
Modeling and Reasoning about NTU Games via Answer Set Programming

Giovanni Amendola, Gianluigi Greco, Nicola Leone, and Pierfrancesco Veltri
DEMACS - University of Calabria, Italy

{amendola,ggreco,leone,veltri}@mat.unical.it

Abstract
A compact representation for non-transferable util-
ity games founding on answer set programming is
proposed. The representation is fully expressive, in
that it can capture all games defined over a finite
set of alternatives. Moreover, due to the knowledge
representation capabilities of answer set programs,
it can easily accommodate the definition of games
within a wide range of application domains, rang-
ing from scheduling, to routing and planning, just
to name a few. The computational complexity of
the proposed framework is studied, in particular,
by focusing on the core as the prototypical solution
concept. A system supporting the basic reasoning
tasks arising therein is also made available, and re-
sults of experimental activity are discussed.

1 Introduction
Coalitional games are mathematical models which have been
proposed to study payoff distribution problems among coop-
erative agents [von Neumann and Morgenstern, 1944]. In the
classical setting where utility can be freely transferred among
agents, a game can be defined as a pair hN, vi, where N
is a finite set of agents and where v is a function associat-
ing each coalition S ✓ N with the worth v(S) 2 R that
agents in S can get by collaborating with each other. A fun-
damental problem over hN, vi is then to single out the most
desirable distributions of the total worth v(N), called solu-
tion concepts, which can be perceived as fair and stable (see,
e.g., [Osborne and Rubinstein, 1994]).

Since the nineties, coalitional games gained popularity in
the artificial intelligence community where solution concepts
have been reconsidered from the computational viewpoint
(cf. [Deng and Papadimitriou, 1994]). In particular, moving
from the observation that explicitly listing all coalitions with
their worths is unfeasible over games involving many agents,
significant efforts have been spent to study compact repre-
sentations for coalitional games (see, e.g., [Chalkiadakis et
al., 2011; Greco et al., 2011]). In a compact representation,
a game hN, vi is defined via an encoding, such as a combina-
torial structure, a graphical structure, or a logical theory; and,
for each coalition S ✓ N , the worth v(S) is computed via an
algorithm taking as input that structure and the coalition S.

1

3 2

4

a b c

maximal matching

1

3 2

4

a c

Figure 1: Illustration for Example 1 and Example 2.

Example 1. The graph on the left of Figure 1 can be a com-
pact representation for a game over the set N = {1, 2, 3, 4}
of agents one-to-one corresponding with its nodes. For in-
stance, for each coalition S ✓ N , we might define v(S) as
the number of edges in the subgraph induced over the nodes
in S. E.g., we have v({1, 2, 3}) = 2 and v({1, 2, 3, 4}) = 3.
In general, as every graph on |N | nodes has O(|N |2) edges,
the encoding is exponentially more succinct than explicitly
listing the worths associated with all 2|N | coalitions. C

Whenever utility cannot be freely transferred, the classical
model for coalitional games can be generalized by associating
each coalition S ✓ N with all the possible payoff distribu-
tions that are allowed to the agents in S, rather than with just
one value v(S). Games of this kind have been firstly studied
by Aumann and Peleg [1960] and they are called coalitional
games with non-transferable utility (short: NTU games).

Formally, for any coalition S ✓ N , let RS be the |S|-
dimensional real coordinate space, whose coordinates are la-
beled with the members of S; in particular, given a payoff
vector x 2 RS , xi denotes the component associated with the
agent i 2 S. Then, an NTU game is a pair hN,V i, where N
is a finite set of agents and V is a function associating each
coalition S ✓ N with a set of payoff vectors V (S) ✓ RS ,
which are also called consequences.

Applications of NTU games include frameworks for dis-
tributing invisible goods, for service composition, for task as-
signment, for coordination in wireless networks, and more
generally all frameworks where incentives to cooperation are
provided via payments taking values from discrete domains
(see, e.g., [Greco et al., 2010] and the references therein).

When looking at the specification of NTU games from the
computer science perspective, however, we might note that
there is no clear way to adapt over them existing encodings

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

38

defined for games with transferable utility (short: TU games).
In fact, for each given coalition S ✓ N , V (S) is not a single
real number which can be computed on top of the encoding,
but it is actually a set of different alternatives that are avail-
able to the agents in S. Accordingly, compact representations
for NTU games must provide not only a mechanism to rea-
son about exponentially many coalitions (as with TU games),
but also a mechanism that, for each given coalition S ✓ N ,
allows to succinctly encode the consequences in V (S).

As a matter of fact, very few efforts have been spent in the
literature to define compact encodings for NTU games, and
a representation that naturally provides the support discussed
above was missing, so far. The goal of the paper is to fill this
gap, by proposing a representation for NTU games founding
on answer set programming [Gelfond and Lifschitz, 1991].

Indeed, answer set programming is a declarative program-
ming paradigm where problems are specified in terms of logic
programs, and its key feature is that the semantics of each pro-
gram P is given in terms of a set AS(P) of answer sets, each
one describing a possible alterative model for P . Hence, com-
pact representations for NTU games can be naturally based on
encoding their alternatives/consequences in terms of answer
sets of suitably associated programs.

In the paper, we formalize this observation and we show
that every NTU game with a finite set of consequences can
be represented as an answer set game. Then, we embark
on the study of the computational complexity of such games,
by considering stratified and normal programs and by focus-
ing on the core as a reference solution concept [Edgeworth,
1881]. For instance, we consider the problems of checking
whether a given distribution is in the core and whether the
core of a game is empty. Finally, we report results of exper-
imental activity conducted over a system prototype we have
implemented to support the above reasoning tasks. Notably,
no reasoner for arbitrary NTU games was available, so far.

