
Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6-9, 2004

EXTERNAL AUDITORY REPRESENTATIONS OF PROGRAMS: PAST,
PRESENT, AND FUTURE–AN AESTHETIC PERSPECTIVE

Paul Vickers

Northumbria University, School of Informatics
Pandon Building, Camden St.

Newcastle upon Tyne, NE2 1XE, UK
paul.vickers@northumbria.ac.uk

ABSTRACT

This paper provides a summary of previous work done in the
area of external auditory representations of programs (known as
program auralisation). A brief historical review is given
followed by a short summary of the characteristics of the main
program auralisation systems that have been reported in the
literature. As program auralisation systems tend to use musical
representations they are necessarily affected by artistic
considerations. The influence of art theory and practice on the
design of computer systems and artefacts (known as aesthetic
computing [1, 2]) has grown to the extent that there is now a
growing field devoted to its study. Therefore, it is instructive to
explore the design of program auralisation systems in the light
of aesthetic computing ideas. The remainder of this paper then,
discusses the main principles of aesthetic computing in relation
to program auralisation, and finishes with some views on how
aesthetic computing can influence the future development of
program auralisation systems.

1. INTRODUCTION

Since Bly's original thesis [3] on the use of sound in
interfaces, researchers have been keen to propose that sound be
used in software visualisation [4-8]. In software visualisation,
mappings are made between software attributes and visual
representations that are external to the software (such as graphs,
spectra etc.). Such mappings provide a framework for users to
construct mental images of the states and structures of
software. This works extremely well for components whose
features map naturally onto spatial media (such as tree diagrams
for genealogy reports or dynamic data structures). Having
constructed the mapping between, say, a linked-list data
structure and a tree diagram, the programmer forever has a
visual metaphor of the data structure which can be abstracted
and used to form mental images. When asked to visualise a
node being added to the list (Figure 1), the programmer can
form an image in their head and so draw a picture showing the
new state of the data structure. This visual representation has no
direct connection with the actual data structure, it is merely an
apt analogue or metaphor.

The aspects of software in which the programmer is
interested tend not to be real world objects and thus have no
real world auditory signatures. How then can sound be
successfully employed in software visualisation?

Computer programming poses an interesting problem for
information display. Program events are in the time domain
whilst visual mappings are largely spatial representations. Visual

techniques give good descriptions of spatial relations and
structural details (just like Fourier analysis does for sound
waves), but do not naturally represent temporal details. Sound
presents us with a complementary modality that increases the
diagnostic tools available by giving a temporal view of software
(as the wave-form plot does for a sound wave).

Software data
structure

Figure 1 Metaphor in visualisation. Using the tree
metaphor for data structures aids understanding.

2. HISTORICAL ROOTS

The case for using sound to aid programming was
supported by Jackson and Francioni [9], although they felt that
a visual presentation was also needed to provide a context or
framework for the audio sound track. They argued that some
types of programming error (such as those that can be spotted
through pattern recognition) are more intuitively obvious to our
ears than our eyes. Also, they pointed out that, unlike images,
sound can be processed by the brain passively, that is, we can
be aware of sounds without needing to listen to them. Francioni
and Rover [10] found that sound allows a user to detect
patterns of program behaviour and also to detect anomalies with
respect to expected patterns.

The use of external auditory representations of program
information is known as program auralisation [11]. One of the
first attempts at program was described by Sonnenwald et al [8]
and was followed by DiGiano [6], DiGiano and Baecker [12],
Brown and Hershberger [5] , Jameson [13, 14], Bock [15-17],
Mathur et al [18, 19], and Vickers and Alty [20-23]. These early
systems all used complex tones in their auditory mappings but,
like much other auditory display work, this was done without
regard to the musicality of the representations (with the
exception of Vickers and Alty). That is, simple mappings were

Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6-9, 2004

often employed, such as quantising the value of a data item to a
chromatic pitch in the 128-tone range offered by MIDI-
compatible tone generators. Furthermore, the pitches were
typically atonal in their organisation and were combined with
sound effects (e.g. a machine sound to represent a function
processing some data). Effort was largely invested in
demonstrating that data could be mapped to sound with much
less attention given to the aesthetics and usability of the auditory
displays. Where aesthetic considerations are taken into account
auditory displays become much easier to comprehend. Mayer-
Kress et al [24] mapped chaotic attractor functions to musical
structures in which the functions’ similar but never-the-same
regions could be clearly heard. The resultant music could be
appreciated in its own right without needing to know how it was
produced. Quinn’s Seismic Sonata [25] likewise uses the
aesthetics of musical form to sonify data from the 1994
Northridge, California earthquake. Alty [26] demonstrated how
musical forms could be used to auralise the bubble-sort
algorithm.

