Abstract

Proceedings Abstracts of the Twenty-Fifth International Joint Conference on Artificial Intelligence

Plan Synthesis for Knowledge and Action Bases / 1022
Diego Calvanese, Marco Montali, Fabio Patrizi, Michele Stawowy

We study plan synthesis for a variant of Knowledge and Action Bases (KABs), a rich, dynamic framework, where states are description logic (DL) knowledge bases (KBs) whose extensional part is manipulated by actions that possibly introduce new objects from an infinite domain. We show that plan existence over KABs is undecidable even under severe restrictions. We then focus on state-bounded KABs, a class for which plan existence is decidable, and provide sound and complete plan synthesis algorithms, which combine techniques based on standard planning, DL query answering, and finite-state abstraction. All results hold for any DL with decidable query answering. We finally show that for lightweight DLs, plan synthesis can be compiled into standard ADL planning.

PDF