2 Preliminaries
Answer Set Programming. Let � be a set of atoms. A rule
r on � is an expression having the form

a b1, . . . , bm, not c1, . . . , not cn.
where m+ n � 0, and all a, bj and ck are atoms from �.

The head of r is the set H(r) = {a}, and the positive
(resp., negative) body of r is the set B+

(r) = {b1, ..., bm}
(resp., B�

(r) = {c1, ..., cn}). If B�
(r) = B+

(r) = ;, then
the arrow “ ” will be omitted in the notation.

A (normal) program P is a finite set of rules. An interpre-
tation of P is any set I ✓ � of atoms. We say that I satisfies a
rule r if B+

(r) ✓ I and B�
(r)\I = ; implies I\H(r) 6= ;.

If I satisfies every rule r 2 P , then I is a model of P . The
reduct of P w.r.t. an interpretation I is the program P I such
that: (i) for each rule r 2 P with B�

(r) \ I = ;, P I con-
tains the rule r0 with H(r0) = H(r), B+

(r0) = B+
(r), and

B�
(r0) = ;; (ii) no further rule is in P I . An interpretation I

is an answer set of P if it is a subset-minimal model of P I .
The set of all answer sets of P is denoted by AS(P).

A normal program P is stratified if the atoms can be parti-
tioned into pairwise disjoint sets S1, ..., Sn such that, for each
a 2 Si and b 2 Sj , if there is a rule r 2 P with a 2 H(r)
and b 2 B+

(r) (resp., b 2 B�
(r)), then i � j (resp., i > j).

Theorem 1. The following computational properties are
known to hold (see, e.g., [Dantsin et al., 2001]):
(1) Every stratified program has a unique answer set that,

moreover, can be computed in polynomial time.
(2) For normal programs P , checking whether an inter-

pretation M belongs to AS(P) is feasible in polyno-
mial time, while deciding whether AS(P) 6= ; is NP-
complete.

Imputations and Cores. Let G = hN,V i be an NTU game.
A consequence x 2 V (N) is an imputation of G if the fol-
lowing two properties hold (see, e.g., [Peleg, 1963]):

• Efficiency: for each y 2 V (N), there is an agent i 2 N
such that xi � yi; and

• Individual Rationality: for each agent i 2 N , xi �
max{yi | yi 2 V ({i})}.

Intuitively, the former condition restricts imputations to
those consequences where it is impossible to make any agent
better off without making at least another agent worse off. In-
stead, the latter condition filters out all consequences where
an agent receives less than it could obtain on its own, i.e.,
without cooperating with anyone else. In the following, the
set of all imputations of G is denoted by I(G).

Solutions concepts are defined in the literature as imputa-
tions enjoying additional desirable properties. In the paper,
we focus on the core of G, denoted by C(G), which is the set
of all imputations x for which there is no objection, i.e., pair
(y, S) such that y 2 V (S) and yk > xk, for each k 2 S [Au-
mann, 1961]. Therefore, this outcome represents a kind of
agreement amongst players, in that it is “stable” with respect
to the possibility that subsets of players get an incentive to
deviate from it, by forming coalitions on their own.
Fact 1. If G=hN,V i is such that |N |  2, then I(G) = C(G).

3 Formal Framework
In this section, we introduce answer set games and specialize
over them the basic concepts about coalitional games.

3.1 Answer Set Games
Let N be a set of agents. An environment for N is a tuple
⌦ = hN,P,!i, where P is a vector of logic programs on a
set � of atoms and ! is a vector of weight functions mapping
interpretations to real numbers. In particular, the components
of P and ! are labeled with the members of N .

We assume that � ◆ N , that is, agents are transparently
viewed as atoms. Moreover, for each agent i 2 N and rule
r 2 Pi, we require that H(r) \ N = ;, that is, atoms in
N occur only in rule bodies. Finally, for each i 2 N , we
require that !i is polynomial-time computable. In the fol-
lowing, whenever !i(I) =

P
a2I !i({a}) holds, for each

interpretation I , we shall say that !i is additively separable.
Hereinafter, for each S ✓ N , we define a logic program

PS =

S
i2S(Pi [{i.}) based on the logic programs Pi asso-

ciated with the agents i 2 S. In particular, when i is included
in S, we add to PS the program Pi as well as the information
that i occurs in S (that is, the fact “i.”). This information can
be used by other agents to reason about members of S. For

39

instance, the logic program of another agent j 6= i can be de-
fined to model scenarios where j can perform some task only
in coalitions where i occurs.

The notions introduced above are now exemplified over an
environment where logic programs play the role of modeling
matchings over an underlying graph—recall that a matching
is a set of pairwise non-adjacent edges; thats is, there is no
pair of edges sharing some node. The rationale for the chosen
exemplification is that matching games constitute one of the
most studied class of coalitional games, with applications in
matching markets (see, e.g., [Roth and Oliveira Sotomayor,
1990; Shapley and Shubik, 1971]).
Example 2. Consider again the graph shown in Figure 1,
and let us define ⌦ = hN,P,!i, with N = {1, 2, 3, 4}, as
follows. Each agent i 2 N is equipped with a program Pi

prescribing that at most one of its incident edges can be “se-
lected”. The intuition is that, for each S ✓ N , answer sets
of PS will correspond to the matchings over the subgraph in-
duced on S. Formally, we use atoms a, b, and c to identify the
edges selected in the matching, and ā, ¯b, and c̄ to mean that
the corresponding edges are not selected. Then, we define:

P1 =

8
>>>>><

>>>>>:

¯b a.
ā b.
a 3, not ā.
ā 3, not a.
b 2, not ¯b.
¯b 2, not b.

