% ScienceI and
Tech
Fgf:ilir;i(:e:gé;uncil H SL M P62

PACKAGE SPECIFICATION HSL

1 SUMMARY

The module HSL_MP62 uses the multiple front method to solve sets of symmetric positive definite
finite-element equations AX =B that have been divided into non-overlapping subdomains. The HSL routines
MA62 and MA72 are used with MPI for message passing.

The coefficient matrix A must be of the form
< A
A=YA)

where the summation is over finite elements. The element matrix A® is nonzero only in those rows and columns
which correspond to variables in the k-th element. The right-hand side(s) B may optionaly be in the form

B=yBY 03]
k=1

where B® is nonzero only in those rows which correspond to variables in element k.

In the multiple front method, a frontal decomposition is performed on each subdomain separately. Thus, on each
subdomain, a partial L factor is computed. Once all possible eliminations have performed within a subdomain, there
remain the interface variables that are shared by more than one subdomain. If F, is the remaining frontal matrix for
subdomain i, and C; is the corresponding right-hand side matrix, then the remaining problemis

FY =C, ©)
whereF=%F; and C=7} C,. By treating each F; as an element matrix, the interface problem (3) is also solved by the

frontal method. Once (3) has been solved, back-substitution on the subdomains completes the solution.
The element data and/or the matrix factors are optionally held in direct-access files.

ATTRIBUTES — Version: 2.1.0. (19 March 2020) Types. Red (single, double). Remark: Symmetric definite
version of HSL_MP42. Calls: HSL_MPO1, KB08, MA62, MA72, MC53, MC63. Language: Fortran 95 + TR 15581
(allocatable components). Original date: 19th March 2020. Origin: J.A. Scott, Rutherford Appleton Laboratory.

2 HOW TO USE THE PACKAGE

2.1 Calling sequences
The module HSL_MP62 has five separate phases:
() Initialize
(2) Anayse
(3) Factorize
(4) Solve
(5) Finalize

Prior to calling the first phase, the user must choose the number of processes to run on and must initialize MPI by
calling MPl _I NI T on each process. The processeshaverank 0, 1, 2,... The host is the process with rank zero. The user
must also define an MPI communicator for the package. The communicator defines the set of processesto be used by
MP62. Each phase must then be called in order by each process (although the solve phase is optional). Before calling
each phase, the user must have completed all tasks with the defined communicator (and with any other communicator

All useissubject to licence. HSL_MP62 v 2.1.0
http://wwmv hsl.rl.ac. uk/ 1 Documentation date: 30th May 2023

HSL MP62 HSL

that overlaps the MP62 communicator). During the factorize, the matrix factors are generated. If element right-hand
side matrices are supplied (that is, right-hand sides of the form (2)), the solution is returned to the user at the end of
the factorize phase. If the right-hand sides are only available in assembled form, or if the user wishes to use the matrix
factors generated by the factorize phase to solve for further right-hand sides, the solve phase should be called. The
finalize phase deallocates all arrays that have been allocated by the package and, optionally, deletes all direct-access
files used to hold the matrix factors. The user may factorize more than one matrix at the same time by running more
than one instance of the package; a instance of the package is terminated by calling the finalize phase. After the
finalize phase and once the user has completed any other calls to MPI routines he or she wishes to make, the user
should call MPI _FI NALI ZE to terminate the use of MPI. This is illustrated in the simple example code given in
Section 5.

Access to the module requires a USE statement and the user must declare a structure dat a of derived type
MP62_DATA defined by the module. HSL_MP62 has a single user-callable subroutine MP62A/ AD with a single
parameter dat a of type MP62_DATA. If the user wishes to run more than one instance of the module at once, a separate
parameter of type MP62_DATA is needed for each instance.

The derived datatype has many components. In the following sections we describe the components of interest to the
user. In Section 2.2, we describe the components that must be set by the user and that contain the solution vector, in
Section 2.3 we describe the components that control the action, and in Section 2.4 we describe the components that
hold information of potential interest to the user.

The following pseudocode illustrates how MP62A/ AD must be used.
Sngle precision version
USE HSL_MP62_SI NGLE

| NTEGER ERCODE
TYPE (MP62_DATA) data

CALL NPl _I NI T(ERCODE)
CALL MP62A (dat a)
CALL NPl _FI NALI ZE(ERCODE)

Double precision version

USE HSL_MP62_DOUBLE

| NTEGER ERCODE
TYPE (MP62_DATA) data

CALL NPl _I NI T(ERCODE)
CALL MP62AD (dat a)
CALL MPI _FI NALI ZE(ERCODE)

2.2 Input and output components

Prior to the first call to MP62A/ AD for the current instance, the user must initialize the following component of
dat a:

dat a%0OWM isascalar of type default | NTEGER that must hold an MPI communicator. dat a%COMMmust be initialized
prior to thefirst call to MP62A/ AD to define the set of processes to be used by MP62. Before each phaseis called,

All useissubject to licence. HSL_MP62 v 2.1.0
http://ww. hsl.rl.ac. uk/ 2 Documentation date: 30th May 2023

HSL HSL MP62

the user must have completed all tasks involving dat a%COWM (or involving any other communicator that
overlaps dat a%COWM . It is not altered. Note that the code may be run using a single process.

For each call to MP62A/ AD, ajob parameter is needed. This parameter determines which phase of the packageis
to be performed.

dat a% OB isascalar of type default | NTEGER that must be initialized on all processes before each call to MP62A/ AD.
It must be given the same value on all processes. It is not altered.

JOB =1 initializes an instance of the module. A call with JOB = 1 must be made before any other callsto the
module. On exit, the components of dat a that control the action contain default values. If the user
wishes to use values other than the defaults, the corresponding components of dat a should be reset
after the call with JOB = 1. Full details of the control components of dat a are given in Section 2.3.

JOB = 2 uses element variable lists to generate lists of interface variables and, optionaly, to reorder the
elements within each subdomain and allocate subdomains to processes.

JOB = 3 uses the information from the call with JOB = 2 to generate a partial L factor for each subdomain,
form the factorization of the interface problem, and, if B® are specified, to solve the equations AX =B

with right-hand side(s) B=5 B®. A call with JOB = 3 must be preceded by acall with JOB = 2.
=i

JOB =23 performs JOB = 2 then JOB = 3.

JOB = 4 uses the factors produced by a call with JOB = 3 to rapidly solve further systems of the form
AX =B (B inassembled form). A call with JOB =4 must be preceded by acall with JOB =3 (or 23) but
several calls with JOB = 4 may follow asingle call with JOB = 3 (or 23).

JOB = 5 dedlocates al arrays that have been alocated by the module and, optionaly, deletes all
direct-access files that have been used to hold the matrix factors. A call with JOB = 5 should be made
after all other calls for the current instance are complete. Note that components of dat a that are
allocated by the user are not deallocated.

