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Abstract-Automated identification a n d  classification of 
short-duration oceanic signals obtained from passive sonar  is a 
complex problem because of the large variability in both tempo- 
ral  a n d  spectral characteristics even in  signals obtained from 
the same source. This  paper  presents the design and  evaluation 
of a comprehensive classifier system for such signals. We first 
highlight the importance of selecting appropriate  signal descrip- 
tors  or feature vectors for high-quality classification of realistic 
short-duration oceanic signals. Wavelet-based feature extractors 
a r e  shown to be superior to the more commonly used autoregres- 
sive coefficients a n d  power spectral coefficients for this  purpose. 
A variety of static neural  network classifiers a r e  evaluated a n d  
compared favorably with traditional statistical techniques for 
signal classification. We concentrate on those networks tha t  a r e  
able to time out  irrelevant input  features and  a r e  less suscepti- 
ble to noisy inputs, and  introduce two new neural-network based 
classifiers. Methods for combining the outputs  of several classi- 
fiers to  yield a more accurate labeling a r e  proposed and  evalu- 
ated based on  the interpretation of network outputs  as approxi- 
mating posterior class probabilities. These methods lead to 
higher classification accuracy a n d  also provide a mechanism for 
recognizing deviant signals a n d  false alarms. Performance re- 
sults a r e  given for signals in the DARPA standard da ta  set I. 

Keywords-Neural networks, pat tern classification, passive 
sonar,  short-duration oceanic signals, feature extraction, evi- 
dence combination. 

I. INTRODUCTION 
HORT-DURATION underwater signals obtained S from passive sonar contain valuable clues for source 

identification in noisy and dissipative environments [l], [2]. 
Several biological sources such as sperm whale clicks, 
porpoise whistles, and snapping shrimps, as well as nonbi- 
ological phenomena such as ice crackles and mechanical 
sounds, produce characteristic sounds of a very short 
duration, typically 5 to 250 ms. For example, porpoises 
radiate echolocation pulse trains, with each elementary 
pulse lasting from 15 to 20 ms, and with an average of 40 
ms between pulses. Such distinctive signatures can be 
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identified by human experts either by ear or by looking at 
spectrograms of the processed sonar signals. However, 
attempts at automated classification of real-life acoustic 
signals based on purely spectral characteristics or on 
autoregressive modeling have met with very limited suc- 
cess over the past 25 years [31, [41. 

A careful study of a large database of short-duration 
underwater signals available in-house at Tracor Applied 
Sciences, Inc., as well as the data sets provided by DARPA, 
shows several unique features of such signals that indicate 
why algorithm characterization and classification of 
oceanic acoustics is so difficult. These signals 

are highly nonstationary and impulsive; 
show significant variations in spectral characteristics 
and SNR due to differing sources or propagation 
paths, and due to multipath propagation; 
may overlap with one another; 
show rapid variation of spectral characteristics with 
both frequency and time; and 
often require event association for proper identifica- 
tion. 

Some of these features can be observed in Fig. 1, which 
shows short-duration underwater signals due to a toadfish. 

Artificial neural networks (ANN'S) have several proper- 
ties that make them promising for the automatic signal 
classification problem. They can serve as adaptive classi- 
fiers that learn through examples [5],  [61. Thus, they do 
not require a good a priori mathematical model for the 
underlying signal characteristics. This is advantageous 
since a comprehensive characterization of short-duration 
acoustic signals is not available yet. There are several 
neural networks that show comparable performance over 
a wide variety of classification problems, while providing a 
range of trade-offs in training time, coding complexity, 
and memory requirements [7], [8]. Some of these net- 
works, including the multilayered perceptron when aug- 
mented with weight decay strategies [9], and the elliptical 
bias function network introduced in this paper, are quite 
insensitive to noise and to irrelevant inputs [ 101. More- 
over, a firmer theoretical understanding of the pattern 
recognition properties of feed-forward neural networks 
has emerged recently, that can relate their properties to 
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. Underwater acoustic signals due to a toadfish, displayed as time waveforms (above) and as a time-frequency 
spectrogram (below). The occurrence of a shorter duration signal (at around t = 1.3 s) after the first signal of longer 
duration and lower frequency band, is characteristic of toadfishes. The association of these two events, together with some 
other signal features, enables one to distinguish toadfishes from other marine biological sources. 

Bayesian decision making and to information theoretic 
results [ l l l ,  [12]. 

Neural networks are not “magical.” They do require 
that the set of examples used for training should come 
from the same (possibly unknown) distribution as the set 
used for resting the networks, in order to provide valid 
generalization and good performance on classifying un- 
known signals [131, [14]. Also, the number of training 
examples should be adequate and comparable to the 
number of effective parameters in the neural network, for 
valid results [12], [151, [16]. In this context, it is noted that 
cross-validation techniques can partially counter the ef- 
fects of small training set size [12], [17]. 

This paper presents the design and evaluation of a 
comprehensive detection and classification system that 
uses a hybrid of ANN and statistical pattern recognition 
techniques tailored to recognizing short-duration oceanic 
signals [ 181. Theoretical reasoning is provided for several 
of the design decisions, and performance results are given 
for the DARPA standard data set I. Fig. 2 shows the 
overall design of the hybrid classifier. Section I1 describes 
the preprocessing of the raw analog signals obtained from 
passive sonar and extraction of useful feature vectors 
from them. Our experience with alternative signal de- 
scriptors underscores the importance of selecting appro- 
priate feature combinations in determining the classifica- 
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Fig. 2. Overall design of the signal detection and classification systems. 

tion quality, irrespective of the classification techniques 
used [19]. The various types of ANN'S used for classifica- 
tion are described in Section 111, with particular emphasis 
on a novel local basis function classifier and the Pi-Sigma 
higher order network [20]. The DARPA standard data set 
I [21] is described in Section IV, and experimental results 
obtained by individual classifiers on this data set are 
presented. Section V introduces a high-level decision- 
making module which combines the evidences obtained 
from distinct classifiers for more accurate and robust 
results. Concluding remarks are given in Section VI. 