When we turn from pure data sonification and look towards
sonification and auralisation techniques as a complement to
existing visualisation models we find that good progress has
been made. Brown and Hershberger [5] coupled visual displays
of a program during execution with a form of auralisation. They
suggested that sound will be a “powerful technique for
communicating information about algorithms”.

Brown and Hershberger offered some examples of
successful uses of audio, for instance, applying sound to the
bubble-sort algorithm. The main use of sound in this work was
to reinforce visual displays, convey patterns and signal error
conditions and was by no means the main focus of the work.
Like most other visualisation systems that employ audio, Brown
and Hershberger’s work used sound as a complement to visual
representations. No formal evaluation of the approach was
published.

Mayer-Kress et al [24] applied sonification techniques to
chaotic attractor functions which led to musical forms in which
the similar but never-the-same regions could be heard in a
musical framework that is not unpleasant.

Early efforts at pure auralisation were concerned with
specific algorithms, often in the parallel programming domain.
Examples include Francioni et al [27, 28] who were interested in
using auralisations to help debug distributed-memory parallel
programs, and Jackson and Francioni [7, 9] who suggested
features of parallel programs that would map well to sound.
Those systems that are applied to more general sequential
programming problems require a degree of expert knowledge to
use, whether in terms of programming skill, musical knowledge,
expertise in the use of sound generating hardware, or all three.

3. SYSTEMS FOR EXTERNAL AUDITORY
REPRESENTATIONS OF PROGRAMS

To-date the following program auralisation tools have been
identified (as opposed to visualisation systems that incorporate
some sonification): InfoSound [8] by Sonnenwald et al, the
LogoMedia system by DiGiano and Baecker [12], Jameson’s
Sonnet system [13, 14], Bock’s Auditory Domain Specification
Language (ADSL) [15, 17], the LISTEN Specification
Language, or LSL [18, 19, 29], and Vickers and Alty’s
CAITLIN system [20-23]. All these systems convert their

auralisations into MIDI data which are sent, via a MIDI port, to
a suitable MIDI-equipped sound generator (such as a music
synthesiser, or even a sampler).

3.1. Infosound

InfoSound [8] is an audio-interface tool kit that allows
application developers to design and develop audio interfaces.
It provides the facility to design musical sequences and
everyday sounds, to store designed sounds and to associate
sounds with application events. InfoSound combines musical
sequences with sound effects. A limitation is that the software
developer is expected to compose the musical sequences
himself. To the musically untrained (the majority) this militates
against its general use.

The system is used by application programs to indicate
when an event has occurred during execution and was
successfully used to locate errors in a program that was
previously deemed to be correct. The authors of InfoSound
believe that sound can be a useful feedback mechanism to assist
in the debugging process. Users of the system were able to
detect rapid, multiple event sequences that are hard to detect
visually using text and graphics.

3.2. LogoMedia

LogoMedia [12], an extension to LOGOmotion [4] allows audio
to be associated with program events. The programmer
annotates the code with probes to track control- and data-flow.
As execution of the program causes variables and machine state
to change over time the changes can be mapped to sounds to
allow execution to be listened to. Like InfoSound, LogoMedia
employs both music and sound effects. The authors assert that
comprehending “the course of execution of a program and how
its data changes is essential to understanding why a program
does or does not work. Auralisation expands the possible
approaches to elucidating program behaviour” [12].

The main limitation is that the auralisations have to be
defined by the programmer for each expression that is required
to be monitored during execution. In other words, after entering
an expression, the programmer is prompted as to the desired
mapping for that expression.

3.3. Sonnet

The Sonnet system [13, 14] is specifically aimed at the
debugging process. Using a visual programming language
(SVPL) the code to be debugged is tagged with auralisation
agents that define how specific sections of code will sound.
Figure 2 shows a component to turn a note on and off
connected to some source code. The “P” button on the
component allows static properties such as pitch and amplitude
to be altered. The component has two connections, one to turn
on a note (via a MIDI note-on instruction) and one to silence the
note (MIDI note-off). In this example the note-on connector is
attached to the program just before the loop, and the note-off
connector just after the close of the loop. Therefore, this
auralisation will cause the note to sound continuously for the
duration of the loop. Thus, placement of the connectors defines
the auralisation.

Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6-9, 2004

Other components allow the user to specify how many
iterations of a loop to play. Program data could also be
monitored by components that could be attached to identifiers
within the code.

The guiding principle is that the programmer, knowing what
sounds have been associated with what parts of the program,
can listen to the execution looking out for patterns that deviate
from the expected path. When a deviation is heard, and
assuming the expectation is not in error, the point at which the
deviation occurred will indicate where in the program code to
look for a bug.

cntr = 0 ;

while (cntr <= 10)
 {
 printf("%d\n",cntr);
 cntr ++ ;
 }

printf ("Bye bye\n") ;

Note
P

On

Off

Figure 2 A Sonnet VPL Component taken from [13].