2.2.1 Input componentsfor dat a%J OB = 2 or 23

Prior to a call with dat a%J OB = 2 or 23, the following components must be set by the user on the host (note that if
dat a% OB = 23, the input components described in Section 2.2.3 must also be set):

dat a%\DOM isascalar of type default | NTEGER that must be set to the number of subdomains. This component is not
atered. Restriction: dat a%\DOM> 1.

dat a%\ELT is a scalar of type default | NTEGER that must be set to the number of elements in the problem. This
component is not atered. Restriction: dat a%\ELT =dat a%\NDOM

dat a%\ELTSB is arank-1 alocatable array of type default | NTEGER that must be allocated by the user with size at
least dat a¥®NDOM On entry, dat a¥NELTSB(JDOM must hold the number of elements in subdomain JDOM
(JDOM=1, 2,..., dat a%\DOM). This component is not altered. Restriction: dat a%®\NELTSB(:) >0.

dat a%ELTVAR is arank-1 allocatable array of type default | NTEGER that must be allocated by the user and set to
contain lists of the variable indices belonging to the finite elements. The lists of the variables in each of the
elements belonging to subdomain 1 must precede those for the elements belonging to subdomain 2, and so on.
If duplicate indices are detected in an element or variable indices less than 1 are found, the computation
terminates with an error. Thisis component is not altered.

dat a%ELTPTR is a rank-1 allocatable array of type default | NTEGER that must be allocated with size at least
dat a¥NELT+1. dat a%ELTPTR(|1 ELT) must contain the position in dat a%ELTVAR of the first variable in the
| ELT-th element in the element variablelists (I ELT =1, 2,..., dat a%\ELT), and dat a%EL TPTR(dat a9\NELT+1)
must be set to the position after the last variable in the last element. This component is not altered.

All useissubject to licence. HSL_MP62 v 2.1.0
http://ww. hsl.rl.ac. uk/ 3 Documentation date: 30th May 2023

HSL MP62 HSL

Additionally, the following component must be allocated and set if the control component dat a% CNTL(10) (see
Section 2.3) is nonzero.

dat a% NV_LI ST is a rank-1 allocatable array of type default | NTEGER that must be allocated with size at least
dat a%\DOM On entry, data% NV_LI ST(JDOM must hold the rank of the process that is to factorize
subdomain JDOM (JDOM = 1, 2,..., dat a%\DOM). Restriction: 0<dat a% NV_LI ST(:) <dat a%\NPRCC (where
dat a%\PROC is the number of processes, see Section 2.4.1).

The following component must be allocated and set if dat a% CNTL(9) >0.

dat a%NORDER is a rank-2 allocatable array of type default | NTEGER that must be allocated with size
max dat a¥NELTSB(JDOM +1 by dat a%\NDOM It is used to hold the element assembly order. Within

1<JDOMs< dat a%\DOM

subdomain JDOV, the elements are locally labelled 1, 2,..., dat a%\ELTSB(JDOM), according to the order in
which the user inputs the variable lists in dat a%ELTVAR. On subdomain JDOM, the elements will be assembled
in the order dat a%NORDER(1,JDOM), dat a%N\ORDER(2, JDOM),...,
dat a%NORDER(dat a%NELTSB(JDOM), JDOM). Note that if the user has already used MP62 to factorize a matrix
with agiven sparsity pattern and wishes to factorize another matrix with the same pattern, savings may be made
by setting data% CNTL(9) to a value greater than 1 and leaving dat a%NORDER unchanged since the
factorization of the origina matrix.

2.2.2 Output components for dat a% OB =2 or 23
The following component is allocated on each process.

data% NV_LI ST is a rank-1 alocatable array of type default | NTEGER of size data%\NDOM On exit,
dat a% NV_LI ST(JDOM holds the rank of the process that is to factorize subdomain JDOM (JDOM= 1, 2,...,
dat a%iNDOV).

dat a% ENT isarank-1 alocatable array of type default | NTEGER of size dat a%\NDOM On exit, dat a% ENT(L) holds
the number of variable indices for subdomain L (L =1, 2,..., dat a%\NDOM).

dat a%ENTRI ES is a rank-1 allocatable array of type default | NTEGER of size data%\DOM On exit,
dat a%ENTRI ES(L) holds the number of nonzero matrix entries for subdomain L (L = 1, 2,..., dat a%\NDOW.
Note that only the entries in the upper triangular part of each element matrix are counted.

dat a% COUNT is a rank-1 alocatable array of type default | NTEGER of dimension 0: dat a%\PROC- 1. On exit,
dat a% COUNT(| PROC) holds the number of subdomains assigned to process | PROC (I PRCC = 0, 1,...,
dat a%\PROC- 1).

dat a% DOM isarank-1 allocatable array of type default | NTEGER. On exit, on process | PROC, dat a% DOM J) holds
the index of the J th subdomain that is to be factorized by the process (J = 1, 2,..., dat a% COUNT(| PRQC)).
2.2.3 Input components for dat a% OB = 3 or 23

Prior to acall with dat a%J OB = 3 or 23 the following component must be set on the host (note that if dat a% OB =
23, the input components described in Section 2.2.1 must also be set):

dat a%\RHS isascalar of type default | NTEGER that must be set to the number of right-hand sides. This component is
not altered. Restriction: dat a9®\NRHS=0.

The remaining components of dat a that must be set depend on the settings for the control components.
The following component must be set on the host if dat a% CNTL(7) =0 (the default).

dat a%FRELT isascaar of type default | NTEGER that must be at least as large as the maximum number of variables
per element. dat a%FRELT determines the record length given in the RECL= specifier of the OPEN statements
for the direct-access files for the element data (see dat a% CNTL(7) in Section 2.3). This component is not
altered.

The following components must be allocated and set on the host if dat a% CNTL(7) =0 (the default), 1, or 2.

All useissubject to licence. HSL_MP62 v 2.1.0
http://ww. hsl.rl.ac. uk/ 4 Documentation date: 30th May 2023

HSL HSL MP62

dat a%/ALNAM is arank-1 allocatable array of type default CHARACTER* 128 that must be allocated with size at least
dat a%\NDOM On entry, dat a%/ALNAM JDOM) must contain the name of the file holding the element matrices
A® belonging to subdomain JDOM (JDOM = 1, 2,.., data%\DOV). dat a%/ALNAM is not accessed if
dat a% CNTL(7) =3. This component is not altered.

dat a%RHSNAM is arank-1 alocatable array of type default CHARACTER* 128 If dat a%®\RHS >0, dat a%RHSNAM must
be allocated with size at least dat a%DOM On entry, dat a%R_RHSNAM JDOV) must contain the name of the file
holding the element right-hand side matrices B® belonging to subdomain JDOM(JDOM= 1, 2,..., dat a¥%\DOM).
This component is not altered.