11. SIGNAL PREPROCESSING AND FEATURE 
EXTRACTION 

In order to classify events such as short-duration signals 
in a time series obtained from an underwater acoustic 
sensor, it is requisite that 

i)  all effects that vary, but not as a result of the events 
of interest, be removed or accounted for to the 
greatest possible extent; and 

i i )  the presence of each type of signal of interest should 
result in a measurable difference in the observable 
features. 

These two requirements lead to the need for back- 
ground normalization and feature extraction/selection re- 
spectively. One hallmark of our approach is that process- 
ing and classification is reformed on all input data without 
the usual signal-to-noise ratio (SNR) based prescreening 
to select signals for classification. 

2.1. Preprocessing 

The set of signal features that are extracted should be 
independent of the time-varying nose field and the sensor 
dynamics. Since the feature vectors are typically com- 
posed of combinations of broad-band and narrow-band 

353 

energy estimates, the signal spectrum should be whitened 
across the entire band. Thus, the first step is to use an 
adaptive time-domain whitening filter to decorrelate the 
data from the long-time ambient noise, interference, and 
sensor characteristics, while passing short-duration signals 
relatively unchanged [221. 

After a signal is extracted and pre-whitened, there are 
two basic choices for representing a signal in a form 
suitable as inputs to a neural network classifier. 

i) A signal can be represented by a single vector that 
encodes some features of the signal. This vector is 
then used as an input for a static classifier such as 
those described in Section 111. Previous works on 
sonar classification have most often used the nor- 
malized power spectra segmented into frequency 
bins (of equal or logarithmics size) to obtain the 
input vector. For example, input vectors based on 
the power spectra of passive sonar returns have 
been used in a multilayered perceptron network for 
a simple two-object problem [23], and also with a 
probabilistic neural network [24]. However, this sim- 
ple approach is inadequate for more real-life short- 
duration oceanic signals. A vector obtained from the 
power spectra needs to be augmented by other tem- 
poral and spectral descriptors such as signal dura- 
tion, peak frequencies, bandwidths, and possibly 
transformed, au toregressive (AR) model coefficients. 
Another technique is to use multiscale representa- 
tions such as Gabor wavelets [25] to do not require 
assumptions of signal stationarity. 

ii) Each signal can be represented by a series of feature 
vectors sequenced in time [26]. Each feature vector 
is a descriptor of the signal observed within a partic- 
ular time window. A set of overlapping time windows 
is used to obtain the sequence. For example, a 
sequence of vectors obtained by the energy in dis- 
crete frequency bins extracted through successive 
time windows over the input signal, can be used to 
form such a composite vector. Note that such repre- 
sentations explicitly recognize the inputs to be spa- 
tiotemporal signals, and are suited for dynamic clas- 
sifiers mentioned in Section 3.1. The set of features 
extracted from a signal can also be regarded as a 
two-dimensional input for use in models such as 
time-delay neural networks. [61. 

2.2. Feature Vector Selection 

It was observed in our previous study [19], [21] that 
discriminant parameters obtained using wavelet trans- 
forms yield better performance than those using AR mod- 
eling or spectral coefficients. We note that both AR 
modeling and cepstral coefficients are sensitive to the 
SNR of the signal, the phase, and the modeling order. 
Many oceanic signals are embedded in significant noise, 
mostly broad-band. Phase depends on the estimated start- 
ing point of the signal, which is difficult to determine even 
with a good detector. Setting a high SNR threshold for 
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lower false alarm also results in a poorer phase estimate. 
Finally, both broad-band and narrow-band signals are 
important, and too high an order results in noisy coeffi- 
cients. 

To extract the features, a constant-Q prototype wavelet 
with 24 coefficients is used, in addition to signal time 
duration to characterize the signals in our current work. 
Constant-Q analyzing function is broad-band and of very 
short duration at the higher frequencies, corresponding to 
better SNR representation of impulsive sounds. At lower 
frequencies, the bandwidth is narrower and the duration 
longer. 

A good overview of wavelet transforms can be found in 
[27]. The particular wavelet transformer used in this paper 
represents a signal x ( f )  by shifted and dilated version of 
an analyzing waveform [25]: 

where the phototype wavelet is given by 

Here a is a scaling factor, m the scaling index, and * 
indicates the complex conjugate. The choice of the most 
appropriate prototype function is still an open research 
issue. To date, fractional octave frequency spacing has 
proved quite successful. 

Another important classification parameter is the signal 
duration. In fact, in the DARPA Standard Data Set I, 
signal duration is the only discriminant between classes C 
and D. The duration of realistic acoustic signatures can 
vary over two orders of magnitude. The importance of this 
metric is underscored by the recent work by French 
researchers [281 who have used a two-stage architecture 
for classifying oceanic signals. The first stage extracts the 
signals and sorts them into different categories according 
to signal duration. The second stage then uses a neural 
classifier for each category. Unfortunately, this approach 
is computationally expensive when there is a wide range 
of signal durations, and is also limited in quality of results. 
In the experiments reported in this paper, time duration is 
simply used as an added classification parameter. Thus 
the actual dimension of each feature vector is 25 (24 
wavelet coefficients plus time duration) when wavelet- 
based features are used. 

Irrespective of the approach taken, the use of large, 
possibly composite, feature vectors can become computa- 
tionally expensive. If the resultant input is of high dimen- 
sion, it forces us to use a network with a higher number 
of free or effective parameters. This leads to a class- 
ical estimation problem if the training set size is 
small in comparison, wherein the presence of a larger 
number of parameters can result in a solution that is 
over-determined [291. Also, high-dimensional feature vec- 
tors are more susceptible to noise. Moreover, the pres- 
ence of irrelevant feature combinations can actually ob- 
scure the impact of the more discriminating inputs. 