The VPL component is the box on the right.

Sonnet is an audio-enhanced debugger. This means that
because it interfaces directly with the executing program it is not
invasive and does not need to carry out any pre-processing to
add the auralisations.

The visual programming language offers great flexibility to
the programmer who wants to auralise his program. However, it
does require a lot of work if an entire program is to be auralised
even very simply.

3.4. ADSL

Bock’s Auditory Domain Specification Language (ADSL) [15,
17] differs from the above three approaches in that it does not
require sounds to be associated with specific lines of program
code. Instead users define tracks using the ADSL meta-
language to associate audio cues with program constructs and
data. These tracks (see Figure 3) are then interpreted by a pre-
processor so that the code has the auralisations added to it at
compilation allowing the program to be listened to as it runs.
The fragment of ADSL in Figure 3 specifies that for and
while loops are to be signalled by playing the ‘for_sound’
and ‘while_sound’ respectively. These two sounds have been
previously defined and could be a MIDI note sequence, an
auditory icon or recorded speech. The sounds will be heard
when the keywords for and while are encountered in the
program.An advantage of this approach is that it is possible to
define a general purpose auralisation. That is, by specifying
types of program construct to be auralised there is no
requirement to tag individual lines of code with auralisation
specifications. When such tagging is required this can be done
using the features of the specification language. Like Sonnet,
ADSL is non-invasive as the auralisations are added to the
source program during a pre-processing phase.

ADSL used a mixture of digitised recordings, synthesised
speech and MIDI messages. The choice of sounds and
mappings is at the discretion of the user, although a common
reusable set of auralisations could be created and shared
amongst several programmers. Tracks could be refined to allow
probing of specific data items or selective auralisation of loop

iterations. The system is flexible, allowing reasonably
straightforward whole-program auralisation, or more refined
probing (such as in Sonnet).

Track_name=Loop
{
1 Track=Status(‘for’):Snd(“for_sound”);
2 Track=Status(‘while’):Snd(“while_sound”);
}

Figure 3 An ADSL track to monitor for and while loops
taken from [15].

In an experiment [17] thirty post-graduate engineering
students from Syracuse University all with some programming
experience were required to locate a variety of bugs in three
programs using only a pseudo-code representation of the
program and the ADSL auditory output. On average, students
identified 68% of the bugs in the three programs. However, no
control group was used, so it is not possible to determine
whether the auralisations assisted in the bug identification.

3.5. Listen

Mathur’s Listen project [18, 19] follows a similar approach to
that used by ADSL. A program is auralised by writing an
auralisation specification (ASPEC) in the Listen Specification
Language (LSL). A pre-processing phase is used to parse and
amend the source program prior to compilation. Again, the
original source program is left unchanged.

An ASPEC defines the mapping between program-domain
events and auditory events, and an example for an automobile
controller is shown in Figure 4. This example auralises all calls
to the program functions gear_change, oil_check and
weak_battery. The ASPEC contains the auralisation definitions
and their usage instructions. For instance, in Figure 4 we see
that a call to program function gear_change causes the
auralisation gear_change_pattern to be played. This auralisation
is defined earlier in the ASPEC as a sequence of MIDI note-
on/off instructions.

begin auralspec
specmodule call_auralize
var
 gear_change_pattern, oil_check_pattern,
battery_weak_pattern: pattern;
begin call_auralize
 gear_change_pattern:=”F2G2F2G2F2G2C1:qq” +
“C1:f”;
 oil_check_pattern:=”F6G6:h”;
 battery_weak_pattern:=”A2C2A2C2”;
 notify all rule = function_call
“gear_change” using gear_change_pattern;
 notify all rule = function_call “oil_check”
using oil_check_pattern;
 notify all rule = function_call
“battery_weak” using battery_weak_pattern;
end call_auralize;
end auralspec.

Figure 4 An LSL ASPEC for an automobile controller.
taken from Mathur .

Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6-9, 2004

Figure 5 Example CAITLIN auralisations

As LSL is a meta-language it can, in theory, be used to
define auralisations for programs written in any language; the
practice requires an extended version of LSL for each target
language.

What is immediately apparent is that writing ASPECS in
LSL is not a trivial task as it requires the programmer to learn
the syntax of LSL. In addition, some musical knowledge is
needed to know how to specify which pitches are used in the
auralisations. The Listen project was dormant after 1996 but
was reactivated in 2002 and applied to Java in the form of
JListen [30]. To-date no formal experimentation or evaluation of
the original or newer JListen systems has been published.