9
>>>>>=

>>>>>;

, P2 =

8
>>>>><

>>>>>:

c̄ b.
¯b c.
b 1, not ¯b.
¯b 1, not b.
c 4, not c̄.
c̄ 4, not c.

9
>>>>>=

>>>>>;

,

P3 = {a 1, not ā. ā 1, not a},
P4 = {c 2, not c̄. c̄ 2, not c.}.

Note that the interpretation M = {1, 2, 3, 4, a,¯b, c} belongs
to AS(PN) = AS(

S
i2{1,2,3,4}(Pi [{i.})), and it encodes a

maximal matching over the graph—see Figure 1.
Finally, for each agent/node i 2 N , !i is the additively

separable function mapping each atom to 0, but the edges in-
cident to i, which are mapped to 1. Hence, for the answer set
M , we have !i(M) = 1, for each i 2 {1, 2, 3, 4}. C

Environments are now used to induce, in a natural way, an
NTU game over the agents in N . Formally, the answer set
game associated with ⌦ is the game G⌦ = hN,V⌦i where,
for each S ✓ N , the set V⌦(S) is defined as follows:

V⌦(S) = {x 2 RS | 9M 2 AS(PS)

such that xi = !i(M), 8i 2 N}.

Example 3. In Example 2, consider the coalition S = {2, 4}.
We have V⌦(S) = {↵,�} with ↵2 = ↵4 = 1 (corresponding
to the matching where the edge c is selected) and �2 = �4 =

0 (corresponding to the case where no edge is selected). C
It is easy to see that any finite NTU game hN,V i, i.e., such

that V (S) is a finite set of outcomes, for each S ✓ N , can be
defined by using a suitable environment.1

Theorem 2. For each finite NTU game hN,V i, there is an
environment ⌦ over N such that V⌦(S) = V (S), 8S ✓ N .

1See http://ntu2dlv.altervista.org/, for details
and missing proofs.

In fact, the environments in the above result founds on pro-
grams whose rules are associated with all possible coalitions
S ✓ N and with all possible outcomes in V (S). But, more
succinct encodings can be obtained in some cases. For in-
stance, by generalizing Example 2 to arbitrary graphs, it is
easily seen that all (possibly exponentially-many) matchings
can be encoded via programs with polynomially-many rules,
only. For instance, for a clique over N , the number of max-
imal matching is exponential w.r.t. |N |, but the number of
rules in each program Pi is linearly bounded by the number
of such nodes. For a further example of a succinct encod-
ing, we can consider an environment where, for each i 2 N ,
we have Pi = {ai i, not āi.} [{āi i, not ai.} and
!i({ai}) = 1, with all other atoms mapped to 0. Then, we
can check that |AS(PN)| = |V⌦(N)| = 2

|N | holds.
More importantly, the modeling capabilities of answer set

programming make the setting expressive enough to deal with
a number of real-world applications, for instance, to encode
games defined over combinatorial structures [Bilbao, 2012].
Indeed, for each i 2 N , Pi might encode different combi-
natorial problems, ranging from scheduling, to routing and
planning, just to name a few (see, e.g., [Grasso et al., 2013]).
Example 4. Consider a setting where, in order to perform a
task t, a set S of skills are required, and where each agent
i 2 N has some skills s1, ..., shi taken from S . Consider
a stratified logic program P modeling the conditions under
which t is executed. In particular, if T ✓ S is a set of avail-
able skills, then the unique answer set M of P [

S
s2T {s.}

is such that: t 2 M , if and only if, T = S . Note that further
specific application-oriented constraints can be defined in P .

Now, for each agent i 2 N , consider the program Pi =

P [{s1.}[· · ·[{shi .} and the weight function !i such that
!i(M) = 1 (resp., !i(M) = 1) if t 2 M (resp., t 62 M).
Then, the game G⌦ = hN,V⌦i is such that, for each S ✓ N ,
V⌦(S) = {x} where each component of x is 1 (resp., 0) if
agents in S have (resp., do not have) the skills to perform t.

Simple extensions of the exemplification include the exe-
cution of more than one task, and the definition of a monetary
reward that is specific for each task being executed and for the
specific skills provided by each agent. C

3.2 Solution Concepts
Answer sets games G⌦ are standard NTU games and, there-
fore, we can apply on them well-known notions and solution
concepts from coalitional game theory. In fact, such notions
and concepts can be recast in terms of the underlying vector
of logic programs P , as we discuss below.

Note first that, if x is an imputation in I(G⌦), then x 2
V⌦(N) holds and, by definition of of V⌦, there is an answer
set M 2 AS(PN) such that xi = !i(M), for each i 2 N .
This is called an imputation answer set of PN w.r.t. G⌦, and
a useful characterization for it is next provided.
Fact 2. An interpretation M 2 AS(PN) is an imputation
answer set if, and only if, the following properties hold:

• “Efficiency”: for each M 0 2 AS(PN), there is an agent
i 2 N such that !i(M) � !i(M 0

); and
• “Individual Rationality”: for each agent i 2 N ,
!i(M) � max{!i(M 0

) | M 0 2 AS(P{i})}.

