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ABSTRACT 

This paper provides a summary of previous work done in the 
area of external auditory representations of programs (known as 
program auralisation). A brief historical review is given 
followed by a short summary of the characteristics of the main 
program auralisation systems that have been reported in the 
literature. As program auralisation systems tend to use musical 
representations they are necessarily affected by artistic 
considerations. The influence of art theory and practice on  the 
design of computer systems and artefacts (known as aesthetic 
computing [1, 2]) has grown to the extent that there is now a 
growing field devoted to its study. Therefore, it is instructive to 
explore the design of program auralisation systems in the light 
of aesthetic computing ideas. The remainder of this paper then, 
discusses the main principles of aesthetic computing in relation 
to program auralisation, and finishes with some views on how 
aesthetic computing can influence the future development of 
program auralisation systems. 

1. INTRODUCTION 

Since Bly's original thesis [3] on the use of sound in 
interfaces, researchers have been keen to propose that sound be 
used in software visualisation [4-8]. In software visualisation, 
mappings are made between software attributes and visual 
representations that are external to the software (such as graphs, 
spectra etc.). Such mappings provide a framework for users to 
construct mental images of the states and structures of 
software. This works extremely well for components whose 
features map naturally onto spatial media (such as tree diagrams 
for genealogy reports or dynamic data structures). Having 
constructed the mapping between, say, a linked-list data 
structure and a tree diagram, the programmer forever has a 
visual metaphor of the data structure which can be abstracted 
and used to form mental images.  When asked to visualise a 
node being added to the list (Figure 1), the programmer can 
form an image in their head and so draw a picture showing the 
new state of the data structure. This visual representation has no 
direct connection with the actual data structure, it is merely an 
apt analogue or metaphor.  

The aspects of software in which the programmer is 
interested tend not to be real world objects and thus have no 
real world auditory signatures. How then can sound be 
successfully employed in software visualisation? 

Computer programming poses an interesting problem for 
information display. Program events are in the time domain 
whilst visual mappings are largely spatial representations. Visual 

techniques give good descriptions of spatial relations and 
structural details (just like Fourier analysis does for sound 
waves), but do not naturally represent temporal details. Sound 
presents us with a complementary modality that increases the 
diagnostic tools available by giving a temporal view of software 
(as the wave-form plot does for a sound wave).  

 
 

Software data
structure

 

Figure 1 Metaphor in visualisation. Using the tree 
metaphor for data structures aids understanding.  

2. HISTORICAL ROOTS 

The case for using sound to aid programming was 
supported by Jackson and Francioni [9], although they felt that 
a visual presentation was also needed to provide a context or 
framework for the audio sound track. They argued that some 
types of programming error (such as those that can be spotted 
through pattern recognition) are more intuitively obvious to our 
ears than our eyes. Also, they pointed out that, unlike images, 
sound can be processed by the brain passively, that is, we can 
be aware of sounds without needing to listen to them. Francioni 
and Rover [10] found that sound allows a user to detect 
patterns of program behaviour and also to detect anomalies with 
respect to expected patterns. 

The use of external auditory representations of program 
information is known as program auralisation [11]. One of the 
first attempts at program was described by Sonnenwald et al [8] 
and was followed by DiGiano [6], DiGiano and Baecker [12], 
Brown and Hershberger [5] , Jameson [13, 14], Bock [15-17], 
Mathur et al [18, 19], and Vickers and Alty [20-23]. These early 
systems all used complex tones in their auditory mappings but, 
like much other auditory display work, this was done without 
regard to the musicality of the representations (with the 
exception of Vickers and Alty). That is, simple mappings were 
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often employed, such as quantising the value of a data item to a 
chromatic pitch in the 128-tone range offered by MIDI-
compatible tone generators. Furthermore, the pitches were 
typically atonal in their organisation and were combined with 
sound effects (e.g. a machine sound to represent a function 
processing some data). Effort was largely invested in 
demonstrating that data could be mapped to sound with much 
less attention given to the aesthetics and usability of the auditory 
displays. Where aesthetic considerations are taken into account 
auditory displays become much easier to comprehend. Mayer-
Kress et al [24] mapped chaotic attractor functions to musical 
structures in which the functions’ similar but never-the-same 
regions could be clearly heard. The resultant music could be 
appreciated in its own right without needing to know how it was 
produced. Quinn’s Seismic Sonata [25] likewise uses the 
aesthetics of musical form to sonify data from the 1994 
Northridge, California earthquake. Alty [26] demonstrated how 
musical forms could be used to auralise the bubble-sort 
algorithm. 