3.6. CAITLIN

The CAITLIN system is a non-invasive pre-processor that
allows the auralisation of programs written in Turbo Pascal [20-
23]. The system was implemented on a relatively modest
platform comprising a personal computer and sound card with a
General-MIDI-compatible instrument set. Musical output is
achieved by sending MIDI data to a multi-timbral synthesiser via
the MIDI port on a sound card.

The CAITLIN auralisations were designed around a tonal
musical framework. Users were not required to design the
auralisation content as the system used unique pre-defined
motifs (theme tunes) to represent the Pascal language constructs
[22]. This meant that no musical knowledge was needed in
order to produce musically-consistent output. Figure 5 shows
example auralisations for two program fragments. Experiments
with the CAITLIN system indicated that musical auralisations

do provide information useful in bug-location and detection
tasks [20].

As the CAITLIN system was an experimental prototype it
has some limitations. First, the auralisations were only applied to
the language constructs (selections and interations) which meant
that other program features could not be inspected aurally.
Secondly, constructs could not be individually marked for
auralisation meaning the entire program was auralised. In a real
debugging situation programmers would not monitor an entire
program but would choose candidate sections for close
scrutiny. This whole-program approach meant that even short
programs could take a long time to play back.

4. AESTHETIC CONSIDERATIONS

In any work on auditory display the aesthetics of the
sonification are important. One of the goals of the CAITLIN
project was to increase the usability of auralisations by drawing
upon the well-established aesthetics of tonal music forms. The
technical quality of other program auralisation systems was not
in question but it is clear that the musical aesthetics they used
were highly dependent both on the content and structure of the
programs to be auralised and the musical skill of the
programmer who had to specify the data-to-pitch mappings. Of
course, given sufficient training, any auralisation framework
should be usable, but that goes against the more recent efforts
to improve computing aesthetics, as espoused and championed,
for example, by Norman [31]. The underlying principle of
aesthetic computing is that art theory and practice should
influence the design of computer systems and artefacts [1]. As
art theory and practice embody customisation, personalisation,

Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6-9, 2004

preference, culture, and emotion [32] there is much for the
designer of the next generation of program auralisation systems
to consider.

4.1. Customisation. Personalisation, and Preference

Early program auralisation systems generally let the user define
the mappings of data to sound. Whilst this allows almost
unlimited customisation, personalisation, and preference it
requires some audio-design skills on the part of the user.
Customisation and personalisation, then, must be balanced by
the knowledge and skills required to make use of them (hence
the use of fixed auralisations in the CAITLIN system).

User preference is certainly an important factor. A study of
surgeons who listened to music while operating showed that
their speed and task accuracy were greater when they listened to
self-selected music rather than music chosen by the
experimenters [33]. In experiments with CAITLIN we noticed a
definite preference amongst subjects for motifs with a strong
melody. This was especially apparent in the early pilot studies
where the motif design was less refined and some constructs
had motifs that were much less musical than others. In the most
recent version users expressed a preference for the FOR motifs
which were also the most melodic, that is, the melodic contour
was more elaborate than the scale-based motifs of the selection
constructs and the harmonically-richer motifs of the WHILE and
REPEAT loops. Contour was judged by subjects as being a
useful aide-mémoire for recalling the motifs [20, 22]. Edworthy
[34] and Dowling [35] observed that contour becomes even
more important when the tonal context is weak or confusing;
contour becomes less important in familiar melodies and
melodies retained over a period of time.

Auralisation systems that allow the user to define the
auditory mappings have the advantage of supporting preference
but with the caveat that the aesthetics of the resultant
auralisations may render them less useful than they otherwise
might be. This problem could be avoided by providing sets of
pre-defined auditory mappings from which the user could
choose according to preference.

4.2. Emotion

Sound, and music in particular, clearly has an emotional
dimension (after all, we talk of mood music). One emotion that
auralisation systems are susceptible to induce is annoyance.
Gaver and Smith [36] noted that sounds in the interface can be
annoying and that what “seems cute and clever at first may
grow tiresome after a few exposures”. In our experience,
tiresome sounds are usually those that have not been designed
with listening aesthetics in mind. Designers go to great lengths to
ensure that auditory signals and alarms in safety critical
environments (such as aircraft cockpits and nuclear power
plants) sit well within their auditory ecology, but these rigours
are not so well followed in other auditory displays. It is easy to
make a display that clashes with, or masks, other events, or that
is simply tiring (both emotionally and cognitively) to use.
Approximately half the subjects in an experiment using the
CAITLIN system found the auralisations to be moderately
annoying, the other half suffering almost no annoyance [37].
The ambiguity of this result gives hope that auralisations can be
produced that do not trigger a negative emotional response but

cautions us that we must pay very careful attention to this
aspect. No studies have been published on the emotive aspects
of other auralisation systems but we might expect similar results.

