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Abstract
We determine the quality of randomized social
choice mechanisms in a setting in which the agents
have metric preferences: every agent has a cost
for each alternative, and these costs form a met-
ric. We assume that these costs are unknown to the
mechanisms (and possibly even to the agents them-
selves), which means we cannot simply select the
optimal alternative, i.e. the alternative that mini-
mizes the total agent cost (or median agent cost).
However, we do assume that the agents know their
ordinal preferences that are induced by the metric
space. We examine randomized social choice func-
tions that require only this ordinal information and
select an alternative that is good in expectation with
respect to the costs from the metric. To quantify
how good a randomized social choice function is,
we bound the distortion, which is the worst-case
ratio between expected cost of the alternative se-
lected and the cost of the optimal alternative. We
provide new distortion bounds for a variety of ran-
domized mechanisms, for both general metrics and
for important special cases. Our results show a siz-
able improvement in distortion over deterministic
mechanisms.

1 Introduction
The goal of social choice theory is usually to aggregate the
preferences of many agents with conflicting interests, and
produce an outcome that is suitable to the whole rather than to
any particular agent. This is accomplished via a social choice
mechanism which maps the preferences of the agents, usually
represented as total orders over the set of alternatives, to a sin-
gle winning alternative. There is no agreed upon “best” social
choice mechanism; it is not obvious how one can even make
this determination. Because of this, much of social choice
literature is concerned with defining normative or axiomatic
criteria, so that a social choice mechanism is “good” if it sat-
isfies many useful criteria.

Another method of determining the quality of a social
choice function is the utilitarian approach, which is often
used in welfare economics and algorithmic mechanism de-
sign. Here agents have an associated utility (or cost, as

in this paper) with each alternative that is a measure of
how desirable (or undesirable) an alternative is to an agent.
We can define the quality of an alternative to be a func-
tion of these agent utilities, for example as the sum of all
agent utilities for a particular alternative. Other objective
functions such as the median or max utility of the agents
for a fixed alternative can be used as well. The utilitar-
ian approach has received a lot of attention recently in the
social choice literature ([Caragiannis and Procaccia, 2011;
Filos-Ratsikas et al., 2014; Harsanyi, 1976; Feldman et al.,
2015], see especially [Boutilier et al., 2012] for a thorough
discussion of this approach, its strengths, and its weaknesses).

A frequent criticism of the utilitarian approach is that it
is unreasonable to assume that the mechanism, or even the
agents themselves, know what their utilities are. Indeed,
it can be difficult for an agent to quantify the desirability
of an alternative into a single number, but there are argu-
ments in favor of cardinal utilities [Boutilier et al., 2012;
Harsanyi, 1976]. Even if the agents were capable of doing
this for each alternative, it could be difficult for us to elicit
these utilities in order to compute the optimal alternative. It
is much more reasonable, and much more common, to as-
sume that the agents know the preference rankings induced
by their utilities over the alternatives, however. That is, it
might be difficult for an agent to express exactly how she
feels about alternatives X and Y , but she should know if she
prefers X to Y . Because of this, recent work considers how
well social choice mechanisms can perform when they only
have access to ordinal preferences of the agents, i.e., their
rankings over the alternatives, instead of the true underlying
(possibly latent) utilities [Procaccia and Rosenschein, 2006;
Boutilier et al., 2012; Caragiannis and Procaccia, 2011;
Anshelevich et al., 2015; Feldman et al., 2015]. The distor-
tion of a social choice function is defined here as the worst-
case ratio of the cost of the alternative selected by the social
choice function and the cost of the truly optimal alternative.

Our goal in this work is to design social choice mecha-
nisms that minimize the worst-case distortion for the sum
and median objective functions when the agents have met-
ric preferences [Anshelevich et al., 2015]. That is, we as-
sume that the costs of agents over alternatives form an ar-
bitrary metric space and that their preferences are induced
by this metric space. Assuming such metric or spacial pref-
erences is common [Enelow and Hinich, 1984], has a nat-
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ural interpretation of agents liking candidates/alternatives
which are most similar to them, such as in facility loca-
tion literature [Campos Rodrı́guez and Moreno Pérez, 2008;
Escoffier et al., 2011; Feldman et al., 2015], and our setting
is sufficiently general that it does not impose any restrictions
on the set of allowable preference profiles. Anshelevich et al.
[2015] provide distortion bounds for this setting using well-
known deterministic mechanisms such as plurality, Copeland,
and ranked pairs. We improve on these results by providing
distortion guarantees for randomized social choice functions,
which output a probability distribution over the set of alterna-
tives rather than a single winning alternative. We show that
our randomized mechanisms perform better than any deter-
ministic mechanism, and provide optimal randomized mech-
anisms for various settings.