40

Example 5. Recall from Example 2 that M = {1, 2, 3, 4,
a,¯b, c} 2 AS(PN) and !1(M) = 1. This is the best possible
value for !1; hence, M is efficient. Moreover, !i(M) = 1 �
max{!i(M 0

) | M 0 2 AS(P{i})}, for each i 2 N . Indeed,
P{i} has one answer set {i.} and !i({i.}) = 0. So, M is also
individually rational. Thus, it is an imputation answer set. C

Let IAS(P,G⌦) denote the set of all imputation answer sets.
An interesting property is that, as far as the non-emptiness of
IAS(P,G⌦) is concerned, efficiency in Fact 2 is immaterial.
Theorem 3. If there is an answer set of PN that satisfies the
individual rationality property, then IAS(P,G⌦) 6= ;.

In addition to the elements in IAS(P,G⌦), the paper will
also study core answer sets. Formally, an interpretation M 2
AS(PN) is a core answer set of PN w.r.t. G⌦ if !(M) 2
C(G⌦). Let CAS(P,G⌦) be the set of all core answer sets. In
order to characterize these elements, given an interpretation
M and a coalition S ✓ N , we say that M is S-feasible if
M 2 AS(PS). Then, the following can be derived.
Fact 3. An interpretation M 2 AS(PN) is a core answer set
of PN w.r.t. G⌦ if, and only if, the following properties hold:

• M is an imputation answer set (i.e., M 2 IAS(P,G⌦));
• “Absence of Objections”: there is no S-feasible inter-

pretation M 0 such that !k(M 0
) > !k(M), 8k 2 S.

Example 6. In our example, M 2 AS(PN) is a core answer
set. This is witnessed by Fact 3 and by observing that, for
each coalition S ✓ N and for each M 0 2 AS(PS), there is
always some agent k 2 S such that !k(M 0

)  !k(M).
Instead, the set {1, 2, 3, 4, a,¯b, c̄} 2 IAS(P,G⌦) is not

a core answer set. Indeed, by Example 3, we know that
coalition {2, 4} can object. In fact, for the interpretation
{2, 4,¯b, c}2AS(P{2,4}), we can derive that !2({2, 4,¯b, c}) =
!4({2, 4,¯b, c}) = 1, while we have !2({1, 2, 3, 4, a,¯b, c̄}) =
!4({1, 2, 3, 4, a,¯b, c̄}) = 0.

More generally, it can be checked that an answer set in
AS(PN) is a core answer set if, and only if, it corresponds to
a maximal matching over the underlying graph. C

4 Computational Complexity Aspects
In this section, we study the computational complexity of the
following reasoning tasks, all of them receiving as input an
environment ⌦ and being defined over the game G⌦:
I-CHECK: Given a vector x, is x 2 I(G⌦)?
C-CHECK: Given a vector x, is x 2 C(G⌦) hold?
I-NONEMPTY: Does I(G⌦) 6= ; hold?
C-NONEMPTY: Does C(G⌦) 6= ; hold?

In addition, we study the following problems2 where solu-
tion concepts for G⌦ are recast in terms of answer sets:
IAS-CHECK: Given an interpretation M , is M2IAS(P,G⌦)?
CAS-CHECK: Given an interpretation M , is M2CAS(P,G⌦)?
IAS-NONEMPTY: Does IAS(P,G⌦) 6= ; hold?
CAS-NONEMPTY: Does CAS(P,G⌦) 6= ; hold?

2Note that IAS-NONEMPTY and CAS-NONEMPTY are equiva-
lent to I-NONEMPTY and C-NONEMPTY. Indeed, I(G⌦) 6= ; (resp.,
C(G⌦) 6= ;) iff IAS(P,G⌦) 6= ; (resp., CAS(P,G⌦) 6= ;).

Problem Restriction Normal Stratified

IAS-CHECK[h] h 2 N[{∞} coNP-c in P

I-CHECK[h]
h= 1 coNP-c in P
h 2 N\{1}[{∞} Dp-c in P

IAS-NONEMPTY[h]
⌘ I-NONEMPTY[h]

h= 1 NP-c in P
h 2 N\{1}[{∞} �p

2 -c in P

CAS-CHECK[h]
h 2 N coNP-c in P
h= ∞ coNP-c coNP-c

C-CHECK[h]

h= 1 coNP-c in P
h 2 N\{1} Dp-c in P
h= ∞ Dp-c coNP-c

CAS-NONEMPTY[h]
⌘ C-NONEMPTY[h]

h= 1 NP-c in P
h= 2 �p

2 -c in P
h 2 N\{1,2} ⌃p

2 -c in P
h= ∞ ⌃p

2 -c coNP-c

Table 1: Summary of complexity results. Hardness results
hold over additively separable weight functions.

A summary of our results is reported in Table 1, by distin-
guishing normal and stratified environments ⌦ = hN,P,!i,
that is, when PN (hence, each program PS with S ✓ N) is
normal and stratified, respectively. Note that, for each prob-
lem, say P, we report the complexity when the input is re-
stricted over environments such that |N | = h, where h 2 N
is a given fixed natural number, by denoting the problem as
P[h]. For notational uniformity, the original problem P, with-
out any bound on N , is also denoted as P[1].

4.1 Overview of the Proofs
We now discuss some representative proofs for the results re-
ported in Table 1. In particular, we focus on intractability re-
sults only, and we start with stratified environments.
Theorem 4. CAS-CHECK[1] is coNP-complete on strati-
fied environments.

Proof sketch. Membership is routine. For the hardness, let
� = c1 ^ ... ^ cm be a Boolean formula in conjunctive
normal form over the variables in {X1, ..., Xn}. For a lit-
eral Xi (resp., ¬Xi) in a clause cj , let ⇡(Xi) = Xi (resp.,
⇡(¬Xi) = not Xi). Deciding the satisfiability of such for-
mulas is a well-known NP-hard problem.