An obvious solution to these problems is to reduce each 

feature vector to a much lower dimensional vector for 
actual presentation to the classification networks. We 
tried this approach by extracting the most significant 
principal components using Sanger’s method 1301, and also 
implemented a modified version of Kohonen’s self- 
organizing feature maps described in [31] as an alternate 
technique for dimensionality reduction. Both these ap- 
proaches did not fare well due to the nonstationary nature 
of the signal and the small size of the training set. This led 
us to tackle the problem with the classification networks 
themselves, by using variations of ANN classifiers that are 
more effective for high-dimensional inputs and more ro- 
bust against noise. This issue is further discussed in Sec- 
tion 111. 

111. NEURAL NETWORK CLASSIFIERS 
ANN approaches to problems in the field of pattern 

recognition and signal processing have led to the develop- 
ment of various “neural” classifiers using feed-forward 
networks [32], [33]. These include the multilayer percep- 
tron (MLP) as well as kernel-based classifiers such as 
those employing radial basis functions (RBF’s) [34], [351. 
A second group of neural-like schemes such as learning 
vector quantization (LVQ) have also received consider- 
able attention [31]. These are adaptive, exemplar-based 
classifiers that are closer in spirit to the classical K-nearest 
neighbor method. 

The strength of both groups of classifiers lies in their 
applicability to problems involving arbitrary distributions. 
Most neural network classifiers do not require simultane- 
ous availability of all training data and frequently yield 
error rates comparable to Bayesian methods without 
needing a priori information. Techniques such as fuzzy 
logic can be incorporated into a neural network classifier 
for applications with little training data [361. A good 
review of probabilistic, hyperplane, kernel and exemplar- 
based classifiers that discusses the relative merit of vari- 
ous schemes within each category, is available in [321, [331. 
Comparisons between these classifiers and conventional 
techniques such as decision trees, K-nearest neighbor, 
Gaussian mixtures, and CART can be found in [33] and 
1381. 

3.1. Static versus Dynamic Approaches 

For all of the classifiers mentioned above, each signal 
needs to be represented by a single feature vector rather 
than as a spatiotemporal pattern that changes with time. 
This is why such classifiers are often referred to as “static” 
systems [32]. Indeed, almost all of the neural network 
classifiers that have been studied and used so far fall into 
this category. Since static classifiers are based on reduced 
input representations, they have an inherent drawback in 
that information contained in the temporal variations 
in the signal may not get recorded. Since many short- 
duration oceanic signals such as whale cries, have charac- 
teristics such as FM slides, important discriminatory evi- 
dence may be lost when each signal is represented by a 
single vector. This motivates the use of dynamic classifiers 
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that basc their decisions on a sequence of feature vectors 
corresponding to different, possibly overlapping, time in- 
tervals. The appropriate signal representation for such 
dynamic classifiers corresponds to the second choice men- 
tioned in Section 11. 

A dynamic neural classifier can be implemented through 
recurrent networks that can store past history feedback 
connections among the processing cells. These networks 
can he used to classify waveforms of arbitrary duration 
using a network of fixed complexity, and have been used 
successfully in speech recognition [6]. Dynamic recurrent 
networks are of three main types. 

Partial recurrent networks using context units in- 
volve feedback to selective cells in order to record 
temporal sequences. Notable examples are networks 
that use feedback from output units to the input 
layer [3Y] or specify a context from hidden cells [401. 
We observe that units with feedback connections 
accumulate an exponentially decaying weighted sum 
of current and past values to construct a static 
representation of a temporal input sequence. Such 
an architecture avoids two deficiencies found in other 
models of sequence recognition: first. it reduces the 
difficulty o f  temporal credit assignment by focusing 
the backpropagated error signal; second, it climi- 
nates the need for a buffer to hold the input 
sequence and/or intermediate activity levels. 
However, they require clocked inputs. and are sus- 
ceptible to spatio temporal warping [41]. 
Real-time recurrent backpropagation and time- 
dependent recurrent backpropagation [42l do not 
require clocked inputs, but are very sensitive to 
learning rates. 
Dynamic-in-time networks that continuously update 
confidences of the input belonging to each class as 
feature vectors are presented in sequence. and makes 
a decision if the confidence factor exceeds a thresh- 
old for some class. We are currently investigating 
one such model for classifying oceanic signals. 

Overall, dynamic classifiers are more powerful and 
promising for complex temporal patterns. At present, the 
candidate dynamic classifiers are very susceptible to signal 
misalignment or registration problems and to spatiotem- 
poral warping. They also need longer training schedules 
and easily exhibit divergent behavior unless the adapta- 
tion parameters are fine-tuned and the inputs have little 
noise components. For these reasons, we do not consider 
dynamic classifiers any further in this paper, while recog- 
nizing their potential. 

3.2. Design Considerutioris and Trude-offk 
Besides the MLP. RBF, and LVQ type static classifiers 

mentioned above, there are several other neural-like can- 
didates such as higher order polynomial GMDH classi- 
fiers and functional-link networks [431, [441. Given such a 
wide variety, what should be the criteria for determining 

the most suitable oncs for classifying short-duration 
oceanic signals? Our experiences, corroborated by those 
of several other researchers (see [33], for example), show 
that classification error rates are similar across different 
classifiers when they are powerful enough to form mini- 
mum error decision regions, when they are properly tuned, 
and when sufficient training data is available. Practical 
characteristics such as training time, classification time, 
and memory requirements, however, can differ by orders 
of magnitude. Also, the classifiers differ in their robust- 
ness against noise. effects of small training sets, and in 
their ability to handle high-dimensional inputs [IO]. These 
factors, rather than small differences in the best possible 
error rates, should form the basis of our network selection 
process. 