We also examine the distortion of randomized mechanisms
in important specialized settings. Many of our worst-case
examples occur when many agents are indifferent between
their top alternative and the optimal alternative. In many
settings, however, agents are more decisive about their top
choice, and prefer it much more than any other alternative.
We introduce a formal notion of decisiveness, which is a
measure of how strongly an agent feels about her top pref-
erence relative to her second choice. If an agent is very
decisive, then she is very close to her top choice compared
to her second choice in the metric space. In the extreme
case, this means that the set of agents and alternatives is
identical [Goel and Lee, 2012], as can occur for example
when proposal writers rank all the other proposals being sub-
mitted, or when a committee must choose one of its mem-
bers to lead it. We demonstrate that when agents are de-
cisive, the distortion greatly improves, and quantify the re-
lation between decisiveness and the performance of social
choice mechanisms. Finally, we consider other natural spe-
cial cases, such as when preferences are 1-Euclidean and
when alternatives are vertices of a simplex. 1-Euclidean
preferences are already recognized as a well-studied and
well-motivated special case [Elkind and Faliszewski, 2014;
Procaccia and Tennenholtz, 2009]. The setting in which al-
ternatives form a simplex corresponds to the case in which
alternatives share no similarities, i.e., when all alternatives
are equally different from each other.

1.1 Our Contributions
In this paper, we bound the worst-case distortion of several
randomized social choice functions in many different set-
tings. Recall that the distortion is the worst-case ratio of the
expected value of the alternative selected by the randomized
mechanism and the optimal alternative. We use two different
objective functions for the purpose of defining the quality of
an alternative. The first is the sum objective, which defines
the social cost of an alternative to be the sum of agent costs
for that particular alternative. We also consider the median
objective, which defines the quality of an alternative as the
median agent’s cost for that alternative.

A metric space is ↵-decisive if for every agent, the cost of
her first choice is less than ↵ times the cost of her second
choice, for some ↵ 2 [0, 1]. In other words, this provides
a constraint on how indifferent an agent can be between her

first and second choice. By definition, every metric space is
1-decisive. Considering ↵-decisive metric spaces allows us
to immediately give results for important subcases, such as
0-decisive metric spaces in which every agent has distance 0
to her top alternative, i.e., every agent is also an alternative.

For the sum objective function, we begin by giving a lower
bound of 1+↵ for all randomized mechanisms, which corre-
sponds to a lower bound of 2 for general metric spaces. This
is smaller than the lower bound of 3 for deterministic mecha-
nisms from [Anshelevich et al., 2015]. One of our first results
is to show randomized dictatorship has worst-case distortion
strictly better than 3, which is better than any possible de-
terministic mechanism. Furthermore, we show that a gener-
alization of the “proportional to squares” mechanism is the
optimal randomized mechanism when there are two alterna-
tives, i.e., it has a distortion of 1 + ↵.

We also examine how well randomized mechanisms per-
form in important subcases. We consider the well-known
case in which all agents and alternatives are points on a line
with the Euclidean metric, known as 1-Euclidean preferences
[Elkind and Faliszewski, 2014]. We give an algorithm, which
heavily relies on proportional to squares, to achieve the opti-
mal distortion bound of 1+↵ for any number of alternatives.
We also consider a case first described by [Anshelevich et al.,
2015] known as the (m� 1)-simplex setting in which the al-
ternatives are vertices of a simplex and the agents lie in the
simplex. This corresponds to alternatives sharing no similari-
ties. We are able to show that proportional to squares achieves
worst-case distortion of 1

2

�
1 + ↵+

p
2
p
↵2 + 1

�
, which is

fairly close to the optimal bound of 1 + ↵. For details, see
Section 3.2.