When we turn from pure data sonification and look towards 
sonification and auralisation techniques as a complement to 
existing visualisation models we find that good progress has 
been made. Brown and Hershberger [5] coupled visual displays 
of a program during execution with a form of auralisation. They 
suggested that sound will be a “powerful technique for 
communicating information about algorithms”.  

Brown and Hershberger offered some examples of 
successful uses of audio, for instance, applying sound to the 
bubble-sort algorithm. The main use of sound in this work was 
to reinforce visual displays, convey patterns and signal error 
conditions and was by no means the main focus of the work. 
Like most other visualisation systems that employ audio, Brown 
and Hershberger’s work used sound as a complement to visual 
representations. No formal evaluation of the approach was 
published. 

Mayer-Kress et al [24] applied sonification techniques to 
chaotic attractor functions which led to musical forms in which 
the similar but never-the-same regions could be heard in a 
musical framework that is not unpleasant. 

Early efforts at pure auralisation were concerned with 
specific algorithms, often in the parallel programming domain. 
Examples include Francioni et al [27, 28] who were interested in 
using auralisations to help debug distributed-memory parallel 
programs, and Jackson and Francioni [7, 9] who suggested 
features of parallel programs that would map well to sound. 
Those systems that are applied to more general sequential 
programming problems require a degree of expert knowledge to 
use, whether in terms of programming skill, musical knowledge, 
expertise in the use of sound generating hardware, or all three. 

3. SYSTEMS FOR EXTERNAL AUDITORY 
REPRESENTATIONS OF PROGRAMS 

To-date the following program auralisation tools have been 
identified (as opposed to visualisation systems that incorporate 
some sonification): InfoSound [8] by Sonnenwald et al, the 
LogoMedia system by DiGiano and Baecker [12], Jameson’s 
Sonnet system [13, 14], Bock’s Auditory Domain Specification 
Language (ADSL) [15, 17], the LISTEN Specification 
Language, or LSL [18, 19, 29], and Vickers and Alty’s 
CAITLIN system [20-23]. All these systems convert their 

auralisations into MIDI data which are sent, via a MIDI port, to 
a suitable MIDI-equipped sound generator (such as a music 
synthesiser, or even a sampler). 

3.1. Infosound 

InfoSound [8] is an audio-interface tool kit that allows 
application developers to design and develop audio interfaces. 
It provides the facility to design musical sequences and 
everyday sounds, to store designed sounds and to associate 
sounds with application events. InfoSound combines musical 
sequences with sound effects. A limitation is that the software 
developer is expected to compose the musical sequences 
himself. To the musically untrained (the majority) this militates 
against its general use.  

The system is used by application programs to indicate 
when an event has occurred during execution and was 
successfully used to locate errors in a program that was 
previously deemed to be correct. The authors of InfoSound 
believe that sound can be a useful feedback mechanism to assist 
in the debugging process. Users of the system were able to 
detect rapid, multiple event sequences that are hard to detect 
visually using text and graphics. 

3.2. LogoMedia 

LogoMedia [12], an extension to LOGOmotion [4] allows audio 
to be associated with program events. The programmer 
annotates the code with probes to track control- and data-flow. 
As execution of the program causes variables and machine state 
to change over time the changes can be mapped to sounds to 
allow execution to be listened to. Like InfoSound, LogoMedia 
employs both music and sound effects. The authors assert that 
comprehending “the course of execution of a program and how 
its data changes is essential to understanding why a program 
does or does not work. Auralisation expands the possible 
approaches to elucidating program behaviour” [12]. 

The main limitation is that the auralisations have to be 
defined by the programmer for each expression that is required 
to be monitored during execution. In other words, after entering 
an expression, the programmer is prompted as to the desired 
mapping for that expression.  