Based on �, we build in polynomial time an environment
⌦ = hN,P,!i such that N = {1, ..., n}, Pi = {Xi
i.} [Q, for each i 2 N , where

Q =

⇢
satj ⇡(`i). 8j 2 {1, ...,m} and `i 2 cj
sat sat1, ..., satm.

and where, for each i 2 N , !i(I) = 1 (resp., !i(I) =

0) if sat 2 I (resp., sat 62 I). W.l.o.g., assume that
the truth assignment �̄ where all variables evaluate true is
not satisfying, and consider the answer set M = {satj |
cj evaluates true in �̄} [

S
i2N{i.} of PN . Note that M is

the unique answer set of PN , as the program is stratified. The
result then follows by checking that M 62 CAS(P,G⌦) if, and
only if, � is satisfiable.

41

Considering normal environments, completeness results
for the polynomial-time closure of NP emerge.
Theorem 5. 8h 2 N \ {1} [{1}, IAS-NONEMPTY[h] is
�

p
2-complete on normal environments.

Proof Sketch. For the membership part, by Theorem 3, we
have to check whether there exists an answer set satisfying
the individual rationality property. To check this property,
we can first compute, for each i 2 N , the value mi =

max{!i(M 0
) | M 0 2 AS(P{i})}. This can be done by means

of a binary search within the range for the possible values
for mi. At each step, we just ask whether there is an answer
set M 0 2 AS(P{i}) with !i(M 0

) exceeding the current given
threshold. Each step is hence feasible in NP, so mi can be
computed in �

p
2 . Eventually, we can guess an interpretation

M by then checking that M 2 AS(PN) and that, for each
i 2 N , !i(M) � mi. The whole computation is in �

p
2 .

For the hardness, we exhibit a reduction from the �

p
2-

complete OddLexMaxSAT problem [Wagner, 1987]. We are
given a Boolean formula � = c1 ^ ... ^ cm in conjunctive
normal form over the variables in {X1, ..., Xn}. Such vari-
ables are lexicographically ordered (X1 < · · · < Xn), and
we ask whether X1 evaluates true in the lexicographically
maximum satisfying assignment—w.l.o.g., � is satisfiable
by a satisfying assignment where X1 evaluates true. In the
following, for a literal Xi (resp., ¬Xi), let ⇡(Xi) = Xi

(resp., ⇡(¬Xi) = not Xi). Based on �, we build in
polynomial time an environment ⌦ = hN,P,!i over two
agents, i.e., N = {1, 2}, and where P1 = P2 consists of the
following rules:8

>>>>><

>>>>>:

Xi not ¯Xi. 8i 2 {1, ..., n}
¯Xi not Xi. 8i 2 {1, ..., n}
satj ⇡(`i). 8j 2 {1, ...,m} and `i 2 cj
sat sat1, ..., satm.
 not sat.

Finally, we consider two additively separable weight func-
tions, !1 and !2, given by

!1({a}) =
⇢
2

i if a = Xi,
0 otherwise.

!2({a}) =
⇢
1 if a = X1,
0 otherwise.

We claim that � is a “yes” instance of OddLexMaxSAT if,
and only if, IAS(P,G⌦) 6= ;—the reduction can be extended
to the case where |N | > 2, by setting !i(I) = 0, for each
agent i 2 N \ {1, 2} and interpretation I . In the following,
for each assignment �, let M� be the (univocally determined)
answer set of PN with M� ◆ {Xi | Xi evaluates true in �}.

Assume that X1 evaluates false in the lexicographically
maximum satisfying assignment �. Recall that � is satis-
fiable by a satisfying assignment, say �̂, where X1 evalu-
ates true. Consider the interpretation M�̂ . Assume, for the
sake of contradiction, that M is an answer set in IAS(P,G⌦).
Note that !2(M) � !2(M�̂) = 1 must hold, since M is
individually rational. That is, X1 must occur in M . Con-
sider then the assignment �̄ such that Xi evaluates true if,
and only if, Xi 2 M . Note that M = M�̄ . However,
!1(M�̄) < !1(M�), because � is the lexicographically max-
imum satisfying assignment and �̄ 6= �, as X1 evaluates true

(resp., false) in �̄ (resp., �). So, M is not individually ratio-
nal. This leads to a contradiction.

Eventually, assume that X1 is true in the lexicographically
maximum satisfying assignment �⇤. Note that M�⇤ ◆ {X1},
!1(M�⇤

) =

P
Xi|Xi evaluates true in �⇤2

i and !2(M�⇤
) = 1.

Therefore, it can be checked that M�⇤ is efficient and indi-
vidually rational.

We leave the section by exhibiting a completeness result
for the second level of the polynomial hierarchy.
Theorem 6. 8h 2 N \ {1, 2}[{1}, CAS-NONEMPTY[h] is
⌃

p
2-complete on normal environments.

Proof Sketch. In order to solve CAS-NONEMPTY, we can
start by guessing an interpretation M . This task is clearly
feasible in NP. Subsequently, we have to check whether
M is a core answer set, which is feasible in coNP. There-
fore, CAS-NONEMPTY is in ⌃

p
2 . For the hardness, we ex-

hibit a reduction from the prototypical ⌃p
2-complete problem

of deciding the validity of a quantified Boolean formula
having the form 9X1, ..., Xn8Y1, ..., Ym�. Without loss of
generality, we assume that � is in disjunctive normal form,
that is, � = D1 _ ... _ Dr where, for each k 2 {1, ..., r},
Dk = lk1 ^ lk2 ^ lk3 is a conjunction of literals.