The following components must be alocated set on the host only if dat a% CNTL(7) =3 and on each process if
dat a% CNTL(7) =4.

dat a%/ALUES is arank-1 allocatable array of type default REAL (or double precision REAL in the doubl e version)
that must be allocated and must contain the element matrices A® . The element matrices must be in the order
given by dat a%ELTVAR. Only the upper triangular part of each element matrix is required and each element
matrix must be stored by columns (in packed triangular form). This component is not altered.

dat a¥RHS is arank-1 allocatable array of type default REAL (or double precision REAL in the doubl e version). If
dat a%\RHS >0, dat a%RHS must be allocated and must contain the element right-hand side matrices B®. The
B® matrices must be in the order given by dat a%ELTVAR and each must be held as a full matrix, stored by
columns (so that multiple right hand sides are stored as consecutive columns). This component is not altered.

The following component must be allocated and set on each process | PROC if dat a% CNTL(7) =5.

dat a%RVAL isarank-1 alocatable array of type default REAL (or double precision REAL in the doubl e version) that
must be allocated and must contain the element matrix entries A® for the subdomains assigned to process
| PROC. The element matrices for subdomain dat a% DOM 1) must precede those for dat a% DOM 2) , and so
on, and within each subdomain, the element matrices must be in the order given by dat a%ELTVAR. Only the
upper triangular part of each element matrix is required and each element matrix must be stored by columns (in
packed triangular form). The size of dat a%RVAL on process | PROC must be at least dat a%ENTRI ES(L)
where the summation is over the subdomains L assigned to | PROC. This component is not altered.

dat a%RHS_VAL is arank-1 allocatable array of type default REAL (or doubl precision REAL in the doubl e version)
that must be allocated and must contain the element right-hand side matrices B® for the subdomains assigned
to process | PROC. The element right-hand side matrices for subdomain dat a% DOM 1) must precede those for
dat a% DOM 2) , and so on, and within each subdomain, the element right-hand side matrices must be in the
order given by dat a%ELTVAR and each must be held as a full matrix, stored by columns (so that multiple right
hand sides are stored as consecutive columns). The size of dat a%=HS_VAL on process | PROC must be at least
dat a%\RHSLTy dat a% ENT(L) where the summation is over the subdomains L assigned to | PROC. This
component is not altered.

The following component must be allocated and set if dat a% CNTL(13) is nonzero.

dat a%. ENBUF is a rank-2 allocatable array of type default | NTEGER that must be alocated with size 2 by
dat a%NDOMK1. It is used to hold the sizes (in words) of the buffers (workspace arrays) used by the frontal
solver MAG62 for the matrix factors. On entry, dat a% ENBUF(J, JDOW), J = 1, 2, must hold, respectively, the
buffer size for the matrix factor (including the corresponding right-hand sides), and the indices of the variables
in the factors on subdomain JDOM (JDOM =1, 2,..., dat a%0\DOM). dat a% ENBUF(J, dat a%\DOM+1), J = 1, 2,
must hold the corresponding buffer sizes for the interface problem, which is solved on the host. Note that the
workspace required by MP62 is dependent on the size of the buffers and for efficiency the buffers should be
chosen as large as space permits. If direct-access files are not being used (dat a% CNTL(14) =0), the buffers
must be large enough to hold the matrix factors. On exit, dat a% ENBUF holds the buffer sizes used by MP62.
These differ from the input values if the user-supplied values are too large to enable the required workspace to
be allocated, or if direct-access files are not being used and one or more of the buffer sizes supplied by the user
istoo small (see warning +2). Restriction: dat a% ENBUF(: ,:) >1.

All useissubject to licence. HSL_MP62 v 2.1.0
http://ww. hsl.rl.ac. uk/ 5 Documentation date: 30th May 2023

HSL MP62 HSL

The following component must be allocated and set if dat a% CNTL(14) <0.

dat a%-| LES1 is arank-2 allocatable array of type default CHARACTER* 128 that must be allocated with size 2 by
dat a%NDOM+1. On entry, dat a%-I LES1(J, JDOM), J =1, 2, must hold the names of the direct-access files for
the matrix factor and the indices of the variablesin the factors on subdomain JDOM(JDOM=1, 2,..., dat a%\DOM)
and for the interface problem when JDOM = dat a%\NDOMt1. If the user wishes to run further instances of the
module before the final call for the first instance (call with JOB = 5), for each instance dat a% CNTL(14) must
be set to a nonzero value and file names provided by the user in dat a%-| LESL.

The following component must be allocated and set if dat a% CNTL(15) <O.

dat a%-| LES2 is arank-2 allocatable array of type default CHARACTER* 128 that must be allocated with size 2 by
dat a%NDOM On entry, dat a%-| LES2(1, JDOM)) must hold the name of the sequential file for holding the data
that remains in the frontal matrix once the factorization on subdomain JDOM is complete (JDOM = 1, 2,...,
dat a%NDOM). If dat a%\RHS>0, dat a%-| LES2(2, JDOM must hold the name of the sequential file for the
corresponding right-hand sides. dat a%-| LES2(2, JDOM) is not accessed if dat a¥NRHS=0.

2.2.4 Output components for dat a% OB = 3 or 23
The following component is allocated if dat a¥®NRHS >0 and is used to hold the solution vector.

dat a¥X isarank-2 allocatable array of type default REAL (or double precision REAL in the doubl e version) of size
dat a%. ARGEST _| NDEX (see Section 2.4) by dat a%\RHS. On exit, if | CNTL(17) =0, if | hasbeen used to index
avariable, then on the host dat a%X(| , J) holds the solution for variable | to the J-th system and is set to zero
otherwise (J = 1, 2,..., dat a¥\RHS). If | CNTL(17) #0, if the solution for variable | has been computed by the
process with rank | PROC, then on process | PROC dat a%X(| , J) holds the solution for variable | to the J-th
system and is set to zero otherwise (I PROC =0, 1,..., dat a%\PRQOC).

2.2.5 Input components for dat a% OB =4
Prior to a call with dat a% OB = 4 the following components must be set on the host:

dat a%\RHS isascalar of type default | NTEGER that must be set to the number of right-hand sides. This component is
not altered. Restriction: dat a%®\NRHS=>1.

dat a¥% isarank-2 alocatable array of type default REAL (or double precision REAL in thedoubl e version) that must
be allocated with size dat a% ARGEST _| NDEX (see Section 2.4) by dat a%\RHS. On entry, dat a%X must be set
by the user so that if | is used to index a variable, dat a%X(|, J) is the corresponding component of the
right-hand side for the J-th system (J = 1, 2,..., dat a%\RHS). This component is altered.

2.2.6 Output components for dat a% OB = 4
The following component is used to hold the solution vector.

dat a%X isarank-2 allocatable array of type default REAL (or double precision REAL in the doubl e version) of size
dat a% ARGEST_| NDEX (see Section 2.4) by dat a¥%\RHS. On exit, if | CNTL(17) =0, if | hasbeen used to index
avariable, then on the host dat a%(| , J) holds the solution for variable | to the J-th system and unchanged
otherwise (J =1, 2,..., dat a¥®\RHS). If | CNTL(17) #0, if the solution for variable | has been computed by the
process with rank | PROC, then on process | PROC, dat a%X(|, J) holds the solution for variable | to the J-th
system (I PROC =0, 1,..., dat a%\PRQCC).