RBF networks are primarily aimed at multivariate func- 
tion interpolation or  function approximation, and have 
been used successfully for problems such as prediction of 
chaotic time series [35]. They serve as universal approxi- 
mators using only a single hidden layer [45]. However. 
they can also be used for classification. For example. 
Niranjan and Fallside were able to achieve good results 
on voice and digit speech categorization by using one 
“centroid” for each training vector [46]. The results are 
robust with respect to variations in the class distributions. 
Thus. our first candidate for a short-duration oceanic 
signal classifier is an adaptive, kernel-based network de- 
scribed in Section 3.3. 

We observe that LVQ and it  variants such as LVQ2, 
LVQ2.1. and “conscience learning” [47] need somewhat 
less training time than an MLP-based classifier for com- 
parable performance [37]. The memory requirements are 
similar but their performance is more sensitive to initial 
choice of reference vectors. Networks using RBF’s. on the 
other hand, need much shorter training times at the 
expense of additional memory as compared to the MLP. 
The localized response of hidden units in kernel-based 
networks such as the RBF network, as compared to the 
global responses of MLP networks, make them suitable 
for detecting atypical signals or false alarms since they 
result in low values of network outputs. This motivates us 
to investigate hybrid networks that combine the best fea- 
tures of LVO and KBF based classifiers so that an accu- 
rate classifier is obtained that requires less training time 
and is not memory intensive. A novel hybrid network that 
achieves these objectives is also discussed in Section 3.3, 
and forms our second classifier candidate. 

Higher order networks based on the GMDH algorithm 
often require long training times as well as large amount 
of memory to yield comparable error rates [8]. Polynomial 
networks based on Volterra series expansion [48], [49] 
show fairly stable, single-layer learning, but the number of 
weights involved grows exponentially with the order of the 
network. We have recently proposed a higher order net- 
work called the Pi-Sigma network, which is able to main- 
tain the capabilities of polynomial networks while greatly 
reducing network complexity [20],  [SO]. It is also able to 
incrementally grow until a desired level of complexity is 
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reached. This network is the third classifier candidate, and 
is described briefly in Section 3.4. 

MLP networks that adapt weights using gradient de- 
scent of the mean squared error (MSE) in weight space, 
are perhaps the most commonly used neural network 
classifiers. These networks are capable of approximating 
any arbitrary bounded measurable function defined over a 
compact set, given sufficient number of hidden units [511. 
The generalization capability of these networks can be 
enhanced by restricting the weight-space through adding 
extra terms to the cost functions or by selective pruning of 
weights [91, [13]. Weight pruning techniques also serve to 
reduce the effective number of parameters [151, making 
the resultant “parsimonious” feedforward networks more 
tailored to noisy high-dimensional inputs. Moreover, the 
first hidden layer of an MLP can be considered as feature 
extractors especially if localized connections are used. 

Countering the advantages of an MLP mentioned above, 
are the problems of high training times, and of choosing 
an appropriate network size. As noted by Makhoul [121, 
“the sigmoid, because of its sharp transition.. . focuses 
attention during training on data samples that are confus- 
able. Basically, it helps specify the boundary between the 
samples within and outside the class. Thus, in general, 
much of the training data does not participate in deter- 
mining the network parameter values.” We note that this 
drawback is even more severe when the number of train- 
ing samples is limited. For all those reasons, the MLP is 
not considered further in this paper, and instead the 
reader is referred to [521 for our results on using an MLP 
with optimal brain damage [9] for classifying underwater 
signals from biologic sources. 

3.3. EfJicient Adaptive Kemel Classijiers 
We first summarize the LVQ and RBF procedures and 

then introduce two hybrid networks that attempt to incor- 
porate the best of both LVQ and RBF techniques. 

LVQ is an adaptive version of the classical vector 
quantization algorithm whose aim is to represent a set of 
vectors by a smaller set of codebook vectors and reference 
vectors (RV’s) so as to minimize an error functional. 
Typically, the algorithm consists of the following steps: 
The RV’s are initialized by a random selection or from 
K-means clustering on the training set. These vectors are 
now adjusted iteratively by moving them closer to or 
further away from training inputs depending on whether 
the closest RV is of the same class as the input vector or 
not. Unknown inputs are assigned the class of the nearest 
RV, with the Euclidean norm being the most common 
measure of distance. Let the nth training pattern vector 
x ( n )  belong to class C,, and mc(n),  the reference vector 
closest to x(n) ,  belong to class C,. At the presentation of 
the nth input, the RV’s are adapted as follows. 
mc(n + 1) = m c ( n )  + a ( n ) [ x ( n )  - mc(n)l  

mc(n + 1) = mc(n> - a ( n ) [ x ( n )  - m,(n)l  
if C, = C, 

if C, # C, 
m,(n + 1) = m , ( n )  for all other RV’s (3) 

where a(n> is a leaning factor that decreases monotoni- 
cally with time. Detail of LVQ-type learning procedures 
can be found in [31], [471, and 1531. 

RBF networks are a class of signal hidden-layer feedfor- 
ward networks in which radially symmetric basis functions 
are used as the activation functions for the hidden layer 
units. A generic RBF network is shown in Fig. 3. Let 
xp = (x,,,, x P z ; ~ ~ ,  x, , , , )~  denote the p th  N-dimensional 
input. When this input is presented to the RBF network, 
the output of the j t h  hidden node, Rj(x,,) ,  and that of the 
ith output node, fj(x,,), are given by 

. f i ( x p )  = C w i j R j ( x p )  (4) 
i 

where R(.) is a radially symmetric function such as a 
Gaussian. In the above, xi is the location of the j t h  
centroid, where each centroid is a kernel/hidden node, q 
is a scalar denoting the “width” of its receptive field and 
wij is the weight connecting the j th  kernel/hidden node 
to the ith output node. For Gaussian RBF’s the width 5 
is the standard deviation, so that we have 

Hybrid Kemel Classifiers: Both LVQ and RBF involve 
construction of a representative set of the training 
data-the centroids or hidden units of RBF and there 
reference vectors of LVQ-which determine the final 
decision. Previously, the controids in an RBF network 
were determined using heuristics such as performing k- 
means clustering on the input set, and widths were held 
fixed during training. Alternatively, we can vary both the 
centroid locations and associated widths of the receptive 
fields by performing gradient descent on the mean square 
error of the output. This leads to the adaptive kernel 
classifier (AKC). 