4.3. Culture

With the exception of CAITLIN, the auralisation systems above
mapped program data to musical pitches to effect the
auralisations without regard to the musicality of the output.
Conner and Malmin [38] said that we must recognise that a gap
in understanding may exist between the communicator and the
receiver. For successful communication between the auditory
display and the programmer there must be a common medium
in order that the gap may be bridged. Meyer [39] observed that
meaning and communication “cannot be separated from the
cultural context in which they arise. Apart from the social
situation there can be neither meaning nor communication.”
Music and sonic aesthetics are, to an extent, culturally
dependent and so the aesthetics of an auditory display have a
pivotal role in determining its success. Watkins and Dyson [40]
found that music performed in a style familiar to the listener is
easier to recognise and understand. If music forms are used
they must not rely on styles that are inaccessible to the average
person. That is, the aesthetics must be complementary with, or
accessible to, those of the listener. Composers organise music
according to defined structures, schemes, or sets of ‘rules’.
Structuring auralisations according to simple syntactical rules
offers the hope of music forming the basis for a bridge of the
semantic gap between an incorrectly functioning program and
the programmer.

Alty [41] commented that just as furniture designers would
never create a chair twelve metres high composers must not
produce works that are beyond the cognitive processing
capabilities of the listener. Likewise, auralisations must be
mappable to different musical and cultural idioms so that the
user can select a familiar representation. Just as software
interfaces undergo internationalisation to take account of cultural
differences and social constructs, so auralisations need to be
designed with the listener in mind. What is particularly
interesting about music is that recall of melody appears to be an
innate skill. That is, people do not need to be trained to
recognise melodies. Auralisations that use melodies as carriers
of information stand a good chance of being understood and
retained in the mind of the listener.

The seven-note diatonic scale, though common in western
music, is not, however, “an inevitable consequence of the
psychophysics of tone perception” [42, p. 5]. Indeed, Hemlholtz
believed that the development of musical styles was heavily
influenced by culture and aesthetics. In the ancient Greek world
there was great debate about the relative merits and vices of the
different modal schemes that were common right up until the
middle ages. Cultural influence is evident in the divergence of
the eastern and western musical traditions. The western classical
tradition (especially in the 18th century) was driven by a desire
to explore harmony whilst eastern music concentrated on
rhythm [see 42 p. 6].

The argument that diatonic systems are in some way more
natural than atonal systems is belied by the fact that concert
repertoires continue to include new music styles. However, as
Parncutt [42] observes, most of the atonal systems have not
been incorporated into mainstream (or popular) music as they
require more information processing by the listener; the

Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6-9, 2004

organising principles of 12-tone music in which there is no tonal
centre to the music and each degree of the scale has equal
weight (for example, as practised by Schoenberg and
Stockhausen) are imperceptible even to trained listeners. Alty
[41] explained this in terms of the limits of working memory
which, according to Miller [43], can handle around seven bits of
information concurrently.

In experiments on subjects’ ability to recall melodies,
Sloboda and Parker [44] found that the most fundamental
feature preserved in a recalled melody was its metrical structure.
Further, musicians and non-musicians differed significantly only
on one measure – the ability to retain the harmonic structure of
the original. Therefore, it is unwise to rely on ability to
distinguish harmonic structures in auralisations and this does not
commend atonal music systems as good vehicles for
auralisation.

Of course, there are cultural as well as perceptual factors at
work here as the seven-note diatonic tonal scheme is a western,
not a world, music form. That said, there is evidence that the
scheme shares characteristics with world musics. Melodies
from around the world tend to centre on a particular pitch, thus
exhibiting a key feature of tonality [42, p.70]. Furthermore, the
twelve-note chromatic scale (of which the diatonic scale is a
subset) developed independently in different musical cultures
(ancient China, India, Persia, and then the west) and the use of
the octave, fourth, and fifth intervals (important in tonal forms)
is widespread in world musics. Besides, the international
success of western rock and pop bands is evidence that even
western musical structures are widely accepted across the
world, especially in the computer using world [21].

Nevertheless, as designers of auditory displays we must be
aware that even a near-universally-accepted idiom (such as
western pop music) is not necessarily interpreted the same way
around the world for the boundary between sensory and cultural
influences is not clear. For example, consonance and
dissonance are important concepts but which appear to be
specific to western music [42]. This means that understanding,
or rather, specific interpretations of particular musical structures
cannot be taken for granted. An auralisaton system that uses
dissonance to draw attention to exceptional events, for example,
may fail for listeners who are more influenced by musical forms
that do not place the same emphasis on consonance and
dissonance.

