
HSL MA86
PACKAGE SPECIFICATION HSL

1 SUMMARY

HSL MA86 uses a direct method to solve large sparse symmetric indefinite linear systems of equations AX = B. This
package uses OpenMP and is designed for multicore architectures. It computes the sparse factorization

A = PLD(PL)?

where L? = LT (real symmetric or complex symmetric) or L? = LH (complex Hermitian, where LH denotes the
conjugate transpose of L), P is a permutation matrix, L is unit lower triangular, and D is block diagonal with blocks of
size 1×1 and 2×2.
Options are provided for the complementary forward and backward substitutions.
The efficiency of HSL MA86 is dependent on the user-supplied elimination order. The HSL package HSL MC68 may be
used to obtain a suitable ordering.
The lower triangular part of A must be supplied in compressed sparse column format. The HSL package HSL MC69
may be used to convert data held in other sparse matrix formats and also to check the user’s matrix data for errors.
If A is known to be positive definite (so that pivoting for numerical stability is not required), we recommend HSL MA87.

ATTRIBUTES — Version: 1.7.4 (1 November 2023). Interfaces: Fortran, C, MATLAB. Types: Real (single,
double), Complex (single, double). Calls: HSL MC34, MC64, MC77 and HSL MC78, BLAS subroutines copy, axpy,
swap, gemm, gemv, trsm, trsv. Original date: January 2011. Origin: J.D. Hogg and J.A. Scott, Rutherford

Appleton Laboratory. Language: Fortran 95, plus allocatable components of derived types. Parallelism: Uses
OpenMP and its runtime library. Remark: Development of HSL MA86 was supported by EPSRC grant EP/E053351/1.

2 HOW TO USE THE PACKAGE

2.1 OpenMP

OpenMP is used by the HSL MA86 package to provide parallelism for shared memory environments. To run in parallel,
OpenMP must be enabled at compilation time by using the correct compiler flag (usually some variant of -openmp).
The number of threads may be controlled at runtime by setting the environment variable OMP NUM THREADS.
Although the code may be compiled and run in serial mode, we recommend it is run in parallel on a multicore machine
(other HSL solvers, notably MA57 or HSL MA77, may be more appropriate if a serial code is required).

2.2 Calling sequences

Access to the package requires a USE statement of the form

Single precision version
USE HSL MA86 single

Double precision version
USE HSL MA86 double

Complex version
USE HSL MA86 complex

Double complex version

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 1

HSL MA86 v1.7.4
Documentation date: November 15, 2023

HSL MA86 HSL

USE HSL MA86 double complex

If it is required to use more than one module at the same time, the derived types (Section 2.3) must be renamed in one
of the use statements.
The following subroutines are available to the user:

(a) MA86 analyse analyses the sparsity pattern of the matrix and, using the user-supplied elimination order, prepares
the data structures for the factorization.

(b) MA86 factor uses the data structures set up by MA86 analyse to compute a sparse factorization. More than one
call to MA86 factor may follow a call to MA86 analyse.

(c) MA86 factor solve may be called in place of MA86 factor to factorize A and, at the same time, solve the system
AX = B. Multiple calls to MA86 factor solve may follow a call to MA86 analyse.

(d) MA86 solve uses the computed factors generated by MA86 factor or MA86 factor solve to solve systems
AX = B for one or more right-hand sides B. Multiple calls to MA86 solve may follow a call to MA86 factor or
MA86 factor solve. An option is available to perform a partial solution.

(e) MA86 finalise should be called after all other calls are complete for a problem (including after an error return).
It deallocates the components of the derived data types allocated by the package.

2.3 The derived data types

For each problem, the user must employ the derived types defined by the module to declare scalars of the types
MA86 keep, MA86 info, and MA86 control. The following pseudocode illustrates this.

use HSL_MA86_double
...
type (MA86_control) :: control
type (MA86_info) :: info
type (MA86_keep) :: keep

The components of MA86 control and MA86 info are explained in Sections 2.4.8 and 2.4.9. The components of
MA86 keep are private and are used for communication between subroutines and between threads.

2.4 Argument lists and calling sequences

2.4.1 Optional arguments

We use square brackets [] to indicate OPTIONAL arguments, which are always at the end of the argument list. Since
we reserve the right to modify the argument list and to add additional optional arguments in future releases of the code,
we strongly recommend that all optional arguments be called by keyword, not by position.