2.3 Control components

On exit from the initia call (dat a% OB = 1), the control components of dat a are set to default values. If the user
wishes to use values other than the defaults, the corresponding components of dat a should be reset on the host
process after the initial call and prior to a call with dat a%J OB = 2 or 23.

dat a% CNTL isarank-1 array of type default | NTEGER and size 30.

All useissubject to licence. HSL_MP62 v 2.1.0
http://ww. hsl.rl.ac. uk/ 6 Documentation date: 30th May 2023

HSL

HSL MP62

| ONTL(1)

| CNTL(2)

| ONTL(3)

| ONTL(4)

| CNTL(5)

| ONTL(6)

| ONTL(7)

is the stream number for error messages and has the default value 6. Printing of error messages is
suppressed if | CNTL(1) <0.

is the stream number for warning messages and has the default value 6. Printing of warning messages
issuppressed if | CNTL(2) <O.

is the stream number for diagnostic printing and has the default value 6. Printing is suppressed if
I CNTL(3) <O.

is used to control printing of diagnostic messages (all printing is on the host only). It has default value
1. Possible values are:

<0 No printing.
1 Error and warning messages only.
2 As1, plus some additional diagnostic printing.
3 As2, but timings of parts of the code (elapsed wall clock times in seconds) are also printed.

isthe block size for the numerical factorization of the frontal matrix. It controls the trade-off between
Level 2and Level 3BLAS. If | CNTL(5) =1, Level 2 BLAS isused to form the Schur complement. If
| CNTL(5) =1, theLevel 3BLASroutine_GEMMis used with internal dimension | CNTL(5). Increasing
| CNTL(5) increases the number of flops since symmetry is not exploited aswell. The optimal value for
| CNTL(5) depends on the computer being used. A value of | CNTL(5) less than one is treated as one
and, if at some stage of the factorization, | CNTL(5) has avalue which is larger than the current front
size, | CNTL(5) istreated as the front size. Typical range: 16 to 64. Default value: 16.

controls whether zeros in the front are exploited. Zeros within the front are ignored if 1 CNTL(6) =0.
The default valueis 1.

is used to control how the user wishes to supply the element matrices A% and the element right-hand
side matrices B® on acall with dat a%J OB = 3 or 23. There are 4 options:

0 The element data and element right-hand sides are held in direct-access files. The data required by
the process with rank | PROC must be readable by that process (I PROC=0, 1, ..., dat a%\NPROC- 1).
For each subdomain, the element data is read in element-by-element as required by the
corresponding process. This minimises storage requirements and data movement between
processes. After acall with dat a%J OB = 2, dat a% NV_LI ST(JDOM holds the rank of the process
that isto factorize subdomain JDOM For each subdomain JDOMto be factorized by process | PRCC,
there must be an unformatted direct-access file holding the values of the entries in the element
matrices and, if dat a¥\RHS >0, another holding the values of the entries in the element right-hand
side matrices, that can be read by process| PROC. The record length given in the RECL= specifier of
the OPEN statements for the direct-access files holding the element matrices and element
right-hand side matrices must be that required for REAL (or double precision REAL in the doubl e
version) arrays of size data%FRELT*dat a%FRELT, and dat a%FRELT* dat a%\RHS,
respectively. The element matrices and element right-hand side matrices must be written to the
direct-access files in the same order as they are held in dat a%ELTVAR. Only the upper triangular
part of each element matrix is required and each element matrix must be stored by columns (in
packed triangular form). Each element right-hand side matrix must be held as a full matrix, stored
by columns (so that multiple right hand sides are stored as consecutive columns). The names of the
files for subdomain JDOM must be given in dat a%/ALNAM JDOV) and dat a%RHSNAM JDOV),
respectively (JDOM=1, 2, ..., dat a%\DOW).

1 AsO0, except the element data and element right hand sides are held in unformatted sequential files.
In this case, all the element datafor a subdomain isread in by the processto which it is assigned at
once. This requires more memory.

All useissubject to licence. HSL_MP62 v 2.1.0
http://ww. hsl.rl.ac. uk/ 7 Documentation date: 30th May 2023

HSL MP62 HSL

2 As1, except the host must be able to read all the files. For each subdomain, the datais read by the
host and then passed to the process assigned to that subdomain before the factorization begins.
This requires the host to have more memory.

3 The user must supply the element data and the element right-hand sides in memory on the host
using dat a®/ALUES and dat a%RHSVAL. This option avoids reading from direct-access or
sequential files but it does involve more data movement between processes than | CNTL(7) =0 or
1.

4 The user must supply the element data and the element right-hand sides in memory on each
process using dat a%/ALUES and dat a%RHSVAL. Supplying the data in this way avoids reading
from direct-access or sequential files as well as data movement between processes. Thisoption is
suitable for shared memory machines.

5 On each process, the user must supply the element data and the element right-hand sides for each
of the subdomains assigned to it in memory using dat a¥RVAL and dat a%RHS_VAL. Supplying the
data in this way avoids reading from direct-access or sequential files as well as data movement
between processes; the amount of data required to be held on each process is less than for
| CNTL(7) =4 (assuming more than one process is used).

Restriction: | CNTL(7) =0, 1, 2, 3,4, or 5.
| CNTL(8) isnot currently used. It is given the default value 0.

| CNTL(9) controlsthe order in which the elements are assembled in the subdomains. If | CNTL(9) =0 (the default),
the assembly order is generated automatically using MC53 during the analyse phase (dat a%OB = 2). If
| CNTL(9) >0, the user must specify the assembly order using the array dat a%NORDER. Otherwise, the elements
are assembled in the order in which they are given in dat a%ELTVAR.

| CNTL(10) is used to control whether the user wishes to decide which process is to factorize which subdomain. If
| CNTL(10) =0 (the default), this choice is made automatically during the analyse phase (dat a% OB = 2).
Otherwise, the user must choose a process for each subdomain using dat a% NV_LI ST.

| CNTL(11) controls whether a packed triangular form is used by MA62. If 1 CNTL(11) = 0 (the default value), a
packed triangular form is used. In this case, the Level 2 BLAS routine _TPSV is used to perform triangular
solves. If | CNTL(11) is reset to a nonzero value, a packed triangular form is not used. This increases the real
storage required for the factors but the advantage is that, for multiple right-hand sides, the Level 3 BLAS
routine _TRSMis used.

| CNTL(12) controls whether the user wants the direct-access files used to hold the matrix factors to be deleted at the
end of the computation. If | CNTL(12) =0 (the default), when the final call is made to MP62 (dat a% OB = 5),
the direct-access files are deleted. Otherwise, the direct-access files are disconnected but not deleted.
| CNTL(12) isnot used if | CNTL(14) isequal to 0.