5. THE FUTURE?

In an attempt to avoid the pitfalls of requiring programmers to
be able to specify good auditory mappings the CAITLIN
musical program auralisation system was built with fixed
auralisation motifs that were designed within a coherent and self-
consistent tonal framework. This helped to ensure that the aural
ecology of the system was healthy and that no individual parts
of the auralisations dominated the mix or conflicted with others.
The benefits of this approach are that the listener receives
output that has been designed with aesthetics in mind. The
disadvantage is that it is much less configurable to suit different
preferences and emotional or cultural needs. In a sense an aural
equivalent of XML is needed to allow the content (information
or data) to be separated from its presentation (in this case, the
auditory metaphor). Then designers could produce sets of
auditory mappings in much the same way that visual interfaces

(or skins) are produced for popular programs today. For
example, there could be a jazz set, a Bach chorale set, a
Javanese Gamelan music set, or even a Chinese classical opera
style. In addition, we envisage providing multiple motifs within
each set so that program objects and events can be tagged by
the user with the motif of preference in the knowledge that each
motif conforms to the aesthetic qualities of the others. Such a
development could be considered to be extending the principles
of literate programming [45, 46]. Where literate programming
tools of the past concentrated on typography and external visual
representations to enhance presentation and comprehension of
programs [e.g. 47, 48], the tools of the future can make use of
auditory and musical aesthetics to extend the programmer’s
toolbox and visualisation set.

Of course, more experimentation is needed to explore just
how sensitive auralisations are to the cultural and aesthetic
background of the listener. So far studies have focused on a
western tonal system with western subjects. Given the tendency
of world music systems to exhibit forms of tonality it would be
surprising if the simple musical forms of auralisation systems
were not comprehensible to people from other cultures, but this
aspect still needs to be explored.

In the pursuit of aesthetic excellence we must be careful not
to tip the balance too far in favour of artistic form. Much
current art music would not be appropriate for an auralisation
system. The vernacular is popular music, the aesthetics of
which are often far removed from the ideals of the music
theorists and experimentalists. Lucas [49] showed that the
recognition accuracy of an auditory display was increased when
users were made aware of the display’s musical design
principles. Watkins and Dyson [40] demonstrated that melodies
that follow the rules of western tonal music are easier to learn,
organise (cognitively), and discriminate between than control
tone sequences of similar complexity. So, it would seem that the
cognitive organisational overhead associated with atonal
systems makes them less well suited as carriers of program
information.

The sonifications of Quinn [25], King and Angus [50], and
Mayer-Kress et al [24] had a dual function to stand as music in
their own right but also to shed new light on the underlying data.
However, the purpose of auralisation systems is not
entertainment or the communication of mood and emotion, but
solely to assist programmers with understanding software and
its behaviour. The intentional product of an auralisation system
is the communication of information or knowledge with music
as the carrier. The music itself, inasmuch as it exists as an entity
in its own right, is not the intentional product but a by-product
of the auralisation process. Therefore, whatever music systems
and aesthetics are employed they must not detract from the
prime purpose which is to communicate information.

In addition to exploring the cultural aspects of musical
auralisation it also remains to see how auditory and visual
mappings work together. It is to be hoped that the
temporal/spatial communication space provided by an audio-
visual auralisation system will provide a powerful set of tools to
help programmers with writing, comprehending, and debugging
their code. For example, one can envisage an auralisation tool in
which a graphical visualisation displays the state of a data
structure whilst an auralisation communicated program control
flow. The use of a bi-modal system offers exciting opportunities
for program comprehension and debugging tasks. The ease with
which music and non-speech audio can now be incorporated

Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6-9, 2004

into programming environments (especially the Java platform)
means that such a system is a realisable goal in the short to
medium term. Integrating auralisation tools into the IDE is
necessary to allow common debugging techniques such as
breakpoints and step/trace facilities to be extended into the
auditory domain.

6. CONCLUSIONS

The first generation of program auralisation systems provided
proof of concept and technical feasibility. For this research to
continue fruitfully, the next set of tools for adding external
auditory representations of programs must take account, not
just of interaction design principles, but also of the aesthetics of
the tool and the aesthetics of the context and culture in which
the tool is placed.

Support for object-oriented multi-threaded environments is
necessary. The potential for sound (and music in particular) to
assist with comprehension in such a context needs to be
explored. The orchestral model of families of timbres might be
usefully applied to enable programmers to distinguish between
the activities of different thread.

7. ADDITIONAL FILES

Audio examples from the CAITLIN system can be heard by
visiting www.auralisation.org.

8. REFERENCES

[1] P. Fishwick, "Aesthetic Programming: Crafting
Personalized Software," Leonardo, vol. 35, pp. 383-
390, 2002.