2.4.2 Integer, real and package types

INTEGER denotes default integer and INTEGER(long) denotes INTEGER(kind=selected int kind(18)).
REAL denotes default real if the single precision version or the complex version is being used, and double precision
real if the double precision or double precision complex version is being used.
We use the term package type to mean default real if the single precision version is being used, double precision real
for the double precision version, default complex for the complex version and double precision complex for the double
complex version.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 2

HSL MA86 v1.7.4
Documentation date: November 15, 2023

HSL HSL MA86

2.4.3 Input of the matrix A

The user must supply the lower triangular part of the matrix A in standard HSL format. This is a compressed sparse
column format with the entries within each column ordered by increasing row index. There is no requirement that
zero entries on the diagonal are explicitly included. No checks are made on the user’s data. It is important to note that
any out-of-range entries or duplicates may cause HSL MA86 to fail in an unpredictable way. Before using HSL MA86,
the HSL package HSL MC69 may be used to check for errors and to handle duplicates (HSL MC69 sums them) and
out-of-range entries (HSL MC69 removes them).

If the user’s data is held using another standard sparse matrix format (such as coordinate format or sparse compressed
row format), we recommend using a conversion routine from HSL MC69 to put the data into standard HSL format. The
user may additionally call MC69 set values before each call to MA86 factor or MA86 factor solve to change the
values of the entries of A (without altering the sparsity pattern). The input of A and of new values is illustrated in
Section 5.

2.4.4 To analyse the sparsity pattern and prepare for the factorization

call MA86_analyse(n,ptr,row,order,keep,control,info)

n is a scalar of type INTEGER that must hold the order of A.

ptr is an INTENT(IN) rank-one array of type INTEGER and size n+1. ptr(j) must be set so that ptr(j) is the
position in row of the first entry in column j and ptr(n+1) must be set to one more than the total number of
entries in the lower triangular part of A.

row is an INTENT(IN) rank-one array of type INTEGER . The first ptr(n+1)-1 entries must hold the row indices of
the entries of the lower triangular part of A, with the row indices for the entries in column 1 preceding those for
column 2, and so on.

order is an INTENT(INOUT) rank-one array of type INTEGER and size at least n. It must specify the elimination
order, that is, order(i) must hold the position of variable i in the pivot sequence. On exit, order contains the
elimination order that MA86 factor (or MA86 factor solve) will be given; this order may give slightly more
fill-in than the user-supplied order.

keep is an INTENT(INOUT) scalar of type MA86 keep. It is used to hold data about the problem being solved and must
be passed unchanged to the other subroutines.

control is an INTENT(IN) scalar of type MA86 control (see Section 2.4.8).

info is an INTENT(OUT) scalar of type MA86 info. Its components provide information about the execution of the
subroutine, as explained in Section 2.4.9.

2.4.5 To factorize the matrix and optionally solve AX = B

To factorize the matrix, a call of the following form may be made after the call to MA86 analyse:
The real case:

call MA86_factor(n,ptr,row,val,order,keep,control,info[,scale])

The complex case:
call MA86_factor(matrix_type,n,ptr,row,val,order,keep,control,info[,scale])

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 3

HSL MA86 v1.7.4
Documentation date: November 15, 2023

HSL MA86 HSL

If the user wishes to solve AX = B at the same time as factorizing the matrix, he or she should instead make a call of
the following form for one right-hand side:
The real case:

call MA86_factor_solve(n,ptr,row,val,order,keep,control,info,x1[,scale])

The complex case:
call MA86_factor_solve(matrix_type,n,ptr,row,val,order,keep,control,info,x1[,scale])

or, for more than one right-hand side,
The real case:

call MA86_factor_solve(n,ptr,row,val,order,keep,control,info,nrhs,lx,x[,scale])

The complex case:
call MA86_factor_solve(matrix_type,n,ptr,row,val,order,keep,control,info,nrhs,lx,x[,scale])

matrix type is a scalar of type INTEGER that indicates the type of the matrix A in the complex case. It must be set to
-4 if A is Hermitian and to -5 if A is complex symmetric. Restriction: matrix type = -4 or -5.