Adaptive Kemel Classifier: Consider a quadratic error 
function, E = C,E,, where E,, = 1/2 Ci(tr -h(x,,))’. 
Here tP is the ith component of the target function for 
input xp, and f . ( x p )  is the corresponding network output 
as defined in (4). The mean square error is the expected 
value of Ep over all patterns. Let Awij,. A x j k ,  and A q  
represent the change in weight w j j ,  location of kth com- 
ponent of the j t h  centroid, and the width, q of this 
centroid respectively, at each learning step. The update 
rules for these network parameters are obtained using 
gradient descent on E,,, and are given by 
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Fig. 3. ,417 R R F  network. 

These equations constitute the learning scheme for the 
AKC. A similar scheme, called the Gaussian potential 
function network (GPFN). which involves segmentation of 
the input domain into several potential fields in the form 
of Gaussians, was proposed by Lee and Kil [54]. The 
Gaussian potential functions of this scheme need not be 
radially symmetric functions. Instead, the sizes of these 
potential fields are determined by a correlation matrix. 
The network parameters are computed by gradient de- 
scent as in the case of AKC. We studied a network of 
nonradial basis functions with a different smoothing fac- 
tor in each dimension. Thus, (4) is used with 

and, in general a,, f (J;,. For this case update rules (7) 
and ( 8 )  become 

Classification experiments show that these 
sis function networks require considerably shorter train- 
ing time compared to the AKC and typically require a 
fewer number of kernel nodes. To further speedup net- 
work training. we suggest replacement of the parameter U 

with a new parameter a by making the substitution cr = 

l / a .  This eliminates all division operations involved in 
training and testing, which are known to be computation- 
ally expensive. 

How should the widths, <T,~J be initialized‘? For RBF, 
the initial positions of the centroids are typically obtained 
by k-means clustering, and the width U, for the j th  
centroid is of the same order as the distance between this 
unit and the nearest centroid, x,. This suggests the 

initialization 
cr,k(init) = U x llxj - xj*ll, 

However, since the spread of data is in general different 
in different dimensions, an initialization given by 

?,(init) = n’’% x IIxjk - x j J ,  V j ,  k 

V j ,  k .  

seems more appropriate, where cr = O(1) determines se- 
lectivity, and n‘ l2  is a normalization term for n-dimen- 
sional inputs so that the average variance is ai’, as before. 

More general schemes like the regularization networks 
have been studied by Poggio et al. [55]. Though more 
complex decision regions can be shaped out of potential 
fields that are not radially symmetric, receptive fields of 
radial functions can achieve universal approximation even 
if each kernel node has the same smoothing factor, cr 
[%I. The principal advantage of the AKC is that it is able 
to perform the same level of approximation as RBF using 
fewer hidden units. However, training time is increased 
since centroids and center widths are also adapted using 
the generalized delta rule, which is a slower procedure. 

Rapid Kernel Classifier: Hybrid schemes that combine 
unsupervised and supervised learned in a single network 
have been proposed in [51 and [57]. For instance, the 
hierarchical feature map classifier of Huang and Lipp- 
mann [5]  consists of a feature map stage followed by a 
stage of adaptive weights. The central idea behind these 
approaches is to have a layer that is trained in an unsu- 
pervised way followed by a layer that will be trained using 
the delta rule. Since backpropagation of error through 
multiple layers is avoided these hybrid networks yield 
remarkable speedups in computation. Such methods are 
particularly useful when there are a large number of 
training samples. It must be noted that these hybrid 
schemes are not optimized in the manner of backpropaga- 
tion since the first stage parameters are not optimized 
with respect to the output performance. A question that 
immediately arises is: how does the location of centroids 
obtained by hybrid training compare with that obtained by 
strict gradient descent? 

Keeping in view the similarities on form between the 
equations describing update of centroids by the delta rule 
and the LVQ algorithm, one can replace the former 
equation with the latter in the AKC training scheme. This 
results in  the rapid kernel classifier (RKC) shown in Fig. 
4, which requires shorter training times with little change 
in performance as compared to the AKC. In the hybrid 
procedures mentioned above various layers of the net- 
work are trained sequentially. The first stage parameters 
are first trained in an unsupervised way and are held fixed 
during the second stage training. On the contrary, in the 
RKC scheme we let the LVQ algorithm run in parallel 
with the training of the second layer. We note that a 
variant, RKCEB, can also be studied in which elliptical 
basis functions are used. 

Interestingly, in all our experiments so far with RKC, 
the mean square error decreases monotonically as in the 
case when all the parameters are adapted by backpropa- 
gation. This indicates that adjusting the centroids using 
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Fig. 4. An RKC. 

LVQ might amount to performing gradient descent on 
the “centroid-location space.” While proving this seems 
difficult, we have been able to obtain preliminary results 
indicating such a connection [581. 

The distinguishing features of the various localized 
networks introduced in this section are summarized in 
Table I. 

3.4. Higher Order Pi-Sigma Networks 
The recently introduced pi-sigma networks (PSN’s) [201, 

[SO] are higher order networks whose name stems from 
the fact that these networks use product of sums of input 
components instead of sums of products as in “sigma-pi” 
units, to obtain the outputs. The primary motivation for 
these networks is to develop a systematic method for 
maintaining the fast learning property and powerful map- 
ping capability of single layer higher-order networks while 
avoiding the combinatorial increase in the number of 
weights and processing units required. 