Consider the following normal program:

P� =

8
>>>>>>><

>>>>>>>:

Xi not ¯Xi. 8i 2 {1, ..., n}
¯Xi not Xi. 8i 2 {1, ..., n}
Yj not ¯Yj . 8j 2 {1, ...,m}
¯Yj not Yj . 8j 2 {1, ...,m}
sat ⇡(lk1),⇡(lk2),⇡(lk3). 8k 2 {1, ..., r}
¯sat not sat.

where, for each s 2 {1, 2, 3}, ⇡(lks) =

8
><

>:

X̄i if lks = ¬Xi;

Ȳj if lks = ¬Yj ;

lks otherwise.
Let C = {c12, c13, c23, c123}. Moreover, consider the fol-

lowing normal logic program

Q =

8
>><

>>:

c12 1, 2, not 3.
c23 2, 3, not 1.
c13 1, 3, not 2.
c123 1, 2, 3.

Now, based on and given P and C, we build the answer
set game G⌦, where ⌦ = hN,P,!i is defined as follows.

First, we define N = {1, 2, 3}. Then, we let P1 = P2 =

P3 = P� [Q. And, finally, the weight functions are the
additively separable functions given by

!1({a}) =

8
>>><

>>>:

1 if a = ¯sat,

2i if a = Xi,

2n+1 if a 2 C,

0 otherwise.

!2({a}) =

8
>>><

>>>:

1 if a = ¯sat,

2i if a = X̄i,

2n+1 if a 2 C,

0 otherwise.

!3({a}) =
(
1 if a = sat,

0 otherwise.

42

Let M be an answer set in AS(PN) and observe that M ◆
{1, 2, 3, c123}. Therefore, we have:

• !1(M) = 2

n+1
+

P
Xi2M 2

i
+ 1� !3(M);

• !2(M) = 2

n+1
+

P
X̄i2M 2

i
+ 1� !3(M).

Eventually, it can be checked that is valid if, and only if,
there is a core answer set.

(only-if part) Assume that �X is a truth assignment over the
variables in {X1, ..., Xn} witnessing the validity of . Let �
be a truth assignment for�whose restriction on {X1, ..., Xn}
coincides with �X , and note that � is satisfying. Consider
the answer set M� 2 AS(PN) such that M� ◆ {Xi |
Xi evaluates true in �}. Note that M� is univocally defined
and sat 2 M� . Now, we show that M is individually ratio-
nal. Indeed, consider an answer set M1 2 AS(P{1}), hence,
such that C \M1 = ;. Then, !1(M1)  2

n+1  !1(M�).
Similarly, for any answer set M2 2 AS(P{2}), we have
!2(M2)  2

n+1  !2(M�). Eventually, for any answer set
M3 2 AS(P{3}), we have !3(M3)  1 = !3(M�). By simi-
lar arguments, we can show that M� is efficient and satisfies
the objection property.

(if part) Assume that is not valid, and let M 2 AS(PN).
In the case where sat 2 M , we can consider any answer
set M 0 of P{1,2}, such that M 0 \ {X1, ..., Xn} = M \
{X1, ..., Xn}, and ¯sat 2 M 0. As is not valid, one answer
set of this kind clearly exists. Moreover, we can note that
!1(M 0

) = !1(M) + 1 and !2(M 0
) = !2(M) + 1. There-

fore, M 0 is {1, 2}-feasible and such that !k(M 0
) > !k(M),

for each k 2 {1, 2}. Hence, M is not a core answer set. Con-
sider, then, the case where ¯sat 2 M . W.l.o.g., assume there
is an answer set M 0 of P{2,3} such that M 0\{X1, ..., Xn} =

M \ {X1, ..., Xn} and sat 2 M 0. Then, !3(M 0
) = 1 >

!3(M) = 0 and !2(M 0
) = !2(M) + 1. Again, this shows

that M is not a core answer set.

5 Implementation and Experiments
To support the reasoning tasks discussed in the paper, a sys-
tem prototype, named ntu2DLV, has been implemented on
top of the well-known answer set programming DLV rea-
soner [Leone et al., 2006]. In the following, we discuss the
architecture of the system and results of some experimental
activities we have conducted on it.

5.1 System Architecture
Let ⌦ = hN,P,!i be a given environment. In order to
use ntu2DLV, each program Pi 2 P has to be stored in a
file named “agent[i].dl”. Analogously, each weight function
!i 2 ! has to be stored in a file named “weight[i].txt”. We
support additively separable functions, so that each line of the
file consists of a pattern “[a] ! [v]”, where v is the value
associated to the atom a. All files have to be stored in a
folder and the system can be then invoked as: ./ntu2DLV

folderName -reasoning=[imputations|core], where
the option selects the desired reasoning task, that is, comput-
ing imputations or core answer sets, respectively.3

3The system prototype and further notes on its usage are also
available at http://ntu2dlv.altervista.org/.

IAS 3 6 9 12 15
normal 0,085 0,164 0,731 11,711 625,770
uniform 0,083 0,148 0,677 4,349 173,067

power-law 0,082 0,121 0,245 0,602 1,653

Table 2: Execution time (sec) for matching games, on random
graphs for various degree distributions.