n, ptr, row, order: must be unchanged since the call to MA86 analyse.

val is an INTENT(IN) rank-one array of package type. The first ptr(n+1)-1 entries must be set so that val(k) holds
the value of the entry in position k of row(k).

keep, control, info: see Section 2.4.4.

x1 is an INTENT(INOUT) rank-one array of package type and of size at least n. On entry, x1(i) must hold the ith
component of the right-hand side; on exit, it holds the corresponding solution.

nrhs is an INTENT(IN) scalar of type INTEGER that holds the number of right-hand sides. Restriction: nrhs≥1.

lx is an INTENT(IN) scalar of type INTEGER that holds the first extent of x. Restriction: lx≥n.

x is an INTENT(INOUT) rank-2 array of package type with extents lx and nrhs. On entry, x(i,j) must hold the ith
component of the jth right-hand side; on exit, it holds the corresponding solution.

scale is an optional INTENT(INOUT) rank-1 array of type REAL and extent n. If present and control%scaling=0, it
specifies user-supplied scaling factors that are applied symmetricially to the matrix such that the matrix factored
is SAS where S = diag(scale). If present and control%scaling6=0, the scaling calculated by HSL MA86 will
be returned in scale.

2.4.6 To solve linear systems using the computed factors

After the call to MA86 factor (or MA86 factor solve), one or more calls of the following form may be made to
solve AX = B. Partial solutions may be performed by appropriately setting the optional parameter job. For a single
right-hand side,

call MA86_solve(x1,order,keep,control,info[,job])

or, for more than one right-hand side,

call MA86_solve(nrhs,lx,x,order,keep,control,info[,job])

x1, nrhs, lx, x, order: see Section 2.4.5.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 4

HSL MA86 v1.7.4
Documentation date: November 15, 2023

HSL HSL MA86

keep, control, info: see Section 2.4.4.

job is an optional INTENT(IN) scalar of type INTEGER. If job = 0 or job is absent, AX = B is solved. A partial
solution may be computed by setting job to have one of the following values:

1 for solving PLX = B

2 for solving DX = B

3 for solving (PL)?X = B

4 for solving D(PL)?X = B.

Restriction: job = 0,1,2,3,4.

Deprecated arguments:

scale is an optional INTENT(IN) rank-1 array of type REAL and extent n. If present it is ignored. This argument may
be removed in future versions of HSL MA86.

2.4.7 The finalisation subroutine

Once all other calls to HSL MA86 routines are complete for a problem or after an error return, a call of the following
form should be made to deallocate allocatable components of keep and info, and to destroy OpenMP locks.

call MA86_finalise(keep,control)

keep is an INTENT(INOUT) scalar of type MA86 keep that must be passed unchanged. On exit, allocatable components
will be deallocated.

control is an INTENT(IN) scalar of type MA86 control. Only the components that control printing are accessed
(see Section 2.4.8).

2.4.8 The derived data type for holding control parameters

The derived data type MA86 control is used to hold controlling data. The components, which are automatically given
default values in the definition of the type, are:

Printing controls

diagnostics level is a scalar of type INTEGER that is used to control the level of diagnostic printing. The different
levels are:

< 0 No printing.

= 0 Error and warning messages only.

= 1 As 0, plus basic diagnostic printing.

= 2 As 1, plus some additional diagnostic printing.

= 3 As 2, plus all entries of user-supplied arrays.

The default is diagnostics level=0.

unit diagnostics is a scalar of type INTEGER that holds the unit number for diagnostic printing. Printing is
suppressed if unit diagnostics<0. The default is unit diagnostics=6.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 5

HSL MA86 v1.7.4
Documentation date: November 15, 2023

HSL MA86 HSL

unit error is a scalar of type INTEGER that holds the unit number for error messages. Printing of error messages is
suppressed if unit error<0. The default is unit error=6.

unit warning is a scalar of type INTEGER that holds the unit number for warning messages. Printing of warning
messages is suppressed if unit warning<0. The default is unit warning=6.

Controls used by MA86 analyse

nemin is a scalar of type INTEGER that controls node amalgamation. A child node is merged with its parent node in
the assembly tree if they both involve fewer than nemin eliminations. The default is nemin=32. The default is
used if nemin<1.

nb is a scalar of type INTEGER. The factor L is held using a block structure (see Section 4.1) and nb controls the size
of the blocks. The target number of rows in each block is nb. The default is nb=256. The default is used if
nb<1.