3.3. Sonnet 

The Sonnet  system [13, 14] is specifically aimed at the 
debugging process. Using a visual programming language 
(SVPL) the code to be debugged is tagged with auralisation 
agents that define how specific sections of code will sound. 
Figure 2 shows a component to turn a note on and off 
connected to some source code. The “P” button on the 
component allows static properties such as pitch and amplitude 
to be altered. The component has two connections, one to turn 
on a note (via a MIDI note-on instruction) and one to silence the 
note (MIDI note-off). In this example the note-on connector is 
attached to the program just before the loop, and the note-off 
connector just after the close of the loop. Therefore, this 
auralisation will cause the note to sound continuously for the 
duration of the loop. Thus, placement of the connectors defines 
the auralisation. 
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Other components allow the user to specify how many 
iterations of a loop to play. Program data could also be 
monitored by components that could be attached to identifiers 
within the code.  

The guiding principle is that the programmer, knowing what 
sounds have been associated with what parts of the program, 
can listen to the execution looking out for patterns that deviate 
from the expected path. When a deviation is heard, and 
assuming the expectation is not in error, the point at which the 
deviation occurred will indicate where in the program code to 
look for a bug.  

cntr = 0 ;

while (cntr <= 10)
   {
   printf("%d\n",cntr);
   cntr ++ ;
   }

printf ("Bye bye\n") ;

Note
P

On

Off

 
Figure 2 A Sonnet VPL Component taken from [13]. 

The VPL component is the box on the right. 

Sonnet is an audio-enhanced debugger. This means that 
because it interfaces directly with the executing program it is not 
invasive and does not need to carry out any pre-processing to 
add the auralisations.  

The visual programming language offers great flexibility to 
the programmer who wants to auralise his program. However, it 
does require a lot of work if an entire program is to be auralised 
even very simply.  

3.4. ADSL 

Bock’s Auditory Domain Specification Language (ADSL) [15, 
17] differs from the above three approaches in that it does not 
require sounds to be associated with specific lines of program 
code. Instead users define tracks using the ADSL meta-
language to associate audio cues with program constructs and 
data. These tracks (see Figure 3) are then interpreted by a pre-
processor so that the code has the auralisations added to it at 
compilation allowing the program to be listened to as it runs. 
The fragment of ADSL in  Figure 3 specifies that for and 
while loops are to be signalled by playing the ‘for_sound’ 
and ‘while_sound’ respectively. These two sounds have been 
previously defined and could be a MIDI note sequence, an 
auditory icon or recorded speech. The sounds will be heard 
when the keywords for and while are encountered in the 
program.An advantage of this approach is that it is possible to 
define a general purpose auralisation. That is, by specifying 
types of program construct to be auralised there is no 
requirement to tag individual lines of code with auralisation 
specifications. When such tagging is required this can be done 
using the features of the specification language. Like Sonnet, 
ADSL is non-invasive as the auralisations are added to the 
source program during a pre-processing phase. 

ADSL used a mixture of digitised recordings, synthesised 
speech and MIDI messages. The choice of sounds and 
mappings is at the discretion of the user, although a common 
reusable set of auralisations could be created and shared 
amongst several programmers. Tracks could be refined to allow 
probing of specific data items or selective auralisation of loop 

iterations. The system is flexible, allowing reasonably 
straightforward whole-program auralisation, or more refined 
probing (such as in Sonnet).  

 
Track_name=Loop 
{ 
1 Track=Status(‘for’):Snd(“for_sound”); 
2 Track=Status(‘while’):Snd(“while_sound”); 
} 

Figure 3 An ADSL track to monitor for and while loops 
taken from [15].  

In an experiment [17] thirty post-graduate engineering 
students from Syracuse University all with some programming 
experience were required to locate a variety of bugs in three 
programs using only a pseudo-code representation of the 
program and the ADSL auditory output. On average, students 
identified 68% of the bugs in the three programs. However, no 
control group was used, so it is not possible to determine 
whether the auralisations assisted in the bug identification. 

3.5. Listen 

Mathur’s Listen project [18, 19] follows a similar approach to 
that used by ADSL. A program is auralised by writing an 
auralisation specification (ASPEC) in the Listen Specification 
Language (LSL). A pre-processing phase is used to parse and 
amend the source program prior to compilation. Again, the 
original source program is left unchanged.  

