Kassel, Germany. (2003)

Ogata, K.: Modern Control Engineering. Prentice Hall (2002)

Larsen, K., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. Springer International Journal of
Software Tools for Technology 1 (1997)

Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model Checking for Real-
Time Systems. In: Proc. of IEEE Symposium on Logic in Computer Science. (1992)

Flake, S., Mueller, W.: An OCL Extension for Real-Time Constraints. In: Object Model-
ing with the OCL: The Rationale behind the Object Constraint Language. Volume 2263 of
LNCS. Springer (2002) 150-171

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Model-Driven Development of Reconfigurable Mechatronic Systems 61

Bichler, L., Radermacher, A., Schiirr, A.: Evaluation uml extensions for modeling realtime
systems. In: Proc. on the 2002 IEEE Workshop on Object-oriented Realtime-dependable
Systems WORDS’02, San Diego, USA, IEEE Computer Society Press (2002) 271-278

Gu, Z., Kodase, S., Wang, S., Shin, K.G.: A Model-Based Approach to System-Level De-
pendency and Real-Time Analysis of Embedded Software. In: The 9th IEEE Real-Time and
Embedded Technology and Applications Symposium, Toronto, Canada. (2003)

Masse, J., Kim, S., Hong, S.: Tool Set Implementation for Scenario-based Multithreading of
UML-RT Models and Experimental Validation. In: The 9th IEEE Real-Time and Embedded
Technology and Applications Symposium, Toronto, Canada. (2003)

Selic, B., Gullekson, G., Ward, P.: Real-Time Object-Oriented Modeling. John Wiley and
Sons, Inc. (1994)

Object Management Group: UML for System Engineering Request for Proposal. (2003)
Document ad/03-03-41.

Amnell, T., David, A., Fersman, E., Pettersson, M.O.M.P., Yi, W.: Tools for Real-Time
UML: Formal Verification and Code Synthesis. In: Workshop on Specification, Implemen-
tation and Validation of Object-oriented Embedded Systems (SIVOES’2001). (2001)
Burmester, S., Giese, H., Gambuzza, A., Oberschelp, O.: Partitioning and Modular Code
Synthesis for Reconfigurable Mechatronic Software Components. In: Proc. of European
Simulation and Modelling Conference (ESMc’2004), Paris, France. (2004) (accepted).
Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph Transforma-
tion. Volume 1. World Scientific, Singapore (1999)

Tichy, M., Schilling, D., Giese, H.: Design of Self-Managing Dependable Systems with
UML and Fault Tolerance Patterns. In: Proc. of the Workshop on Self-Managed Systems
(WOSS) 2004, FSE 2004 Workshop, Newport Beach, USA. (2004)

Tichy, M., Giese, H.: A Self-Optimizing Run-Time Architecture for Configurable Depend-
ability of Services. In de Lemos, R., Gacek, C., Romanovsky, A., eds.: Architecting De-
pendable Systems II. Volume 3069 of Lecture Notes in Computer Science. Springer Verlag
(2004) 25-51

	Introduction
	Application Example
	Model-Driven Development with
	System Structure
	Real-Time Coordination
	Local Real-Time Behavior
	Controller Integration

	and Standard UML
	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