Controls used by MA86 factor and MA86 factor solve

action is a scalar of type default LOGICAL. If A is found to be singular (that is, to have rank less than n), the
computation continues after issuing a warning if action has the value .true. or terminates (see error -11) if
it has the value .false. The default is action=.true.

nbi is a scalar of type INTEGER that holds the inner block size used in the factorize column tasks (see Section 4).
Using a value of nbi that is smaller than nb increases the amount of computation performed using Level 3
BLAS. The default is nbi=16. The default is used if nbi<1.

pool size is a scalar of type INTEGER that holds the initial size of the arrays that store the task pool (see Section 4).
Whenever the size of these arrays is found to be too small, their size is doubled. The default is pool size=25000.
The default is used if pool size<1.

small is a scalar of type REAL. Any pivot whose modulus is less than small is treated as zero. The default is
small= 10−20.

scaling is a scalar of type INTEGER that is used to control scaling. The available options are:

≤ 0 No scaling (scale optional argument not present), or user-supplied scaling (scale optional argument
present).

= 1 Generate a scaling using a weighted bipartite matching using the package MC64.

≥ 2 Generate a scaling by applying the iterative method of the package MC77 for one iteration in the infinity
norm and three iterations in the one norm.

The default is scaling=0.

static is a scalar of type REAL that is used to control static pivoting. If static>0.0 and if, at any stage of the
computation, fewer than the expected number of pivots can be found with relative pivot tolerance greater
than umin, diagonal entries are accepted as pivots. If a candidate diagonal entry has absolute value at least
static, it is selected as a pivot; otherwise, the pivot is given the value that has the same sign but absolute value
static. Further details are given in Section 4.3. The default value is 0.0. Restriction: Either static=0.0 or
static≥small.

u is a scalar of type REAL that holds the initial value of the relative pivot tolerance u used. The default is u=0.01 in
the double precision version and u=0.1 in the single precision. Values outside the range [0,1.0] are treated as
the default.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 6

HSL MA86 v1.7.4
Documentation date: November 15, 2023

HSL HSL MA86

umin is a scalar of type REAL that holds the minimum value of the relative pivot tolerance. If, at any stage of the
computation, fewer than the expected number of stable pivots have been found using the current tolerance u and
the candidate pivot with greatest relative pivot tolerance has tolerance v ≥umin, this is accepted as a pivot and
the tolerance u is set to v. The default is umin=0.01. Values of umin greater than u are treated as u and values
less than 0 are treated as 0.

2.4.9 The derived data type for holding information

The derived data type MA86 info is used to hold parameters that give information about the progress and needs of the
algorithm. The components of MA86 info (in alphabetical order) are:

detlog is a scalar of type REAL. On exit from MA86 factor or MA86 factor solve, it holds the logarithm of the
absolute value of the determinant of A or zero if the determinant is zero.

detarg is a scalar of package type that is absent in the real case. On exit from MA86 factor or MA86 factor solve in
the complex symmetric case, it holds the determinant of A divided by its absolute value or one if the determinant
is zero.

detsign is a scalar of type default INTEGER. On exit from MA86 factor or MA86 factor solve in the real or
complex Hermitian case, it holds the sign of the determinant of A or zero if the determinant of A is zero.

flag is a scalar of type INTEGER that gives the exit status of the algorithm (details in Section 2.5).

matrix rank is a scalar of type INTEGER. On exit from MA86 factor and MA86 factor solve, it holds the rank of
the factorized matrix.

maxdepth is a scalar of type INTEGER. On exit from MA86 analyse, it holds the maximum depth of the assembly tree.

num delay is a scalar of type INTEGER. On exit from MA86 factor and MA86 factor solve, it holds the number of
eliminations that were delayed, that is, the total number of pivot candidiates that were passed to the parent node
in the assembly because of stability considerations. If a variable is passed further up the assembly tree, it will
be counted again. A large value of num delay indicates that substantial modifications were made to the pivot
sequence to ensure stability (and the number of entries num factor in L and number of flops num flops used
to compute L will be significantly more than predicted by MA86 analyse).