Our other major contribution is defining a new randomized
mechanism for the median objective which achieves a distor-
tion of 4 in arbitrary metric spaces (we call this mechanism
Uncovered Set Min-Cover). This requires forming a very spe-
cific distribution over all alternatives in the uncovered set, and
then showing that this distribution ensures that no alternative
“covers” more than half of the total probability of all alterna-
tives.

1.2 Related Work
Embedding the unknown cardinal preferences of agents into
an ordinal space and measuring the distortion of social choice
functions that operate on these ordinal preferences was first
done by [Procaccia and Rosenschein, 2006]. Additional pa-
pers [Boutilier et al., 2012; Caragiannis and Procaccia, 2011;
Oren and Lucier, 2014; Anshelevich et al., 2015; Feldman
et al., 2015] have since studied distortion and other related
concepts of many different mechanisms with various assump-
tions about the utilities/costs of the agents. In this context,
Anshelevich et al. [2015] introduced the notion of metric
preferences which assumes the costs of the agents and alter-
natives form a metric.

Using mechanisms to select alternatives from a metric
space when the true locations of agents is unknown is also
reminiscent of facility location games [Campos Rodrı́guez
and Moreno Pérez, 2008; Escoffier et al., 2011]. However, we
select only a single winning alternative in our setting, while
in these papers, they select multiple facilities.
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Assuming that the preferences of agents are induced by a
metric is a type of spatial preference [Enelow and Hinich,
1984; Merrill and Grofman, 1999]. There are many other no-
tions of spatial preferences that are prevalent in social choice,
such as 1-Euclidean preferences [Elkind and Faliszewski,
2014; Procaccia and Tennenholtz, 2009], single-peaked pref-
erences [Sui et al., 2013], and single-crossing [Gans and
Smart, 1996]. We consider 1-Euclidean preferences as an im-
portant special case of the metric preferences we study in this
paper.

Randomized social choice was first studied in [Zeckhauser,
1969; Fishburn, 1972; Intriligator, 1973]. A similar setting
was considered by [Fishburn and Gehrlein, 1977] in which
agents are uncertain about their preferences and express their
preferences using probability distributions. We consider sev-
eral randomized mechanisms, such as randomized dictator-
ship [Chatterji et al., 2014]. The use of randomized mech-
anisms is seen very frequently in literature concerning one-
sided matchings. Random serial dictatorship and probabilis-
tic serial are perhaps the most well-studied randomized mech-
anisms, and there is a significant amount of literature on them
(e.g. [Bogomolnaia and Moulin, 2001; Aziz et al., 2013;
Aziz and Stursberg, 2014; Chakrabarty and Swamy, 2014;
Christodoulou et al., 2016; Filos-Ratsikas et al., 2014]). In
particular, the results of [Filos-Ratsikas et al., 2014] are anal-
ogous to finding the distortion of one-sided matching mecha-
nisms.

Finally, independently from us, Feldman et al. [2015] have
also recently considered the distortion of randomized social
choice functions. While they mostly focus on truthful mech-
anisms (i.e., the “strategic” setting), there is some intersection
between our results. Specifically, Feldman et al. [2015] also
give a bound of 3 (and a lower bound of 2) for arbitrary met-
ric spaces in the sum objective, and also provide a mechanism
with distortion 2 for the 1-Euclidean case. However, Feldman
et al. [2015] do not consider either ↵-decisive voters or the
median objective: showing better performance for decisive
voters and designing better mechanisms for the median ob-
jective are two of our major contributions.

2 Preliminaries
Social Choice with Ordinal Preferences. Let N =
{1, 2, . . . , n} be the set of agents, and let M =
{A

1

, A
2

, . . . , Am} be the set of alternatives. Let S be the
set of all total orders on the set of alternatives M . We will
typically use i, j to refer to agents and W,X, Y, Z to refer
to alternatives. Every agent i 2 N has a preference ranking
�i 2 S; by X �i Y we will mean that X is preferred over
Y in ranking �i. We call the vector � = (�

1

, . . . ,�n) 2 Sn

a preference profile. We say that an alternative X pairwise
defeats Y if |{i 2 N : X �i Y }| > n

2

. Furthermore,
we use the following notation to describe sets of agents with
particular preferences: XY = {i 2 N : X �i Y } and
X⇤ = {i 2 N : X �i Y for all Y 6= X}.