The system has been implemented in Java. Upon startup, it
analyzes the input folder, by parsing the files and creating the
associated data structures encoding G⌦. These structures are
taken as input by a reasoning module, which interacts with
the DLV system via the DLVWrapper library [Ricca, 2003]:
“-reasoning=imputations”: When the focus is on imputation

answer sets, DLV is invoked to compute AS(P{i}), for
each i 2 N , and to compute AS(PN). The system then
calculates the values max{!i(M 0

) | M 0 2 AS(P{i})}
to discard the elements of AS(PN) that are not indi-
vidually rational. For each remaining answer set M ,
the system checks whether there is an agent i such that
!i(M) = max{!i(M) | M 2 AS(PN)}. In the affir-
mative case, M is an imputation answer set and is re-
turned as output.

“-reasoning=core”: Whenever the system is asked to return
core answer sets, DLV is additionally invoked to com-
pute AS(PS), for each coalition S ⇢ N with |S| > 1.
For each M 2 AS(PS), the elements I 2 IAS(P,G⌦)

such that !i(M) > !i(I), for each i 2 S, are discarded.
The imputation answer sets that survive to the filtering
process are promoted to core answer sets and returned
as output by the system.

5.2 Experiments and Results
Experimental activity has been conducted to assess the effi-
ciency and the effectiveness of ntu2DLV. Tests have been
carried out on an Intel Core i7-4710HQ, 2.50 GHz, with 16
Gb Ram, running Linux Operating System; for each test we
allowed a maximum running time of 1800 seconds.

In a first series of experiments, we considered the setting
discussed in Example 2, where a graph G is given and where
⌦ encodes a matching game. The system has been tested on
different data sets of randomly-generated graphs, for normal,
uniform and power-law distributions of node degrees.4 For
each given distribution and desired number of nodes, 3 graphs
have been generated and average times are discussed. In par-
ticular, Table 2 reports the time taken by ntu2DLV to compute
an imputation answer set at the growing of the number of the
nodes. Note that with the power law distribution, the scaling
of the system is quite effective. Indeed, for imputation an-
swer sets, the number of invocations to DLV is always linear
w.r.t. the number of agents. However, the number of rules of
each program Pi is determined by the number of neighbors of
agent i (see Example 2) so that, with the power-law distribu-
tion where most agents have only a few neighbors, reasoning

4The data generator along with a user guide can be downloaded
from the system web-site.

43

3 6 9 12 15
CAS 0,091 0,298 6,795 353,850 �1800

2-CAS 0,092 0,154 0,717 11,670 635,077
3-CAS - 0,175 0,942 12,212 644,897
4-CAS - 0,204 3,553 13,550 675,085

Table 3: Execution time (sec) for matching games, on random
graphs with normal degree distribution.

on their associated programs is easier—DLV reasoning time
tend to be exponential w.r.t. the size of the program.

Table 3 reports the (average) time taken by ntu2DLV to
compute a core answer set, by focusing on normal edge dis-
tributions. In this case, DLV has to be invoked 2

|N | times in
order to check whether there is some coalition that can ob-
ject. Therefore, the exponential dependency w.r.t. the number
of nodes is unavoidable, and the system does not scale to large
scenarios. Pragmatically, as often done in these contexts, one
might want to focus on certain coalitions only, as to restrict
the search space. For instance, the table reports execution
times when coalitions of size 2, 3, and 4 are considered.

3 6 9 12 15
IAS 0,098 0,158 0,300 0,536 1,213
CAS 0,110 0,411 6,110 118,295 �1800

2-CAS 0,107 0,186 0,358 0,711 1,455
3-CAS - 0,267 0,590 1,386 3,121
4-CAS - 0,296 1,134 4,009 12,124

Table 4: Execution time (sec) for independent-set games, on
random graphs with normal degree distributions.

For a further series of experiments, we focused on the flexi-
bility of answer set systems to define and solve combinatorial
problems (in their turn, inducing NTU games). In particular,
we considered the same scenario as in Example 2, but defin-
ing programs PS whose answer sets correspond to indepen-
dent sets over the subgraph induced on S—the encoding is
standard and is omitted. In this case, on the specific family of
graphs we have considered, it emerged that fewer answer sets
are generated compared to matching games. Accordingly, it
comes with no surprise that DLV reasoning times are better
than those discussed so far. Details are reported in Table 4.

6 Discussion and Conclusion
A compact representation for non-transferable utility games
has been proposed which founds on the use of answer set pro-
gramming. The computational complexity of the framework
has been studied, and a system supporting the basic reasoning
tasks arising therein has been made available.

Our contribution fills a gap in the literature, where no gen-
eral mechanism to compactly specify NTU games was pro-
posed, so far. An avenue of research that is related to our
work defines NTU games by equipping underlying TU games
with some application-oriented constraints on the possible

worth distributions—see, e.g., [Aumann and Dreze, 1974;
Byford, 2007; Jiang and Baras, 2007] and the general frame-
work of Greco et al. [2010]. Actually, in that framework, con-
straints are used to define the set V (N), only. For instance,
to induce an NTU game where V ({1, 2, 3}) = {(1, 1, 1)},
we have to specify that x1, x2, and x3 are positive integers,
and that x1 + x2 + x3 = 3. Then, for each coalition S, con-
sequences in V (S) are implicitly induced in [Greco et al.,
2010] by projecting V (N) over S. For instance, we have
V ({1, 2}) = {(1, 1)} and we have no flexibility to define,
e.g., V ({1, 2}) = {(1, 1), (2, 0)}. By moving from numeri-
cal constraints to logical theories, answer set games are more
flexible (in fact, fully expressive). Indeed, the input programs
Pi, for each i 2 N , can be defined in a way that the program
PS associated with coalition S encodes any desired set V (S).