num factor is a scalar of type INTEGER(long). On exit from MA86 analyse, it holds the number of entries that will
be in the L factor, assuming the pivot sequence can be used without modification. On exit from MA86 factor
and MA86 factor solve, it holds the actual number of entries in the L factor. Note that, 2n entries of D−1 are
also held.

num flops is a scalar of type INTEGER(long). On exit from MA86 analyse, it holds the number of floating-point
operations that will be needed to perform the factorization, assuming the pivot sequence can be used without
modification. On exit from MA86 factor and MA86 factor solve, it holds the number of floating-point
operations performed.

num neg is a scalar of type INTEGER. On exit from MA86 factor or MA86 factor solve in the real or complex
Hermitian case, it holds the number of negative eigenvalues of the matrix D and is set to zero otherwise.

num nodes is a scalar of type INTEGER. On exit from MA86 analyse, it holds the number of nodes in the assembly
tree.

num nothresh is a scalar of type INTEGER. On successful exit from MA86 factor and MA86 factor solve, it holds
the number of pivots which did not satisfy the threshold criteria based on the value of control%u.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 7

HSL MA86 v1.7.4
Documentation date: November 15, 2023

HSL MA86 HSL

num perturbed is a scalar of type INTEGER. On successful exit from MA86 factor and MA86 factor solve, it holds
number of pivots that were replaced by control%static.

num sup is a scalar of type INTEGER. On exit from the final call to MA86 analyse, it holds the number of supervariables
in the problem.

num two is a scalar of type INTEGER. On exit from MA86 factor and MA86 factor solve, it holds the number of
2×2 blocks in D.

pool size is a scalar of type INTEGER. On exit from MA86 factor and MA86 factor solve, it holds the maximum
number of tasks that are in the task pool during the factorization. Note that on repeated runs using the same
matrix data, this may vary.

stat is a scalar of type INTEGER that holds the Fortran stat parameter.

usmall is a scalar of type REAL. On successful exit from MA86 factor and MA86 factor solve, if num perturbed=0,
usmall holds the threshold parameter that was used; otherwise usmall is set to zero.

2.5 Warning and error messages

A successful return from a subroutine in the package is indicated by flag having the value zero. A negative value
is associated with an error message that by default will be output on unit control%unit error. Possible negative
values are:

−1 Allocation error. The stat parameter is returned in info%stat.

−2 Returned by MA86 analyse if an error is found in the user-supplied elimination order (held in order).

−3 Returned by MA86 factor and MA86 factor solve if control%action = .false. and the matrix is found to
be singular.

−4 Returned by MA86 factor solve and MA86 solve if there is an error in the size of array x (that is, lx<n or
nrhs<1).

−5 Returned by MA86 factor and MA86 factor solve if IEEE infinities found in the factorization, probably caused
by control%small or control%u having too small a value.

−6 Returned by MA86 solve if job is out of range.

−7 Immediate return from MA86 factor and MA86 factor solve if control%static < abs(control%small)
and control%static 6= 0.0.

−8 Returned by MA86 factor and MA86 factor solve in the complex case if matrix type is invalid.

A positive value for info%flag is used for warnings. Possible values are:

+1 Returned by MA86 factor and MA86 factor solve if control%pool size found to be too small. The size of
the task pool used is returned in info%pool size.

+2 Returned by MA86 factor and MA86 factor solve if control%action=.true. and the matrix is found to be
singular.

+3 Returned by MA86 factor and MA86 factor solve if both of the above two warnings are issued (that is, the task
pool is found to be too small and the matrix is found to be singular).

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 8

HSL MA86 v1.7.4
Documentation date: November 15, 2023

HSL HSL MA86

3 GENERAL INFORMATION

Workspace: HSL MA86 handles its own memory allocations.

Other routines called directly: HSL packages HSL MC34, MC64, MC77 and HSL MC78, BLAS routines copy, axpy,
swap, gemm, gemv, trsm, trsv.

Input/output: Output is provided under the control of control%diagnostics level, which allows error, warning
and diagnostics messages to be printed on units control%unit error, control%unit warning and
control%unit diagnostics, respectively.

Restrictions: nrhs≥1, lx≥n, job = 0,1,2,3,4. Complex case matrix type = -4 or -5.

Portability: Fortran 95, plus allocatable components of derived types.