| CNTL(13) controls the size of the buffers (work arrays) associated with the direct-access files used to hold the
matrix factors. If | CNTL(13) =0 (the default), the buffer sizes are chosen by the code. If | CNTL(13) is
nonzero, the user must set buffer sizesin dat a% ENBUF.

| CNTL(14) controls whether or not direct-access files are used to hold the matrix factors. If 1 CNTL(14) =0 (the
default), direct-access files are not used and the factors are held main memory. Otherwise, unformatted
direct-accessfilesareused. If | CNTL(14) >0, the code automatically names the files and they are written to the
current directory. The files for the factor on subdomain 1 are called factor.0001, integ.0001, on subdomain 2
they are factor.0002, integ.0002, and so on. The files for the factor for the interface problem are factor_interf,
integ_interf. If | CNTL(14) <0, the user must supply names for the filesin dat a%-I LESL. If the user wishesto
run a second instance of the module before the final call for the first instance (data%OB = 5),
dat a% CNTL(14) must be set to a negative value and file names provided by the user in dat a%-l LES1.

| CNTL(15) controls whether or not sequential files are used to hold the data that remains in the frontal matrix and

All useissubject to licence. HSL_MP62 v 2.1.0
http://ww. hsl.rl.ac. uk/ 8 Documentation date: 30th May 2023

HSL HSL MP62

corresponding right-hand side matrix once the factorization on the subdomain is complete. If 1 CNTL(15) =0
(the default), files are not used. Otherwise, unformatted sequential files are used (using files reduces storage
requirements but the extra 1/O involved can increase the overall computational time). If | CNTL(15) >0, the
code automatically names the files and they are written to the current directory. The remaining data for
subdomain 1 is written to files fvar.0001 and (if dat a%\RHS>0) frhs.0001, for subdomain 2 the files are
fvar.0002 and frhs.0002, and so on. If | CNTL(15) <0, the user must supply namesfor the filesfor the factorsin
dat a%-| LES2. If the user wishes to run a second instance of the module before the fina call for the first
instance (call with JOB =5), dat a% CNTL(15) must be set to a negative value and file names provided by the
user in dat a%-| LES2.

| CNTL(16) has the default value 16. | CNTL(16) is the minimum number of variables that are eliminated at each
stage of the factorization. Increasing | CNTL(16) in general increases the number of floating-point operations
and real storage requirements but allows greater advantage to be taken of Level 3 BLAS and reduces integer
storage.

I CNTL(17) controls whether or not the solution vector is assembled on the host. If | CNTL(17) =0 (the default), the
solution is assembled in dat a%X on the host. Otherwise, on exit, each process holds the part of the solution
vector that it computed.

| CNTL(18) controls whether or not the BLAS are used during the solve phase JOB=4. If | CNTL(18) =1 and
dat a¥W\RHS=1, BLAS are not used. Otherwise, BLAS are used. The default valueis 0.

| CNTL(19) to | CNTL(30) are not currently used but are set to zero.
dat a%CNTL isarank-1 array of type default REAL (or double precision REAL in the doubl e version) and size 10.

CNTL(1) has the default value zero. If, during the factorization, the absolute value of any pivot is less than or
equal to CNTL(1), the computation terminates and the matrix is declared to be not positive definite (see
error —12).

CNTL(2) to CNTL(10) are not currently used but are set to zero.

2.4 Information components

The components of dat a described in this section are used to hold information that may be of interest to the user.
Some of the information is available on each process and some only on the host.
2.4.1 Information on each process

The following information is significant on each process. The information is available after a call to MP62 with
data%d B =1, 2,3, 23,4, or 5.

dat a%ERROR is a variable of type default | NTEGER that is used as an error and a warning flag. A nonzero value
indicates an error has been detected or a warning has been issued (see Section 2.5). If an error is detected, the
information contained in the other components of dat a described in this section may be incomplete.

dat a%\PRCC isavariable of type default | NTEGER that holds the number of processes used by MP62. dat a%\PRCCis
the number of processes associated with the communicator dat a%uCOMM and is set by a call within MP62 to
MPI _COW SI ZE.

dat a%RANK is a variable of type default | NTEGER that holds the rank of the process in the global communicator
dat a%COMM The host is defined to be the process with dat a%RANK = 0.
2.4.2 Information available on the host

The following information is significant only on the host. If an error is detected (see Section 2.5), the information
may be incomplete.

Information available on exit from a call with dat a%J OB = 2 or 23.

All useissubject to licence. HSL_MP62 v 2.1.0
http://ww. hsl.rl.ac. uk/ 9 Documentation date: 30th May 2023

HSL MP62 HSL

dat a%.ARGEST | NDEX isavariable of type default | NTEGER that holds the largest integer used to index avariablein
the finite element domain.

dat a%vAX_NDF is avariable of type default | NTEGER that holds the maximum number of variables per element.

dat a%NGUARD isarank-1 allocatable array of type default | NTEGER of size dat a%N\NDOM dat a¥NGUARD(JDOM holds
the number of interface variables for subdomain JDOM (JDOM= 1, 2,..., dat a%N\DOW).

dat a%-LAG 72 is arank-1 alocatable array of type default | NTEGER of size dat a¥\DOM dat a%-LAG_72(JDOV)
holds the MA72A/ AD error flag for subdomain JDOM(JDOM= 1, 2,..., dat a%\DOM).

dat a%\DF is a rank-1 allocatable array of type default | NTEGER of size dat a%\DOM dat a%\DF(JDOM) holds the
number of variablesin subdomain JDOM(JDOM= 1, 2,..., dat a%\DOM).

dat a%\FRONT isarank-1 allocatable array of type default | NTEGER of size dat a%iNDOM dat a%NFRONT(JDOM) holds
the maximum frontsizes for the frontal elimination on subdomain JDOM(JDOM= 1, 2,..., dat a%N\DOW).

dat a%RV5 isarank-1 allocatable array of type default REAL (or double precision REAL in the doubl e version) of size
dat a%N\DOM dat a%RMS(JDOV) holds the root mean squared frontsize for the frontal elimination on subdomain
JDOM(JDOM=1, 2,..., dat a%NDOM).

dat a%0PS isarank-1 allocatable array of type default REAL (or double precision REAL inthedoubl e version) of size
dat a%\NDOM dat a%0OPS(JDOM) holds an estimate of the number of floating-point operations (flops) in the
innermost loops for the frontal elimination on subdomain JDOM(JDOM= 1, 2,..., dat a%\DOM).

dat a%-LSI ZE isarank-2 allocatable array of type default REAL of size 2 by dat a%\DOM dat a%-LSI ZE(J, JDOM), J
=1, 2 hold, respectively, the estimated storage needed for the real and integer data for the matrix factor on
subdomain JDOM (JDOM= 1, 2,..., dat a%NDOW).

dat a%NORDER is a rank-2 allocatable array of type default | NTEGER of size max dat a¥NELTSB(JDOM +1

1<JDOMs< dat a%\DOM

by dat a%\DOM Within subdomain JDOM the elements are locally labelled 1, 2,..., dat a¥\ELTSB(JDOM),
according to the order in which the user inputs the variable lists in dat a%ELTVAR. On subdomain JDOM the
elements will be assembled during the factorize phase in the order data%NORDER(1,JDOM),
dat a%NORDER(2,JDOM),..., dat a%NORDER(dat a%NELTSB(JDOM),J DOW).