An ASPEC defines the mapping between program-domain 
events and auditory events, and an example for an automobile 
controller is shown in Figure 4. This example auralises all calls 
to the program functions gear_change, oil_check and 
weak_battery. The ASPEC contains the auralisation definitions 
and their usage instructions. For instance, in Figure 4 we see 
that a call to program function gear_change causes the 
auralisation gear_change_pattern to be played. This auralisation 
is defined earlier in the ASPEC as a sequence of MIDI note-
on/off instructions. 

 
begin auralspec 
specmodule call_auralize 
var 
   gear_change_pattern, oil_check_pattern, 
battery_weak_pattern: pattern; 
begin call_auralize 
   gear_change_pattern:=”F2G2F2G2F2G2C1:qq” + 
“C1:f”; 
   oil_check_pattern:=”F6G6:h”; 
   battery_weak_pattern:=”A2C2A2C2”; 
   notify all rule = function_call 
“gear_change” using gear_change_pattern; 
   notify all rule = function_call “oil_check” 
using oil_check_pattern; 
   notify all rule = function_call 
“battery_weak” using battery_weak_pattern; 
end call_auralize; 
end auralspec. 

Figure 4 An LSL ASPEC for an automobile controller. 
taken from Mathur . 
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Figure 5 Example CAITLIN auralisations 

As LSL is a meta-language it can, in theory, be used to 
define auralisations for programs written in any language; the 
practice requires an extended version of LSL for each target 
language. 

What is immediately apparent is that writing ASPECS in 
LSL is not a trivial task as it requires the programmer to learn 
the syntax of LSL. In addition, some musical knowledge is 
needed to know how to specify which pitches are used in the 
auralisations. The Listen project was dormant after 1996 but 
was reactivated in 2002 and applied to Java in the form of 
JListen [30]. To-date no formal experimentation or evaluation of 
the original or newer JListen systems has been published. 

3.6. CAITLIN 

The CAITLIN system is a non-invasive pre-processor that 
allows the auralisation of programs written in Turbo Pascal [20-
23]. The system was implemented on a relatively modest 
platform comprising a personal computer and sound card with a 
General-MIDI-compatible instrument set. Musical output is 
achieved by sending MIDI data to a multi-timbral synthesiser via 
the MIDI port on a sound card.  

The CAITLIN auralisations were designed around a tonal 
musical framework. Users were not required to design the 
auralisation content as the system used unique pre-defined 
motifs (theme tunes) to represent the Pascal language constructs 
[22]. This meant that no musical knowledge was needed in 
order to produce musically-consistent output. Figure 5 shows 
example auralisations for two program fragments. Experiments 
with the CAITLIN system indicated that musical auralisations 

do provide information useful in bug-location and detection 
tasks [20]. 

As the CAITLIN system was an experimental prototype it 
has some limitations. First, the auralisations were only applied to 
the language constructs (selections and interations) which meant 
that other program features could not be inspected aurally. 
Secondly, constructs could not be individually marked for 
auralisation meaning the entire program was auralised. In a real 
debugging situation programmers would not monitor an entire 
program but would choose candidate sections for close 
scrutiny. This whole-program approach meant that even short 
programs could take a long time to play back. 

4. AESTHETIC CONSIDERATIONS 

In any work on auditory display the aesthetics of the 
sonification are important. One of the goals of the CAITLIN 
project was to increase the usability of auralisations by drawing 
upon the well-established aesthetics of tonal music forms. The 
technical quality of other program auralisation systems was not 
in question but it is clear that the musical aesthetics they used 
were highly dependent both on the content and structure of the 
programs to be auralised and the musical skill of the 
programmer who had to specify the data-to-pitch mappings. Of 
course, given sufficient training, any auralisation framework 
should be usable, but that goes against the more recent efforts 
to improve computing aesthetics, as espoused and championed, 
for example, by Norman [31]. The underlying principle of 
aesthetic computing is that art theory and practice should 
influence the design of computer systems and artefacts [1]. As 
art theory and practice embody customisation, personalisation, 



Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6-9, 2004 
 

preference, culture, and emotion [32] there is much for the 
designer of the next generation of program auralisation systems 
to consider.  