4 METHOD

HSL MA86 divides the sparse factorization into tasks, each of which alters a single block or a block column. The three
different types of tasks are referred to as the factorize column task, the update internal task, and the update between
task; they are discussed in detail in [1]. The tasks are partially ordered; for example, the updating of a block from a
block column of L has to wait until all the rows that it needs from the block column have been calculated. As soon
as all the data that a task needs are available, the task is placed in a pool of tasks for execution by any processor. The
whole factorization is thus represented by a directed acyclic graph (DAG) with vertices representing tasks and edges
representing dependencies.

4.1 Data structures

A node of the assembly tree represents a set of contiguous columns of L with the same (or nearly the same) sparsity
structure below a dense (or nearly dense) triangular submatrix. Each nodal matrix is held as a dense trapezoidal matrix.
We store this matrix using a row hybrid blocked structure and use “full” storage for the blocks on the diagonal (which
allows us to exploit efficient BLAS and LAPACK routines). If the number of columns in the nodal matrix is large, we
use the block size nb specified through the control parameter control%nb and the blocks will be of size near nb×nb.
For example, if the block size was 3, a node with 5 columns and 8 rows would be stored as

1
4 5
7 8 9
10 11 12 25
13 14 15 27 28
16 17 18 29 30
19 20 21 31 32
22 23 24 33 34

4.2 The analyse phase

The analyse phase uses only the sparsity pattern of A. It requires the user to input the lower and upper triangular
parts of the matrix in compressed sparse column format; no checks are made on the matrix data. The user must also
input an elimination order (which may be computed using, for example, HSL MC68). For the given elimination order,
the analyse phase computes the assembly tree using HSL MC78. A child node is merged with its parent node if they
both involve fewer than control%nemin eliminations. The block structure of L is computed and the task DAG is

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 9

HSL MA86 v1.7.4
Documentation date: November 15, 2023

HSL MA86 HSL

established and to track which tasks are ready, a dependency count for each block is computed. If the block is on the
diagonal, the count is the number of updates that will be applied to it. If the block is not on the diagonal, the count is
one more than the number of updates that will be applied to it.

4.3 The factorize phase

The factorize phase uses the data structures prepared in the analyse phase and takes a copy of the dependency counts
computed by the analyse phase. We also hold a dependency count for each block column. This equal to the sum of
the dependency counts of the blocks within the block column. Each block of L is set to zero the first time that it is
accessed and the entries of A are added into the blocks within a block column at the start of a factorize column task.

During factorize, the block count (and corresponding block column count) is decremented by one after the completion
of each update for it. When the block column count reaches zero, a factorize column task is added to the task pool.

When a factorize column task completes, its count is decremented to flag this event with a negative value. A column
lock is set and each update task that depends on the completion of this task and does not depend on a task that has not
yet completed is added to the task pool. Once this has been done, the lock is released.

An optimisation of this approach used for machines with separate caches is to give each cache its own task stack,
which overflows into the task pool. If the local stack and task pool are empty, workstealing is used to obtain tasks —
if another cache has spare tasks in its stack, half of these are moved to the task pool.

The factorize column task incorporates threshold partial pivoting. The relative pivot tolerance u is initially set to
control%u. If a pivot candidate does not satisfy the threshold pivot criteria, the action taken depends on the control
parameters control%umin and control%static. If static pivoting is not requested (control%static=0.0) and
control%umin=control%u, the pivot is delayed (this is the default case). In our experience, if a large number
of pivots are delayed (see info%num delay), the performance of HSL MA86 can be badly effected and so we have
included options that can help limit the number of delayed pivots (possibly at the cost of a less stable factorization).
If control%umin<control%u and the relative pivot tolerance for the pivot candidate is v ≥control%umin, the
candidate is accepted and u is set to v. The factorization continues using this new value. If v <control%umin,
the pivot is delayed unless static pivoting is being used. In this case, if the candidate has absolute value at least
control%static, it is selected and info%num nothresh is incremented by one; otherwise, the pivot is given the
value that has the same sign but absolute value control%static and info%num perturbed is incremented by one.
Note that if a small relative pivot tolerance is used and/or static pivoting is used, the factorization is likely to be
inaccurate and an iterative procedure (such as iterative refinement) may be needed once the factorization is complete
to try and restore accuracy. Our experience is that the accuracy can be very sensitive to the choice of control%static;
in our tests in double precision, a value of ‖A‖∗10−6 was an appropriate choice.