Information available on exit from a call with dat a%J OB = 3 or 23.
dat a%BTATI C is avariable of type default | NTEGER that holds the total number of static condensations performed.
dat a%5l NGULAR is avariable of type default LOG CAL that isset to . TRUE. if the matrix isfound to be singular.

dat a%-LOPS isavariable of type default REAL (or double precision REAL in the doubl e version) that holds the total
number of floating-point operations (flops) in the innermost loops of the factorization (thisisthetotal for all the
subdomains and the interface).

dat a%STORREAL is avariable of type default REAL (or double precision REAL in the doubl e version) that holds the
total number of entriesin the factors.

dat a%BTORI NT is a variable of type default REAL (or double precision REAL in the doubl e version) that holds the
total storage for the indices of the variables in the factors in | NTEGER words.

dat a%\LEFT isarank-1 allocatable array of type default | NTEGER of size dat a%NBLOCK. dat a¥N\LEFT(JDOM holds
the number of variables left in the front at the end of the elimination process for subdomain JDOM (JDOM= 1,
2,..., dat a%\DOM). Notethat, if | CNTL(16) >1, dat a¥N\LEFT(JDOM may be larger than dat a%NGUARD(JDOM).

dat a% NFO 62 is a rank-2 allocatable array of type default | NTEGER of size 20 by dat a%N\NDOW1.
dat a% NFO 42(1: 20, JDOM holds the MA62B/ BD integer information array for subdomain JDOM (JDOM= 1,
2,..., dat a%\DOM) and for JDOM = dat a%\DOW1, it holds the MA62B/ BD integer information array for the
interface problem. Note that on the subdomains the information in dat a% NFO 62 is incomplete since the
factorization on the subdomain is a partial factorization (interface variables not eliminated).

All useissubject to licence. HSL_MP62 v 2.1.0
http://ww. hsl.rl.ac. uk/ 10 Documentation date: 30th May 2023

HSL HSL MP62

dat a¥RI NFO 62 isarank-2 allocatable array of type default REAL (or dou precision REAL in the doubl e version) of
size 20 by data%\DOM+1. dat a%RI NFO 42(:, JDOM holds the MA62B/ BD real information array for
subdomain JDOM (JDOM = 1, 2,..., dat a%\DOM) and for JDOM = dat a%NDOM+1 it holds the MA62B/ BD real
information array for the interface problem. Note that on the subdomains the information in dat a%Rl NFO 62 is
incomplete since the factorization on the subdomain is a partia factorization (interface variables not
eliminated).

dat a% NFO 63 is arank-1 array of type default | NTEGER of size 15. dat a% NFO_63 holds the MC63A/ AD integer
information array for the interface problem.

dat a%Rl NFO_63 isarank-1 array of type default REAL (or double precision REAL in the doubl e version) of size 6.
dat a% NFO_63 holds the MC63A/ AD real information array for the interface problem.
25 Error diagnostics
On successful completion, a call to MP62 will exit with the component dat a%ERRCR set to 0. Other values for
dat a%ERROR and the reasons for them are given below.
251 Error diagnostics for dat a%OB =1
—1 MPI has not been initialized by the user. Immediate return. An error message is printed on the default output
stream.
2.5.2 Error and warning diagnostics for dat a% OB =2 or 23

A negative value for dat a¥ERROR is associated with a fatal error. Error messages are output on stream
dat a% CNTL(1). Possible negative values are:

—2 Either dat a%\DOM<1 or dat a%\NDOM>dat a%NELT.

—4 Either data%ELTVAR is not alocated or has been alocated with size less than
dat a¥ELTPTR(dat a¥\ELT+1) —1. This error is aso returned if one or more variable indices in dat a%ELTVAR
is out of range (ie. is less than 1) or there are duplicate entries in a row. dat a% OUT and dat a% DUP hold,
respectively, the number of out of range and duplicate entries.

-5 Error detected in dat a%ELTPTR. Either dat a¥ELTPTR has not been alocated or has been allocated with size
less than dat a¥NELT+1, or the entries of dat a%ELTPTR are not monotonic increasing.

—6 dat a% CNTL(7) out of range (ie. dat a% CNTL(7) #0, 1, 2, 3,4, or 5).

—7 Either the array dat a%NELTSB has not been allocated or has been allocated with size less than dat a%\NDOM or
dat a%NELTSB(JDOM <1 for one or more subdomain JDOM (1 < JDOM< dat a%NDOM).

—8 One or more subdomain have no interface variables.

—9 Either the array data% NV_LI ST has not been alocated or has been alocated with size less than
dat a%\BLOCK, or an entry in dat a% NV_LI| ST isout of range (dat a% CNTL(10) nonzero).

—11 Error in Fortran ALLOCATE statement. The STAT parameter is returned in dat a%STAT. If the user is not using
direct-access files (dat a% CNTL(14) =0), it may be possible to avoid this error by rerunning with
dat a% CNTL(14) #£0, or if dat a% CNTL(13) is nonzero, by reducing the buffer sizes held in dat a% ENBUF.

—13 dat a%J) OB does not have the same value on al processes or has an invalid value.
—18 The call follows a call with dat a%J OB = 5.

—24 Either the array dat a%NORDER has not been allocated or has been alocated with an incorrect size
(I CNTL(9) >0). This error is also returned if the supplied element order is found not to be a permutation for
one or more of the subdomains.

Warning messages are associated with positive values of dat a¥ERROR. Warning messages are output on

All useissubject to licence. HSL_MP62 v 2.1.0
http://ww. hsl.rl.ac. uk/ 11 Documentation date: 30th May 2023

HSL MP62 HSL

+1

dat a% CNTL(2). Possible warnings are:

Warning issued by MC53A/ AD for one or more subdomain.

253 Error diagnostics for dat a%JOB = 3 or 23

A negative vaue for dat a¥ERROR is associated with a fatal error. Error messages are output on stream
dat a% CNTL(1). Possible values are:

-10

-11
-12
-13

-19

+2
+3

If dat a% CNTL(7) =0, 1, or 2, either dat a%/ALNAMor dat a%RHSNAMis not allocated or is allocated with size
less than dat a%\DOM If dat a% CNTL(7) =3 or 4, either dat a%/ALUES or dat a%RHS is not allocated or is
allocated with incorrect size. If dat a% CNTL(7) =5, either dat a%RVAL or dat a%RHS_VAL isnot alocated or is
allocated with incorrect size.