4.1. Customisation. Personalisation, and Preference 

Early program auralisation systems generally let the user define 
the mappings of data to sound. Whilst this allows almost 
unlimited customisation, personalisation, and preference it 
requires some audio-design skills on the part of the user. 
Customisation and personalisation, then, must be balanced by 
the knowledge and skills required to make use of them (hence 
the use of fixed auralisations in the CAITLIN system). 

User preference is certainly an important factor. A study of 
surgeons who listened to music while operating showed that 
their speed and task accuracy were greater when they listened to 
self-selected music rather than music chosen by the 
experimenters [33]. In experiments with CAITLIN we noticed a 
definite preference amongst subjects for motifs with a strong 
melody. This was especially apparent in the early pilot studies 
where the motif design was less refined and some constructs 
had motifs that were much less musical than others. In the most 
recent version users expressed a preference for the FOR motifs 
which were also the most melodic, that is, the melodic contour 
was more elaborate than the scale-based motifs of the selection 
constructs and the harmonically-richer motifs of the WHILE and 
REPEAT loops. Contour was judged by subjects as being a 
useful aide-mémoire for recalling the motifs [20, 22]. Edworthy 
[34] and Dowling [35] observed that contour becomes even 
more important when the tonal context is weak or confusing; 
contour becomes less important in familiar melodies and 
melodies retained over a period of time.  

Auralisation systems that allow the user to define the 
auditory mappings have the advantage of supporting preference 
but with the caveat that the aesthetics of the resultant 
auralisations may render them less useful than they otherwise 
might be. This problem could be avoided by providing sets of 
pre-defined auditory mappings from which the user could 
choose according to preference. 

4.2. Emotion 

Sound, and music in particular, clearly has an emotional 
dimension (after all, we talk of mood music). One emotion that 
auralisation systems are susceptible to induce is annoyance. 
Gaver and Smith [36] noted that sounds in the interface can be 
annoying and that what “seems cute and clever at first may 
grow tiresome after a few exposures”. In our experience, 
tiresome sounds are usually those that have not been designed 
with listening aesthetics in mind. Designers go to great lengths to 
ensure that auditory signals and alarms in safety critical 
environments (such as aircraft cockpits and nuclear power 
plants) sit well within their auditory ecology, but these rigours 
are not so well followed in other auditory displays. It is easy to 
make a display that clashes with, or masks, other events, or that 
is simply tiring (both emotionally and cognitively) to use. 
Approximately half the subjects in an experiment using the 
CAITLIN system found the auralisations to be moderately 
annoying, the other half suffering almost no annoyance [37]. 
The ambiguity of this result gives hope that auralisations can be 
produced that do not trigger a negative emotional response but 

cautions us that we must pay very careful attention to this 
aspect. No studies have been published on the emotive aspects 
of other auralisation systems but we might expect similar results.  

4.3. Culture 

With the exception of CAITLIN, the auralisation systems above 
mapped program data to musical pitches to effect the 
auralisations without regard to the musicality of the output. 
Conner and Malmin [38] said that we must recognise that a gap 
in understanding may exist between the communicator and the 
receiver. For successful communication between the auditory 
display and the programmer there must be a common medium 
in order that the gap may be bridged. Meyer [39] observed that 
meaning and communication “cannot be separated from the 
cultural context in which they arise. Apart from the social 
situation there can be neither meaning nor communication.” 
Music and sonic aesthetics are, to an extent, culturally 
dependent and so the aesthetics of an auditory display have a 
pivotal role in determining its success. Watkins and Dyson [40] 
found that music performed in a style familiar to the listener is 
easier to recognise and understand. If music forms are used 
they must not rely on styles that are inaccessible to the average 
person. That is, the aesthetics must be complementary with, or 
accessible to, those of the listener. Composers organise music 
according to defined structures, schemes, or sets of ‘rules’. 
Structuring auralisations according to simple syntactical rules 
offers the hope of music forming the basis for a bridge of the 
semantic gap between an incorrectly functioning program and 
the programmer.  