[2] P. Fishwick, "Aesthetic Computing - in preparation,"
MIT Press, 2004.

[3] S. A. Bly, "Sound and Computer Information
Presentation," University of California, Davis, 1982.

[4] R. M. Baecker and J. Buchanan, "A Programmer's
Interface: A Visually Enhanced and Animated
Programming Environment," presented at Twenty-
Third Annual Hawaii International Conference on
Systems Sciences, 1990.

[5] M. H. Brown and J. Hershberger, "Color and Sound
in Algorithm Animation," Computer, vol. 25, pp. 52-
63, 1992.

[6] C. J. DiGiano, "Visualizing Program Behaviour Using
Non-speech Audio," in Computer Science. Toronto:
University of Toronto, 1992.

[7] J. A. Jackson and J. M. Francioni, "Synchronization
of Visual and Aural Parallel Program Performance
Data," in Auditory Display, vol. XVIII, Santa Fe
Institute, Studies in the Sciences of Complexity
Proceedings, G. Kramer, Ed. Reading, MA: Addison-
Wesley, 1994, pp. 291-306.

[8] D. H. Sonnenwald, B. Gopinath, G. O. Haberman,
W. M. Keese, III, and J. S. Myers, "InfoSound: An
Audio Aid to Program Comprehension," presented at
Twenty-Third Hawaii International Conference on
System Sciences, 1990.

[9] J. A. Jackson and J. M. Francioni, "Aural Signatures
of Parallel Programs," presented at Twenty-Fifth
Hawaii International Conference on System Sciences,
1992.

[10] J. M. Francioni and D. T. Rover, "Visual-Aural
Representations of Performance for a Scalable
Application Program," presented at High Performance
Computing Conference, 1992.

[11] G. Kramer, "Auditory Display." Reading, MA:
Addison-Wesley, 1994.

[12] C. J. DiGiano and R. M. Baecker, "Program
Auralization: Sound Enhancements to the
Programming Environment," presented at Graphics
Interface '92, 1992.

[13] D. H. Jameson, "Sonnet: Audio-Enhanced Monitoring
and Debugging," in Auditory Display, vol. XVIII,
Santa Fe Institute, Studies in the Sciences of
Complexity Proceedings, G. Kramer, Ed. Reading,
MA: Addison-Wesley, 1994, pp. 253-265.

[14] D. H. Jameson, "The Run-Time Components of
Sonnet," presented at ICAD '94 Second International
Conference on Auditory Display, Santa Fe, NM,
1994.

[15] D. S. Bock, "ADSL: An Auditory Domain
Specification Language for Program Auralization,"
presented at ICAD '94 Second International
Conference on Auditory Display, Santa Fe, NM,
1994.

[16] D. S. Bock, "Sound Enhanced Visualization: A
Design Approach Based on Natural Paradigms," in
Graduate School. Syracuse: Syracuse University,
1995, pp. 86.

[17] D. S. Bock, "Auditory Software Fault Diagnosis
Using a Sound Domain Specification Language," in
Graduate School. Syracuse: Syracuse University,
1995, pp. 161.

[18] A. P. Mathur, D. B. Boardman, and V. Khandelwal,
"LSL: A Specification Language for Program
Auralization," presented at ICAD '94 Second
International Conference on Auditory Display, Santa
Fe, NM, 1994.

[19] D. B. Boardman and A. P. Mathur, "Preliminary
Report on Design Rationale, Syntax, and Semantics
of LSL: A Specification Language for Program
Auralization," Dept. of Computer Sciences, Purdue
University, W. Lafayette, IN Sept. 21 1993.

[20] P. Vickers and J. L. Alty, "When Bugs Sing,"
Interacting with Computers, vol. 14, pp. 793-819,
2002.

[21] P. Vickers and J. L. Alty, "Using Music to
Communicate Computing Information," Interacting
with Computers, vol. 14, pp. 435-456, 2002.

[22] P. Vickers and J. L. Alty, "Musical Program
Auralisation: A Structured Approach to Motif
Design," Interacting with Computers, vol. 14, pp.
457-485, 2002.

[23] P. Vickers and J. L. Alty, "Siren Songs and Swan
Songs: Debugging with Music," Communications of
the ACM, vol. 46, pp. 86-92, 2003.

[24] G. Mayer-Kress, R. Bargar, and I. Choi, "Musical
Structures in Data from Chaotic Attractors," in
Auditory Display, vol. XVIII, Santa Fe Institute,

Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6-9, 2004

Studies in the Sciences of Complexity Proceedings,
G. Kramer, Ed. Reading, MA: Addison-Wesley,
1994, pp. 341-368.

[25] M. Quinn, "Seismic sonata: a musical replay of the
1994 Northridge, California earthquake." Lee, NH:
Marty Quinn, 2000.