Error in Fortran ALLOCATE statement. The STAT parameter is returned in dat a%8TAT.
Attempt to use a pivot of absolute value less than or equal to CNTL(1).

dat a%) OB does not have the same value on all processes or has an invalid value.
Error in Fortran | NQUI RE statement. dat a% OSTAT holds the | OSTAT parameter.
Error when writing to a direct-accessfile.

Error when reading from a direct-access file.

Error in Fortran OPEN statement.

An error was returned on aprevious call or the call followsa call with dat a%J 0B =1 (ho dat a%J OB =2 call) or
follows a call with dat a%J OB = 5.

Failed to find a unit to which afile could be connected.

Either data%.ENBUF has not been allocated or has been adlocated with incorrect size, or
dat a%.ENBUF(1,JDOM <0, or dat a%.ENBUF(2,JDOM) <0 (1<JDOM<dat a%\DOM+1) (dat a% CNTL(13)
nonzero).

dat a¥NRHS <0.

data% CNTL(7) = 0 and dat a%FRELT is less than the maximum number of variables per element.
dat a%vAX_NDF holds the maximum number of variables per element.

dat a%-| LESL is either not allocated or is allocated but with incorrect size (I CNTL(14) <0).
dat a%-| LES? is either not allocated or is allocated but with incorrect size (I CNTL(15) <0).

Warning messages are associated with positive values of dat a%ERROR. Warning messages are output on
dat a% CNTL(2). Possible warnings are:

One or more of the user-supplied buffer sizesin dat a% ENBUF have been altered (dat a% CNTL(13) nonzero).
Combination of the above warnings.

25.4 Error diagnosticsfor dat a% OB =4

A negative value for dat a¥ERRCR is associated with a fatal error. Error messages are output on stream
dat a% CNTL(1). Possible values are:

-11
-13
-16
=17

Error in Fortran ALLOCATE statement. The STAT parameter is returned in dat a%BTAT.
dat a%) OB does not have the same value on all processes or has an invalid value.
Error when reading from a direct-access file.

Error in Fortran OPEN statement.

All useissubject to licence. HSL_MP62 v 2.1.0

http:

/1w, hsl.rl.ac. uk/ 12 Documentation date: 30th May 2023

HSL HSL MP62

—19 An error was returned on a previous call or the call was not preceded by a call with dat a%J OB = 3 or 23, or
follows acall with dat a%J OB = 5.

—22 dat a¥\RHS< 1. Thiserror is aso returned if dat a%\RHS>1 but dat a%X is either not alocated or is allocated
but with incorrect size.

255 Error diagnostics for dat a%JOB =5

A negative value for dat a¥ERROR is associated with a fatal error. Error messages are output on stream
dat a% CNTL(1). Possible values are:

—13 dat a%J OB does not have the same value on all processes or has an invalid value.

3 GENERAL INFORMATION

3.1 Summary of information.
Use of common: Common blocks are not used.

Other routines called directly: The HSL routines HSL_MPO1, MA621 /1 D, MA62A/ AD, MA62B/ BD, MA62C/ CD,
MA62J/ JD, MA62P/ PD, MA72A/ AD, MA72B/ BD, MA72C/ CD, MC531/ 1D, MC53A/ AD, M363I1 /1 D, MC63A/ AD,
KBO8A/ AD. Subroutines private to the module are MP62B/ BD, MP62C/ CD, MP62L/ LD, MP62M ND and MP62N/ ND.
In addition, MPI routines are called.

Workspace: Workspace is allocated by the code as required. The amount of workspace needed is dependent upon
how the element matrices are stored, on dat a% ENBUF, and on the largest integer used to index a variable.

Input/output: The output streams for the error and warning messages are dat a% CNTL(1) and dat a% CNTL(2)
(see Section 2.3). The output stream for diagnostic printing is dat a% CNTL(3).

Restrictions:

dat a%\DOM>1,

dat a%\ELT =dat a%iNDOM

dat a¥NRHS=0 (dat a% OB = 3 or 23),

dat a%\RHS>1 (dat a%J OB = 4),

dat a¥\ELTSB(:) >0,

0<dat a% NV_LI ST(:) <dat a%\PROC (dat a% CNTL(10) nonzero),
dat a% ENBUF(: ,:) =1 (dat a% CNTL(13) nonzero).

Portability: ~ Fortran 95 + TR 15581 (allocatable components) with MPI for message passing.
Changes between Version 1.0.0 and Version 2.0.0:
The addition of HSL_MP01 to HSL has allowed the source form to be changed to free format and means that the user

of no longer needs an | NCLUDE line for the MPI constants. All the pointer array components have been changed to
allocatable components, which should be more efficient and avoids any danger of memory leakage.

All useissubject to licence. HSL_MP62 v 2.1.0
http://ww. hsl.rl.ac. uk/ 13 Documentation date: 30th May 2023

HSL MP62 HSL

4 METHOD

HSL_MP62 implements a multiple front algorithm. The code is a symmetric positive definite version of HSL_MP42.
Details of the algorithm are given in Duff and Scott (1994) and Scott (1999).

data%OB=1

The control components are given default values.

data%d OB =2

The input data is first checked for errors. The control components and scalar input components are then broadcast
from the host to all processes. The host process calls MA72A/ AD to generate lists of interface variables (the guard
elements). Unlessdat a% CNTL(10) has been reset to a nonzero value, the host assigns each subdomain to a process.
This division of the subdomains between the processes aims to balance the floating-point operations.

data% B =3

Data for each subdomain is sent from the host to its assigned process | PRCC. For each of its assigned subdomains,
| PROC calls MC53 to order the elements. Process | PROC generates unit numbers for the direct-access files that will
hold the matrix factors, calls the analyse and factorize phases of MA62, and uses MA72B/ BD to preserve the partia
factorization.

Data from MA72B/ BD is sent to the host. The host reorders the subdomains using MC63 and uses MAG62 to solve the
interface problem. If dat a¥\RHS >0, the solution for the interface problem is sent to each process, and on each
process MA72C/ CD is called to perform the back substitution for its assigned subdomains.

data%OB =4

The host first performs error checks and broadcasts the number of right-hand sides to each process. For each of its
assigned subdomains, process | PROC calls MA72C/ CDto perform forward substitution. The partial solution vectors are
sent to the host. Forward and back substitution for the interface problem is performed by the host using MA62C/ CD.
The solution for the interface problem is sent to each process, and on each process MA72C/ CDis called to perform the
back substitution on its subdomains.

data%dOB =5

Arrays allocated by the code are deallocated, the direct-access files used to hold the matrix factors are closed and
(optionally) are deleted.

MPI is used throughout for message passing.