Natural avenues of further research include the study of
other solution concepts over answer set games, for instance
taking into account scenarios with restricted agent interac-
tions (see, e.g., [Chalkiadakis et al., 2016]), and the definition
of optimization strategies for the system prototype.

Acknowledgments
The authors are supported by the Italian Ministry of Uni-
versity and Research under PON project “Ba2Know (Busi-
ness Analytics to Know) Service Innovation - LAB”, No.
PON03PE 00001 1. Gianluigi Greco’s work was also sup-
ported by a Kurt Gödel Research Fellowship, awarded by the
Kurt Gödel Society.

References
[Aumann and Dreze, 1974] Robert J. Aumann and

Jacques H. Dreze. Cooperative games with coalition
structures. International Journal of Game Theory,
3(4):217–237, 1974.

[Aumann and Peleg, 1960] Robert J. Aumann and Bezalel
Peleg. Von neumann-morgenstern solutions to cooperative
games without side payments. Bulletin of the American
Mathematical Society, 66(3):173–179, 1960.

[Aumann, 1961] Robert J. Aumann. The core of a cooper-
ative game without side payments. Transactions of the
American Mathematical Society, 98:599–612, 1961.

[Bilbao, 2012] Jesús Mario Bilbao. Cooperative games on
combinatorial structures, volume 26. Springer Science &
Business Media, 2012.

[Byford, 2007] Martin Charles Byford. A constrained coali-
tional approach to price formation. In North American
Summer Meetings of the Econometric Society, Durham,
NC, USA, June 21–24 2007.

[Chalkiadakis et al., 2011] Georgios Chalkiadakis, Edith
Elkind, and Michael Wooldridge. Computational aspects
of cooperative game theory. Synthesis Lectures on Artifi-
cial Intelligence and Machine Learning, 5(6):1–168, 2011.

[Chalkiadakis et al., 2016] Georgios Chalkiadakis, Gian-
luigi Greco, and Evangelos Markakis. Characteristic
function games with restricted agent interactions: Core-
stability and coalition structures. Artificial Intelligence,
232:76–113, 2016.

44

[Dantsin et al., 2001] Evgeny Dantsin, Thomas Eiter, Georg
Gottlob, and Andrei Voronkov. Complexity and expressive
power of logic programming. ACM Computing Surveys,
33(3):374–425, 2001.

[Deng and Papadimitriou, 1994] Xiaotie Deng and Chris-
tos H. Papadimitriou. On the complexity of cooperative
solution concepts. Mathematics of Operations Research,
19(2):257–266, 1994.

[Edgeworth, 1881] Francis Ysidro Edgeworth. Mathemati-
cal Psychics: An essay on the mathematics to the moral
sciences. C. Kegan Paul & Co., London, 1881.

[Gelfond and Lifschitz, 1991] Michael Gelfond and
Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation
Computing, 9(3/4):365–386, 1991.

[Grasso et al., 2013] Giovanni Grasso, Nicola Leone, and
Francesco Ricca. Answer set programming: Language,
applications and development tools. In Proc. of RR’13,
pages 19–34, 2013.

[Greco et al., 2010] Gianluigi Greco, Enrico Malizia, Luigi
Palopoli, and Francesco Scarcello. Non-transferable util-
ity coalitional games via mixed-integer linear constraints.
Journal of Artificial Intelligence Research, 38:633–685,
2010.

[Greco et al., 2011] Gianluigi Greco, Enrico Malizia, Luigi
Palopoli, and Francesco Scarcello. On the complexity of
core, kernel, and bargaining set. Artificial Intelligence,
175(12-13):1877–1910, 2011.

[Jiang and Baras, 2007] Tao Jiang and John S. Baras. Funda-
mental tradeoffs and constrained coalitional games in au-
tonomic wireless networks. In Proc. of WiOpt’07, pages
1–8, Limassol, Cyprus, 2007.

[Leone et al., 2006] Nicola Leone, Gerald Pfeifer, Wolfgang
Faber, Thomas Eiter, Georg Gottlob, Simona Perri, and
Francesco Scarcello. The DLV System for Knowledge
Representation and Reasoning. ACM Transactions on
Computational Logic, 7:499–562, 2006.

[Osborne and Rubinstein, 1994] Martin J. Osborne and Ariel
Rubinstein. A Course in Game Theory. The MIT Press,
Cambridge, MA, USA, July 1994.

[Peleg, 1963] Bezalel Peleg. Bargaining sets of cooperative
games without side payments. Israel Journal of Mathe-
matics, 1(4):197–200, 1963.

[Ricca, 2003] Francesco Ricca. The dlv java wrapper. In
Proc. of CILC’03, pages 263–274, 2003.

[Roth and Oliveira Sotomayor, 1990] Alvin E. Roth and
Marilda A. Oliveira Sotomayor. Two-sided matching : a
study in game-theoretic modeling and analysis. Econo-
metric society monographs. Cambridge University Press,
1990.

[Shapley and Shubik, 1971] Lloyd S. Shapley and Martin
Shubik. The assignment game i: The core. International
Journal of Game Theory, 1(1):111–130, 1971.

[von Neumann and Morgenstern, 1944] John von Neumann
and Oskar Morgenstern. Theory of Games and Economic
Behavior (1st edition). Princeton University Press, Prince-
ton, NJ, 1944.

[Wagner, 1987] Klaus W. Wagner. More complicated ques-
tions about maxima and minima, and some closures of NP.
Theor. Comput. Sci., 51:53–80, 1987.

45