Alty [41] commented that just as furniture designers would 
never create a chair twelve metres high composers must not 
produce works that are beyond the cognitive processing 
capabilities of the listener. Likewise, auralisations must be 
mappable to different musical and cultural idioms so that the 
user can select a familiar representation. Just as software 
interfaces undergo internationalisation to take account of cultural 
differences and social constructs, so auralisations need to be 
designed with the listener in mind. What is particularly 
interesting about music is that recall of melody appears to be an 
innate skill. That is, people do not need to be trained to 
recognise melodies. Auralisations that use melodies as carriers 
of information stand a good chance of being understood and 
retained in the mind of the listener. 

The seven-note diatonic scale, though common in western 
music, is not, however, “an inevitable consequence of the 
psychophysics of tone perception” [42, p. 5]. Indeed, Hemlholtz 
believed that the development of musical styles was heavily 
influenced by culture and aesthetics. In the ancient Greek world 
there was great debate about the relative merits and vices of the 
different modal schemes that were common right up until the 
middle ages. Cultural influence is evident in the divergence of 
the eastern and western musical traditions. The western classical 
tradition (especially in the 18th century) was driven by a desire 
to explore harmony whilst eastern music concentrated on 
rhythm [see 42 p. 6].  

The argument that diatonic systems are in some way more 
natural than atonal systems is belied by the fact that concert 
repertoires continue to include new music styles. However, as 
Parncutt [42] observes, most of the atonal systems have not 
been incorporated into mainstream (or popular) music as they 
require more information processing by the listener; the 
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organising principles of 12-tone music in which there is no tonal 
centre to the music and each degree of the scale has equal 
weight (for example, as practised by Schoenberg and 
Stockhausen) are imperceptible even to trained listeners. Alty 
[41] explained this in terms of the limits of working memory 
which, according to Miller [43], can handle around seven bits of 
information concurrently.  

In experiments on subjects’ ability to recall melodies, 
Sloboda and Parker [44] found that the most fundamental 
feature preserved in a recalled melody was its metrical structure. 
Further, musicians and non-musicians differed significantly only 
on one measure – the ability to retain the harmonic structure of 
the original. Therefore, it is unwise to rely on ability to 
distinguish harmonic structures in auralisations and this does not 
commend atonal music systems as good vehicles for 
auralisation.  

Of course, there are cultural as well as perceptual factors at 
work here as the seven-note diatonic tonal scheme is a western, 
not a world, music form. That said, there is evidence that the 
scheme shares characteristics with world musics. Melodies 
from around the world tend to centre on a particular pitch, thus 
exhibiting a key feature of tonality [42, p.70]. Furthermore, the 
twelve-note chromatic scale (of which the diatonic scale is a 
subset) developed independently in different musical cultures 
(ancient China, India, Persia, and then the west) and the use of 
the octave, fourth, and fifth intervals (important in tonal forms) 
is widespread in world musics. Besides, the international 
success of western rock and pop bands is evidence that even 
western musical structures are widely accepted across the 
world, especially in the computer using world [21]. 

Nevertheless, as designers of auditory displays we must be 
aware that even a near-universally-accepted idiom (such as 
western pop music) is not necessarily interpreted the same way 
around the world for the boundary between sensory and cultural 
influences is not clear. For example, consonance and 
dissonance are important concepts but which appear to be 
specific to western music [42]. This means that understanding, 
or rather, specific interpretations of particular musical structures 
cannot be taken for granted. An auralisaton system that uses 
dissonance to draw attention to exceptional events, for example, 
may fail for listeners who are more influenced by musical forms 
that do not place the same emphasis on consonance and 
dissonance. 