References

Duff, 1. S. and Scott, J. A. (1994). The use of multiplefrontsin Gaussian elimination. Rutherford Appleton Laboratory
Report RAL-94-040.

Scott, J. A. (1999). The design of aparallel frontal solver. Rutherford Appleton Laboratory Report RAL-TR-99-075.

5 EXAMPLE OF USE

We wish to solve the following simple finite-element problem in which the finite-element mesh comprises four
4-noded quadrilateral elements with one degree of freedom at each nodei, 1 <i <6 (the nodes 7, 8, and 9 are assumed
constrained). The mesh is divided into 2 subdomains in which elements 1 and 2 comprise subdomain 1 and elements
3 and 4 comprise subdomain 2. We supply one right-hand side with the elements and then use dat a%J OB = 4 to solve
for afurther two right-hand sides.

All useissubject to licence. HSL_MP62 v 2.1.0
http://ww. hsl.rl.ac. uk/ 14 Documentation date: 30th May 2023

HSL HSL MP62

7 8 9
1 2

4 5 6
3 4

i p]

The four element matrices A¥ (1<k<4) are

4(4. 3. 2. 3 2. 1. 8. 3

4(2. 1. 3. 2) 3.1 3 2 6 1. 3. 2. b.

5(1. 7.) a 2. 8) 2. 3.6 1 2 8.2 2 b
2\3. 2. 1. 5, 3. 2. 5.

where the variable indices are indicated by the integers before each matrix (columns are identified symmetrically to
rows). The corresponding element right-hand side B® (1<k<4) are

12. 14.
3.
8.

5. 9. 8. 1.
10. 12. 17,
11. 14.
The (assembled) right-hand sides that are used in the call with dat a%J OB = 4 are
12

4

and 2
4
9
11

|
P NNEPO

The following program is used to solve this problem.

I Code to run MP62 on a finite el ement nesh conposed of
I two subdomai ns.

USE HSL_MP62_DOUBLE
I MPLICI T NONE

TYPE (MP62_DATA) data
| NTEGER ERCODE, NE, RHSCRD, VALCRD

I Start MPI
CALL MPI _I NI T(ERCODE)

I Define a conmmunicator for the package
dat a%COVW = MPI _COWM WORLD

I Initialize instance
data%OB = 1
CALL MP62AD(dat a)
I For this sinple example, no need to order the elenments
I within each subdonmain. Reset data% CNTL(9).
data% CNTL(9) = -1
I W will read in all matrix values to data%/ALUES and dat a¥RHSVAL
data% CNTL(7) = 3

! Read in data on host
I F (data%RANK . EQ 0) THEN

All useissubject to licence. HSL_MP62 v 2.1.0
http://ww. hsl.rl.ac. uk/ 15 Documentation date: 30th May 2023

HSL MP62 HSL

Nunber of subdomains is 2

dat a%\NDOM = 2
Solve for 1 right hand side
dat a%®\RHS = 1

Read in the nunber of elenents in whole domain
OPEN (UNI T=5, FI LE=' np62ads. data')
READ (5, FMI=*) dat a¥NELT

Read nunber of elenents in each subdonain
ALLOCATE(dat a%N\ELTSB(1: dat a%\NDQOV))

READ (5, FMI=*) dat a%NELTSB(1: dat a%iNDOM
Read el ement variable lists

ALLOCATE(dat a%ELTPTR(1: dat a%NELT+1))

READ (5, FMI=*) dat a¥&ELTPTR(1: dat a%\ELT+1)

NE = dat a¥ELTPTR(dat a%\ELT+1) - 1
ALLOCATE(dat a%ELTVAR(1: NE))
READ (5, FMI=*) dat a%ELTVAR(1: NE)

Read in reals
READ (5, FMr=*) VALCRD
ALLOCATE(dat a%/ALUES(1: VALCRD))
READ (5, FMI=*) dat a%ALUES(1: VALCRD)

Read in element right hand sides
READ (5, FMr=*) RHSCRD
ALLOCATE(dat a%RHS(1: RHSCRD))
READ (5, FMr=*) dat a%RHS(1: RHSCRD)

END | F
CALL MPI _BARRI ER(dat a%COVM ERCODE)
Anal yse and factorize phases
data% OB = 23
CALL MP62AD(dat a)
| F (dat a%ERROR. LT.0) GO TO 20
| F (data%RANK. EQ 0) THEN
WRI TE (*, FMI=9000)
WRI TE (*, FMI=9010) dat a%X(1: dat a%.ARCGEST_| NDEX, 1)
END | F

We want to solve for further right-hand sides.
Read assenbl ed right-hand side in X
| F (data%RANK. EQ 0) THEN
VWRI TE (*, FMr=9020)
dat a%\RHS = 2
DEALLCOCATE(dat a%X)
ALLOCATE(dat a%X(1: dat a%. ARGEST_| NDEX, 1: dat a%\RHS))
READ (5, FMI=*) dat a%(1: dat a% ARGEST | NDEX, 1)
READ (5, FMr=*) dat a%X(1: dat a% ARGEST_| NDEX, 2)
END | F

data%dOB = 4
CALL MP62AD(dat a)
I F (dat a%ERROR LT.0) GO TO 20

| F (dat a%RANK. EQ 0) THEN
WRI TE (*, FMr=9000)
WRI TE (*, FMr=9010) dat a%(1: dat a% ARGEST | NDEX, 1)
WRI TE (*, FMr=9010) dat a%(1: dat a% ARGEST | NDEX, 2)

All useissubject to licence. HSL_MP62 v 2.1.0
http://ww. hsl.rl.ac. uk/ 16 Documentation date: 30th May 2023

HSL

HSL MP62

END I F

I Final call
20 data%OB = 5
CALL MP62AD(dat a)
CALL MPI _FI NALI ZE(ERCODE)

9000 FORMAT (/' The solution is:")

9010 FORMAT (6F12.4)

9020 FORMAT (/' Now solving for further right-hand si
STOP
END

The input data used for this problem is:

4
2 2

1 3 5 9 13

4 5 5 6 4 5 1 2 5 6 2 3
26

2. 1. 7 3. 2 8. 4 3 1. 2 3
3. 2. 1 5. 2 1. 3 8 2. 2 3
5. 4,

12

3. 8. 5 10. 12 9 12 11. 14 8 17
6. 1. 2 7. 4 -1

12. 4, 2 4, 9 11.

When run using 1 or 2 processes, this produces the following output:
The solution is:
1. 0000 1. 0000 1. 0000 1. 0000
Now sol ving for further right-hand sides.

The solution is:
1. 0000 1. 0000 0. 0000 1. 0000 -
2.0000 0. 0000 0. 0000 0. 0000

des.")

6.

2.

14.
1. 0000 1. 0000
1. 0000 0. 0000
0. 0000 1. 0000

All useissubject to licence.
http://ww. hsl.rl.ac. uk/ 17

HSL_MP62 v 2.1.0
Documentation date: 30th May 2023