If the user wishes to solve AX = B at the same time as factorizing the matrix, the call to MA86 factor should be
replaced by a call to MA86 factor solve. The user must pass right-hand vectors to MA86 factor solve using the
argument x1 (single right-hand side) or x (multiple right-hand sides). The forward substitutions are performed as the
factor entries are generated. Once the factorization is complete, MA86 factor solve performs the back substitutions
by calling MA86 solve with job = 4. Using MA86 factor solve is more efficient than calling MA86 factor followed
by MA86 solve.

4.4 The solve phase

The solve phase uses the data structures prepared by the factorize phase to perform a full or partial solution of the
equation

AX = B

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 10

HSL MA86 v1.7.4
Documentation date: November 15, 2023

HSL HSL MA86

The matrix factor L must be accessed once for the forward substitution and once for the back substitution. This is
independent of the number of right-hand sides so that solving for several right-hand sides at once is significantly faster
than repeatedly solving for a single right-hand side.

References:
[1] J.D. Hogg and J.A. Scott. (2010). An indefinite sparse direct solver for multicore machines Technical Report
TR-RAL-2010-011.
Available from http://www.numerical.rl.ac.uk/reports/reports.shtml

5 EXAMPLE OF USE

5.1 Example 1

We wish to solve the indefinite system
−3. 1.
1. 4. 1. 1.

1. 3. 2.
2. 4.

1. 2.

X =


−1.
12.
10.
8.
4.

 .

The following code may be used.

program hsl_ma86ds
use hsl_ma86_double
use hsl_mc69_double
implicit none

integer, parameter :: wp = kind(0d0)

type (ma86_keep) :: keep
type (ma86_control) :: control
type (ma86_info) :: info

integer :: i, n
! integer :: flag, more ! uncomment for error checking
integer, dimension(:), allocatable :: ptr, row, order
real(wp), dimension(:), allocatable :: val, x

! Read the lower triangle of the matrix
read(*,*) n
allocate(ptr(n+1)); read(*,*) ptr(:)
allocate(row(ptr(n+1)-1)); read(*,*) row(:)
allocate(val(ptr(n+1)-1)); read(*,*) val(:)
! Read the right hand side
allocate(x(n)); read(*,*) x(:)

! Use the input order

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 11

HSL MA86 v1.7.4
Documentation date: November 15, 2023

HSL MA86 HSL

allocate(order(n))
do i = 1,n

order(i) = i
end do

! Uncomment the following lines to enable checking (performance overhead)
!call mc69_verify(6, HSL_MATRIX_REAL_SYM_INDEF, n, n, ptr, row, flag, more)
!if(flag.ne.0) then
! write(*,*) "Matrix not in HSL standard format. flag, more = ", flag, more
! stop
!endif

! Analyse
call ma86_analyse(n, ptr, row, order, keep, control, info)
if(info%flag.lt.0) then

write(*,*) "Failure during analyse with info%flag = ", info%flag
stop

endif

! Factor
call ma86_factor(n, ptr, row, val, order, keep, control, info)
if(info%flag.lt.0) then

write(*,*) "Failure during factor with info%flag = ", info%flag
stop

endif

! Solve
call ma86_solve(x, order, keep, control, info)
if(info%flag.lt.0) then

write(*,*) "Failure during solve with info%flag = ", info%flag
stop

endif

write(*,’(a)’) ’ Computed solution:’
write(*,’(8f10.3)’) x(1:n)

! Finalize
call ma86_finalise(keep, control)

end program hsl_ma86ds

The input file is:

5
1 3 6 8 9 10
1 2 2 3 5 3 4 4 5
-3. 1. 4. 1. 1. 3. 2. 4. 2.
-1. 12. 10. 8. 4.

This produces the following output:

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 12

HSL MA86 v1.7.4
Documentation date: November 15, 2023

HSL HSL MA86

Computed solution:
1.000 2.000 2.000 1.000 1.000

5.2 Example 2

We wish to solve the similar indefinite systems
−3. 1.
1. 4. 1. 1.

1. 3. 2.
2. 4.