5. THE FUTURE? 

In an attempt to avoid the pitfalls of requiring programmers to 
be able to specify good auditory mappings the CAITLIN 
musical program auralisation system was built with fixed 
auralisation motifs that were designed within a coherent and self-
consistent tonal framework. This helped to ensure that the aural 
ecology of the system was healthy and that no individual parts 
of the auralisations dominated the mix or conflicted with others. 
The benefits of this approach are that the listener receives 
output that has been designed with aesthetics in mind. The 
disadvantage is that it is much less configurable to suit different 
preferences and emotional or cultural needs. In a sense an aural 
equivalent of XML is needed to allow the content (information 
or data) to be separated from its presentation (in this case, the 
auditory metaphor). Then designers could produce sets of 
auditory mappings in much the same way that visual interfaces 

(or skins) are produced for popular programs today. For 
example, there could be a jazz set, a Bach chorale set, a 
Javanese Gamelan music set, or even a Chinese classical opera 
style. In addition, we envisage providing multiple motifs within 
each set so that program objects and events can be tagged by 
the user with the motif of preference in the knowledge that each 
motif conforms to the aesthetic qualities of the others. Such a 
development could be considered to be extending the principles 
of literate programming [45, 46]. Where literate programming 
tools of the past concentrated on typography and external visual 
representations to enhance presentation and comprehension of 
programs [e.g. 47, 48], the tools of the future can make use of 
auditory and musical aesthetics to extend the programmer’s 
toolbox and visualisation set. 

Of course, more experimentation is needed to explore just 
how sensitive auralisations are to the cultural and aesthetic 
background of the listener. So far studies have focused on a 
western tonal system with western subjects. Given the tendency 
of world music systems to exhibit forms of tonality it would be 
surprising if the simple musical forms of auralisation systems 
were not comprehensible to people from other cultures, but this 
aspect still needs to be explored. 

In the pursuit of aesthetic excellence we must be careful not 
to tip the balance too far in favour of artistic form. Much 
current art music would not be appropriate for an auralisation 
system. The vernacular is popular music, the aesthetics of 
which are often far removed from the ideals of the music 
theorists and experimentalists. Lucas [49] showed that the 
recognition accuracy of an auditory display was increased when 
users were made aware of the display’s musical design 
principles. Watkins and Dyson [40] demonstrated that melodies 
that follow the rules of western tonal music are easier to learn, 
organise (cognitively), and discriminate between than control 
tone sequences of similar complexity. So, it would seem that the 
cognitive organisational overhead associated with atonal 
systems makes them less well suited as carriers of program 
information.  

The sonifications of Quinn [25], King and Angus [50], and 
Mayer-Kress et al [24] had a dual function to stand as music in 
their own right but also to shed new light on the underlying data. 
However, the purpose of auralisation systems is not 
entertainment or the communication of mood and emotion, but 
solely to assist programmers with understanding software and 
its behaviour. The intentional product of an auralisation system 
is the communication of information or knowledge with music 
as the carrier. The music itself, inasmuch as it exists as an entity 
in its own right, is not the intentional product but a by-product 
of the auralisation process. Therefore, whatever music systems 
and aesthetics are employed they must not detract from the 
prime purpose which is to communicate information.  

In addition to exploring the cultural aspects of musical 
auralisation it also remains to see how auditory and visual 
mappings work together. It is to be hoped that the 
temporal/spatial communication space provided by an audio-
visual auralisation system will provide a powerful set of tools to 
help programmers with writing, comprehending, and debugging 
their code. For example, one can envisage an auralisation tool in 
which a graphical visualisation displays the state of a data 
structure whilst an auralisation communicated program control 
flow. The use of a bi-modal system offers exciting opportunities 
for program comprehension and debugging tasks. The ease with 
which music and non-speech audio can now be incorporated 
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into programming environments (especially the Java platform) 
means that such a system is a realisable goal in the short to 
medium term. Integrating auralisation tools into the IDE is 
necessary to allow common debugging techniques such as 
breakpoints and step/trace facilities to be extended into the 
auditory domain. 

6. CONCLUSIONS 

The first generation of program auralisation systems provided 
proof of concept and technical feasibility. For this research to 
continue fruitfully, the next set of tools for adding external 
auditory representations of programs must take account, not 
just of interaction design principles, but also of the aesthetics of 
the tool and the aesthetics of the context and culture in which 
the tool is placed.  

Support for object-oriented multi-threaded environments is 
necessary. The potential for sound (and music in particular) to 
assist with comprehension in such a context needs to be 
explored. The orchestral model of families of timbres might be 
usefully applied to enable programmers to distinguish between 
the activities of different thread. 

7. ADDITIONAL FILES 

Audio examples from the CAITLIN system can be heard by 
visiting www.auralisation.org.  
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