[26] J. L. Alty, "Can We Use Music in Computer-Human
Communication?," in People and Computers X:
Proceedings of HCI '95, M. A. R. Kirby, A. J. Dix,
and J. E. Finlay, Eds. Cambridge: Cambridge
University Press, 1995, pp. 409-423.

[27] J. M. Francioni, L. Albright, and J. A. Jackson,
"Debugging Parallel Programs Using Sound,"
SIGPLAN Notices, vol. 26, pp. 68-75, 1991.

[28] J. M. Francioni, J. A. Jackson, and L. Albright, "The
Sounds of Parallel Programs," presented at 6th
Distributed Memory Computing Conference,
Portland, Oregon, 1991.

[29] D. B. Boardman, G. Greene, V. Khandelwal, and A.
P. Mathur, "LISTEN: A Tool to Investigate the Use
of Sound for the Analysis of Program Behaviour,"
presented at 19th International Computer Software
and Applications Conference, Dallas, TX, 1995.

[30] A. P. Mathur. (2004). Project Listen and JListen.
Retrieved 5 February, 2004, from
http://www.cs.purdue.edu/homes/apm/listen.html

[31] D. A. Norman, Emotional Design: Why We Love (or
Hate) Everyday Things: Basic Books, 2004.

[32] P. Fishwick, "Personal Communication," 2003.
[33] K. Allen and J. Blascovich, "Effects of music on

cardiovascular reactivity among surgeons," Journal of
the American Medical Association, vol. 272, pp. 882-
884, 1994.

[34] J. Edworthy, "Melodic Contour and Musical
Structure," in Musical Structure and Cognition, P.
Howell, I. Cross, and R. West, Eds. New York:
Academic Press, 1985, pp. 169-188.

[35] W. J. Dowling, "Melodic Information Processing and
Its Development," in The Psychology of Music, D.
Deutsch, Ed. New York: Academic Press, 1982, pp.
413-429.

[36] W. W. Gaver and R. B. Smith, "Auditory Icons in
Large-Scale Collaborative Environments," presented
at Human-Computer Interaction: Interact '90,
Cambridge, UK, 1990.

[37] P. Vickers, "CAITLIN: Implementation of a Musical
Program Auralisation System to Study the Effects on
Debugging Tasks as Performed by Novice Pascal
Programmers," in Computer Science. Loughborough:
Loughborough University, 1999, pp. 234.

[38] K. J. Conner and K. Malmin, Interpreting the
Scriptures: A Textbook on How to Interpret the
Bible. Portland, Oregon: Bible Temple Publications,
1983.

[39] L. B. Meyer, Emotion and Meaning in Music.
Chicago: Chicago University Press, 1956.

[40] A. J. Watkins and M. C. Dyson, "On the Perceptual
Organisation of Tone Sequences and Melodies," in
Musical Structure and Cognition, P. Howell, I.
Cross, and R. West, Eds. New York: Academic
Press, 1985, pp. 71-119.

[41] J. L. Alty, "Engineering for the mind: cognitive
science and musical composition," Journal of New
Music Research, vol. 31, pp. 249-255, 2002.

[42] R. Parncutt, Harmony: A Psychoacoustical
Approach. Berlin: Springer-Verlag, 1989.

[43] G. A. Miller, "The Magical Number Seven, Plus or
Minus Two: Some Limits on our Capacity for
Processing Information," Psychological Review, vol.
63, pp. 81-96, 1956.

[44] J. A. Sloboda and D. H. H. Parker, "Immediate Recall
of Melodies," in Musical Structure and Cognition, P.
Howell, I. Cross, and R. West, Eds. New York:
Academic Press, 1985, pp. 143-167.

[45] D. E. Knuth, "Literate Programming," Computer
Journal, 1984.

[46] J. P. Pardoe and S. J. Wade, "Knuth With Knobs On
- Literate Program Development," in Automating
Systems Development, D. Benyon and S. Skidmore,
Eds.: Plenum, 1988.

[47] P. Vickers, J. P. Pardoe, and S. J. Wade, "Software
Assisted Program Design," presented at Computer
Assisted Learning of Computing, Manchester
Polytechnic, 1991.

[48] P. Vickers, J. P. Pardoe, and S. J. Wade, "The Use
of Literate Program Development Tools," presented
at Software Supported Programming Instruction
Workshop, University of Ulster, 1991.

[49] P. A. Lucas, "An Evaluation of the communicative
Ability of Auditory Icons and Earcons," presented at
ICAD '94 Second International Conference on
Auditory Display, Santa Fe, NM, 1994.

[50] R. D. King and C. Angus, "PM—Protein Music,"
CABIOS, vol. 12, pp. 251-252, 1996.