1. 2.

X =


−1.
12.
10.
8.
4.

 , and


−5. 2.
2. 9. 3. −2.

3. 6. 1.
1. −5.

−2. 6.

X =


−1. −11.
19. 21.
28. 14.
−17. −9.
26. 14.

 ,

where input is in coordinate form. The following code may be used.

program hsl_ma86ds1
use hsl_ma86_double
use hsl_mc68_double
use hsl_mc69_double
implicit none

integer, parameter :: wp = kind(0d0)

type(mc68_control) :: control68
type(mc68_info) :: info68

type(ma86_keep) :: keep
type(ma86_control) :: control
type(ma86_info) :: info

integer :: n, ne, nrhs, lmap, flag
integer, dimension(:), allocatable :: crow, ccol, ptr, row, order, map
real(wp), dimension(:), allocatable :: cval, val, x
real(wp), dimension(:,:), allocatable :: x2

! Read the first matrix in coordinate format
read(*,*) n, ne
allocate(ccol(ne)); read(*,*) ccol(:)
allocate(crow(ne)); read(*,*) crow(:)
allocate(cval(ne)); read(*,*) cval(:)
! Read the first right hand side
allocate(x(n)); read(*,*) x(:)

! Convert to HSL standard format
allocate(ptr(n+1))
call mc69_coord_convert(HSL_MATRIX_REAL_SYM_INDEF, n, n, ne, crow, ccol, &

ptr, row, flag, val_in=cval, val_out=val, lmap=lmap, map=map)
call stop_on_bad_flag("mc69_coord_convert", flag)

! Call mc68 to find a fill reducing ordering (1=AMD)

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 13

HSL MA86 v1.7.4
Documentation date: November 15, 2023

HSL MA86 HSL

allocate(order(n))
call mc68_order(1, n, ptr, row, order, control68, info68)
call stop_on_bad_flag("mc68_order", info68%flag)

! Analyse
call ma86_analyse(n, ptr, row, order, keep, control, info)
call stop_on_bad_flag("analyse", info%flag)

! Factor
call ma86_factor(n, ptr, row, val, order, keep, control, info)
call stop_on_bad_flag("factor", info%flag)

! Solve
call ma86_solve(x, order, keep, control, info)
call stop_on_bad_flag("solve", info%flag)

write(*,’(a)’) ’ Computed solution:’
write(*,’(8f10.3)’) x(1:n)

! Read the values of the second matrix and the new right hand sides
read(*,*) cval(:)
read(*,*) nrhs
allocate(x2(n,nrhs)); read(*,*) x2(:,:)

! Convert the values to HSL standard form
call mc69_set_values(HSL_MATRIX_REAL_SYM_INDEF, lmap, map, cval, &

ptr(n+1)-1, val)

! Perform second factorization and solve
call ma86_factor_solve(n, ptr, row, val, order, keep, control, info, &

nrhs, n, x2)
call stop_on_bad_flag("factor_solve", info%flag)

write(*,’(a)’) ’ Computed solutions:’
write(*,’(8f10.3)’) x2(1:n,1)
write(*,’(8f10.3)’) x2(1:n,2)

! Finalize
call ma86_finalise(keep, control)

contains
subroutine stop_on_bad_flag(context, flag)

character(len=*), intent(in) :: context
integer, intent(in) :: flag

if(flag.eq.0) return
write(*,*) "Failure during ", context, " with flag = ", flag
stop

end subroutine stop_on_bad_flag

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 14

HSL MA86 v1.7.4
Documentation date: November 15, 2023

HSL HSL MA86

end program hsl_ma86ds1

The input file is:

5 9
1 1 2 2 2 3 3 4 5
1 2 2 3 5 3 4 4 5

-3. 1. 4. 1. 1. 3. 2. 4. 2.
-1. 12. 10. 8. 4.
-5. 2. 9. 3. -2. 6. 1. -5. 6.
2

-1. 19. 28. -17. 26.
-11. 21. 14. -9. 14.

This produces the following output:

Computed solution:
1.000 2.000 2.000 1.000 1.000

Computed solutions:
1.000 2.000 3.000 4.000 5.000
3.000 2.000 1.000 2.000 3.000

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 15

HSL MA86 v1.7.4
Documentation date: November 15, 2023