Fig. 5 shows a PSN with a single output. This network is 
a fully connected two-layered feedfonvard network. How- 
ever, the summing layer is not “hidden” as in the case of 
the multilayered perceptron (MLP), since weights from 
this layer to the outputs are fixed at 1. This property 
drastically reduces training time. 

Let x = (1, xl;.*, x N I T  be an N + 1-dimensional aug- 
mented input column vector where xk denotes the kth 
component of x. The inputs are weighted by k weight 
vectors wj = (woj, wl,;*-, wNjIT,  j = 1, 2;.., K and 
summed by a layer of K linear “summing” units, where K 
is the desired order of the network. 

The output of the j t h  summing unit, hj ,  is given by 
N 

h j  = wkjxk + w O j ,  j = 1,2;.., K .  (12) 
k =  1 

The output y is given by 

where fC.1 is a suitable nonlinear activation function, and 
is chosen as the sigmoid function: 

1 
f ( x >  = 

for our purposes. In (12) and (131, wk, is an adjustable 
weight from input xk to j t h  summing unit and woj is the 

output layer 

fixed 

adjust 
weigh 

5 ‘ k  “d 

Fig. 5. A pi-sigma network with one output. 

TABLE I 

Adaptation of Network Parameters 
Type Centroid Weights Widths 

RBF K-means/lixed Delta rule Fixed; isotropic 
AKC Delta rule Delta rule Delta rule; isotropic 
EBF Delta rule Delta rule Delta rule; anisotropic 

RKC LVQ Delta rule Delta rule; isotropic 
RKCEB LVO Delta rule Delta rule; anisotropic 

threshold of the j t h  summing unit. The weights can take 
arbitrary real values. If a specific input, say, xp is consid- 
ered, then the (hj)’s,  y ,  and net are superscripted by p .  

The network shown in Fig. 5 is called a Kth-order PSN 
since K summing units are incorporated. The total num- 
ber of adjustable weight connections for a kth order PSN 
with N dimensional inputs is ( N  + 1) . K .  If multiple 
outputs are required, an independent summing layer is 
needed for each output. Thus, for an M-dimensional 
output vector y, a total of E,”=(N + 1) *Ki adjustable 
weight connections are needed, where Ki is the number 
of summing units for the ith output. This allows us great 
flexibility since all outputs do not have to retain the same 
complexity. Note that using product units in the output 
layer indirectly incorporates the capabilities of higher 
order networks with a smaller number of weights and 
processing units. This also enables the network to be 
regular and incrementally expandable, since the order can 
be increased by one by adding another summing unit and 
associated weights, but without disturbing any connection 
established previously. 

An asynchronous adaptation rule is used in which only 
those weights corresponding to the Ith summing, ran- 
domly chosen for each input, is updated per input sample. 
Such a rule leads to more stable learning than updating 
all weights at each step. Gradient descent on the esti- 
mated MSE leads to the following update rule: 

Aw, = TJ ( t P  - y p )  . ( y p ) ’  . ( n h f  ) x p  (15) 
j # l  

where ( y p ) ’  is the first derivative of sigmoidal function 
a(.), xp is the (augmented) pth input pattern, and TJ is 
the learning rate. 

PSN’s have been successfully applied to several prob- 



GHOSH C I  (11 A N E U R A L  NFTWOKK B A S E D  H Y B R I D  SYSTt M 359 

lems involving function approximation or pattern classifi- 
cation. A second- or third-order network is usually suffi- 
cient for obtaining a reasonably good decision surface in 
very short time. Another advantage is that more difficult 
signals can use a network with more summing units, 
without disturbing the smoother lower order generaliza- 
tion for simpler signal classes. The behavior of PSN's is 
well characterized mathematically, and bounds on the 
learning rate, 7 for convergence, can be found in [50].  

3.5. Statistical Classifiers 
Besides the neural network classifiers, we also consid- 

ered several traditional classifiers based on the theory of 
statistical pattern recognition [59]. [60]. The first is the 
K-nearest neighbor (K") classifier, which is a kernel- 
based technique. The K" assigns to an unclassified data 
sample the identity of the majority of the nearest (in a 
Euclidean sense) K preclassified samples from thc train- 
ing data. While the error rate is typically greater than the 
Bayes optimal risk, the KNN error is bounded by twice 
the Bayes optimal risk. Since our number of training 
samples per class ranged from 5 to 9, K = 3 was chosen. 
Note that since every training sample has to be consid- 
ered in the labeling process, the memory and computa- 
tional requirements increase linearly with the training 
data size. Also, this technique cannot differentiate among 
simultaneously occurring signals since i t  does not decom- 
pose an input vector. 

The second classifier considered is the generalized 
Fisher linear discriminant, often referred to as the linear 
classifier (LC). The Lc' uses the lumped covariance ma- 
trix, R, and the individual class dependent means, M,, to 
compute 

V (  j ,  X) = ( X  ~- M,)7 R ' (  X - M,) (16) 

for each class, and declares the membership of input X to 
be same as that j for which the value of V(J,  X) is the 
least. For the shot duration signals in the DARPA Stan- 
dard Data Set I, singularities in R were found. These 
were handled using singular value decomposition tech- 
niques to perform the matrix inversion and a step-wise 
regression to determine good features. Although the LC 
is easy to use, it is cumbersome to update, and degrades 
rapidly as the Bayes optimal decision boundaries become 
highly nonlinear. The performance of the LC is given in 
[21], and is not repeated here because it is inferior to all 
the other techniques considered. Similarly, the results of 
using a quadratic classifier arc omitted since they were 
much more computationally intensive without showing a 
significant improvement in classification accuracy as com- 
pared to the LC. 

IV. PERFORMANCE EVAI.UATION 
4.1. Data Description and Representation 

The various classifiers described in the previous section 
have been evaluated for their ability to classify short 
duration acoustic signals extracted from DARPA Stan- 

dard Data Set I [ I X ] .  This data set consists of digital time 
records of a training and a test set of six signal types 
propagated over short oceanic data paths with variable 
source and background noise levels. For the results re- 
ported in this paper, only those portions of the records 
that contain signals are used. As shown in Table 11, the six 
signal classes are denoted by the letters A through F 
with durations from a few milliseconds to 8 s, and band- 
widths from less than 1 Hz to several kHz. The SNR's of 
the records vary over 24 dB. There were 42 training 
samples. Of the test data, 179 samples were similar enough 
to the training data to constitute a good test set for 
classification comparisons. An additional 19 test samples 
werc added selectively to observe, without retraining, the 
robustness of the techniques to extraneous deterministic 
signals. These 19 additional records had duration and 
frequency characteristics that deviated significantly from 
the training data. and are thus identified by primed labels 
in Table 11. Overall, the data set included several signal 
characteristics that are representative of realistic oceanic 
signals, including 

i) Simultaneously occurring signals (some type F sig- 

i i )  Sequentially occurring signals requiring event asso- 

iii) Signals similar to type C or type A but with some 

iv) Significant signal variations due to the source or 

nals, several type B signals). 

ciation. 

important feature missing. 

propagation path; possibly low SNR. 

From the size of the training set, it is apparent that the 
training data is small compared to the number of free 
parameters for all the neural networks considered, with 
the problem being most severe for the basis function 
networks and least for the PSN. This sparse data problem 
is dealt with by using cross-validation, wherein part of the 
training data is also used to test the network at every 
training cycle, and training is stopped when the perfor- 
mance reaches a peak and begins to fall. In this way, the 
network is encouraged not to memorize the training data, 
and can do better generalization when faced with un- 
known data. 

4.2. Peifonnance of 1ndir.itlual Classifiers 
The adaptive and rapid kernel classifiers were com- 

pared with the LVQ2 and RBF, as well as the K" 
classifier and the Pi-Sigma higher order network [20] in 
terms of classification accuracy, training and test times, 
and memory requirements. The LVQ2 and the two hybrid 
algorithms used five reference vectors for each class, while 
the RBF used a total of 15 centroids. For the K", K = 3 
was chosen, and the number of training samples ranged 
between 5 and 9 per class for total of 42 samples. The 
PSN used three hidden units, and was trained using all 42 
samples. The number of iterations, determined by a cut-off 
in differential MSE of 0.001 was 35,104 and 816 for the 
RKC, AKC, and PSN's, respectively. 
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Fig. 6. Confusion matrices showing classification error results for (a) 
h e a r e s t  neighbor, (b) RBF, (c) LVQ2, (d) adaptive kernel classifier, (e) 
rapid kernel classifier, (f) pi-sigma network. 

TABLE I1 

Description of DARPA Standard Data Set I 

Signal Classes Number of Samples 

Additional 
19 Deviant 

Class Description Training Test 179 Test Sienals U 

A Broad-band 15 ms pulse 7 53 8 ( A ’ )  
B Two 4 mS pulses, 27 ms separation 7 54 6 ( B ’ )  
C 3 kHz tonal, 10 ms duration 8 31 l(C’) 
D 3 kHz tonal, 100 ms duration 9 14 0(D’)  
E 150 Hz tonal, 1 s duration 6 19 4(E’) 
F 250 Hz tonal, 8 s duration 5 8 O ( F ’ )  

Totals 42 179 19 

The classification results for the six different tech- 
niques, examined only for the signal epochs, are displayed 
in Fig. 6 using confusion matrices. For each technique, 
the correct class is given by the horizontal row label and 
the misclassification (or confused) class assigned is given 
by the vertical column label. The numerical entries give 
the number of misclassifications. Such a display format 
exposes which signals cause the greatest problems for a 
given technique. The upper half of the matrix shows the 
results for the 179 test signals, while the lower half, 
identified by the primed labels A’ through E’, display 
results for the 19 deviant test signals. We note that the 
AKC is able to classify all regular test signals correctly 
(100%) while the 3-NN gave the poorest results (7 mis- 
classifications or 96.1% accuracy). For the deviant signals, 
all six techniques could label only 4 to 6 (21.1%-31.6%) 
in agreement with the provided ground truth. The dra- 
matic contrast in performance for the additional 19 test 
signals indicates that the classifiers were sharply tuned to 
the deterministic-like signals of the training set and not 
amenable to grossly deviant signals. This conclusion is 

further reinforced by interpreting the network outputs, as 
elaborated below. 

Besides classification accuracy, memory requirements, 
training, and testing times are also of concern, particularly 
for real-time implementations. The AKC took the longest 
training time, while the RKC was quicker than LVQ but 
provided superior results. While determining the class of 
a test signal, the Pi-Sigma and RBF networks are about 
twice as fast than the other networks which exhibit com- 
parable speeds. More accurate timing estimates could be 
obtained through a careful separation of CPU and 
input/output times. 

v. EVIDENCE INTEGRATION AND DECISION MAKING 

We observe that the DARPA Standard Data Set I is a 
simplified characterization of real-life short-duration 
oceanic signals, whose detection and classification is a 
much more difficult problem. Since different classification 
techniques have different inductive biases, a single method 
cannot give the best results for all signal types. Rather, 
more accurate and robust classification can obtained by 
combining the outputs (evidences) of multiple classifiers 
based on neural network and/or statistical pattern recog- 
nition techniques. With this motivation, we present two 
such techniques for evidence combination in this section. 

It has been recently shown that training multilayer 
feedfonvard networks by minimizing the expected mean 
square error (MSE) at the outputs and using a 0/1 
teaching function yields network outputs that approximate 
posterior class probabilities [61]-[63]. In particular, the 
MSE is shown to be equivalent to 

MSE = K ,  + C / D , ( X ) ( W X )  -fc(x>)2 dx (17) 
C X  

where K, and Dc(x) depend on the class distributions 
only, fc(x) is the output of the node representing class c 
given an input x, P(c/x) denotes the posteribr probabil- 
ity, and the summation is over all classes. Thus, minimiz- 
ing the (expected) MSE corresponds to a weighted least 
squares fit of the network outputs to the posterior proba- 
bilities. 

This result gives a sound mathematical basis for the 
interpretation of the hetwork outputs, and for using an 
integrator to combine the outputs from multiple classifiers 
to yield a more accurate classification. For very low values 
of MSE, fc(x> approximates P(c/x) according to (17). Let 
fC,,(x) be the output of the node that denotes membership 
in class c in the ith neural classifier. We expect that, for 
all i, x, 

Similarly, if the pdsteriori estimate is very good, one 
would expect for all c, i 

I N  
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where j indexes the N training data samples, and P ( c )  is 
obtained by counting the frequency of class c in the 
training data. 

Indeed, both (18) and (19)  are observed to be quite 
accurate for almost all of the 179 test signals for both 
RKC and AKC, as well as for the PSN. For 16 of the 19 
deviant signals, the summation of (18) is less than 0.5, 
strongly indicating that these signals do not resemble any 
signal in the training set. 

Based on the interpretation of the outputs as apusterior 
class probabilities, two methods for evidence combination 
were proposed and used [521. 

I )  Entropy-Based Integrator: In this method, a weighted 
average of the outputs of n different classifiers is first 
performed, with a larger entropy resulting in a smaller 
weight. The integrator then selects the class correspond- 
ing to the maximum value, providing this value is above a 
threshold. Otherwise, the input is considered as a false 
alarm, since there is no strong evidence that it belongs to 
any of the n classes. 

First, for every classifier, the entropy is calculated using 
normalized outputs y i ,  = y ,  , /C ,y ,  I .  The weight given to 
each classifier (normalized) output differs from sample to 
sample according to the (approximated) entropy at the 
output of that classifier, as follows: 

assigned class label = c : max H (  c) .  (20) 

In this way, the outputs of a classifier with several 
similar values get a lower weighting as opposed to classi- 
fiers that strongly hypothesize a particular class member- 
ship. Our initial experiment in combining the results of 
the RKC and the PSN yielded 100% accuracy among the 
179 test signals and 8/19 (42%) agreement with the 
ground truth provided for the deviant signals. More sig- 
nificantly, the values of max{H(c)) obtained for the set 
are significantly lower, thus indicating that this metric can 
be used to detect false alarms and unknown signals. 

2) Heuristic Combination of Confidence Factors: This 
approach is inspired by techniques for parallel combina- 
tion of rules in expert systems. Certainty factors were 
introduced in the MYCIN expert system for reasoning in 
expert systems under uncertainty, and reflect the confi- 
dence in a given rule [64]. The original method of rule 
combination in MYCIN was later expressed in a more 
probabilistic framework by Heckerman 1651, and serves as 
the basis for the method proposed below. 

First, the outputs, which are in the range [O, 11, are 
mapped into certainty or confidence factors (CF’s) in the 
range 1-1, 11 using a log transformation. Then, a 
MYCIN-type rule is used to combine the CF’s for each 
class. The advantage of this combination rule is that it 
makes the result invariant to the sequence in which the 
different network outputs are combined. 

The individual CF’s are first obtained using 

CF,, = log, ( ( n  - l / n ) y , . ,  + l / n )  (21) 

where subscript i denotes the classifier as before. For 
each class c ,  as positive CF’s and all negative CF’s are 
combined separately. The resultant positive and negative 
CF’s are combined in the final step, to obtain a combined 
confidence CF,, for each class c. The classification deci- 
sion is: 

assigned class label = c : max CF, . 
The equations used for combinlng the CF’s are similar 

but not identical to those used in the original MYCIN 
[64]. For a given class, c, let the individual confidences 
obtained from two classifiers be a and b, respectively. 
Then the confidence C,(a, b )  obtained on combining 
these two values is given by 

CF, ( a ,  b )  
= 1 - (1 - a ) ( l  - h )  
= -CF,( - a ,  - h )  if a < 0 and b < 0 

if a > 0 and b > 0; 

= U + b ,  otherwise. ( 2 2 )  
An experiment in combining the results of the RKC and 
the PSN using confidence factors also yielded 100% accu- 
racy among the 179 test signals and 9/19 (47%) agree- 
ment with the ground truth provided for the deviant 
signals. Again, the values of max CF, were much lower for 
the deviant signals, yielding another metric for detecting 
false alarms and unknown signals. Indeed, by varying the 
threshold for the minimum acceptable value for max H ( c )  
or maxCF,, one can obtain a range of classification accu- 
racy versus false alarm rates, and be able to choose a 
suitable trade-off point. 

VI. CONCLUDING REMARKS 
Hybridization of algorithms is emerging as an important 

approach to solving problems. Each algorithm is a realiza- 
tion of one approach to a solution, and often a synergistic 
approach to the problem yields a better solution than 
making further improvements on a single approach. In 
fact, increasing the sophistication of a particular tech- 
nique may not take us very far, as is witnessed by the 
history of LVQ. Rather, for difficult real-world problems 
like detection and classification of oceanic signals, it is 
crucial to have good preprocessing and feature selection 
techniques combined with efficient neural network classi- 
fiers and robust methods or integrated decision-making. 
Good performance is required at every stage, and cooper- 
ation is also desirable between stages. In our classifier, 
these principles are exemplified by the coupling of the 
selection feature vectors with the choice of neural classi- 
fiers, and by the use of evidence combinatian techniques 
in a situation when the capabilities of a single classifier 
are fundamentally limited. 
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