Once we are given a preference profile, we want to aggre-
gate the preferences of the agents and select a single alterna-
tive as the winner or find a probability distribution over the
alternatives and pick a single winner according to that distri-

bution. A deterministic social choice function f : Sn ! M
is a mapping from the set of preference profiles to the set of
alternatives. A randomized social choice function f : Sn !
�(M) is a mapping from the set of preference profiles to
the space of all probability distributions over the alternatives
�(M). For example, the winning alternative may be selected
according to Randomized Dictatorship, i.e., the probability of
selecting an alternative Y is p(Y ) = |Y ⇤|

n . We will also use
heavily in this paper generalizations of the Proportional to
Squares rule, i.e., p(Y ) = |Y ⇤|2P

Z2M |Z⇤|2 .

Cardinal Metric Costs. In our work we take the utilitar-
ian view, and study the case when the ordinal preferences
� are in fact a result of the underlying cardinal agent costs.
Formally, we assume that there exists an arbitrary metric
d : (N [M)2 ! R�0

on the set of agents and alternatives
(or more generally a pseudo-metric, since we allow distinct
agents and alternatives to be identical and have distance 0).
Here d(i,X) is the cost incurred by agent i of alternative X
being selected as the winner; these costs can be arbitrary but
are assumed to obey the triangle inequality. The metric costs
d naturally give rise to a preference profile. Formally, we
say that � is consistent with d if 8i 2 N, 8X,Y 2 M , if
d(i,X) < d(i, Y ), then X �i Y . In other words, if the cost
of X is less than the cost of Y for an agent, then the agent
should prefer X over Y . Let ⇢(d) denote the set of pref-
erence profiles consistent with d (⇢(d) may include several
preference profiles if the agent costs have ties). Similarly, we
define ⇢�1(�) to be the set of metrics such that � 2 ⇢(d).

Social Cost and Distortion. We measure the quality of
each alternative using the costs incurred by all the agents
when this alternative is chosen. We use two different notions
of social cost. First, we study the sum objective function,
which is defined as SC(X, d) =

P
i2N d(i,X) for an al-

ternative X . We also study the median objective function,
med(X, d) = medi2N (d(i,X)). Since we have defined the
cost of alternatives, we can now give the cost of an outcome
of a deterministic social choice function f as SC(f(�), d)
or med(f(�), d). For randomized functions, we define the
cost of an outcome, which is a probability distribution over
alternatives, as follows: SC(f(�), d) = E [SC(X, d)] =P

X2M p(X) SC(X, d) and med(f(�), d) = E [med(X, d)]
=

P
X2M p(X)med(X, d), where p(X) is the probability

of alternative X being selected, according to f(�). When
the metric d is obvious from context, we will use SC(X) and
med(X) as shorthand.

As described in the Introduction, we can view social choice
mechanisms in our setting as attempting to find the optimal
alternative (one that minimizes cost), but only having access
to the ordinal preference profile �, instead of the full un-
derlying costs d. Since it is impossible to compute the op-
timal alternative using only ordinal preferences, we would
like to determine how well the aforementioned social choice
functions select alternatives based on their social costs, de-
spite only being given the preference profiles. In particu-
lar, we would like to quantify how the social choice func-
tions perform in the worst-case. To do this, we use the no-
tion of distortion from [Procaccia and Rosenschein, 2006;
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Boutilier et al., 2012], defined as follows.

distP(f,�) = sup
d2⇢�1

(�)

SC(f(�), d)

minX2M SC(X, d)

dist
med

(f,�) = sup
d2⇢�1

(�)

med(f(�), d)

minX2M med(X, d)
.

In other words, the distortion of a social choice mechanism
f on a profile � is the worst-case ratio between the social
cost of f(�), and the social cost of the true optimal alterna-
tive. The worst-case is taken over all metrics d which may
have induced �, since the social choice function does not and
cannot know which of these metrics is the true one.
Decisive Voters. Many of our worst-case examples occur
when many agents are indifferent between their top alterna-
tive and the optimal alternative. In many settings, however,
agents are more decisive about their top choice, and prefer it
much more than any other alternative. Formally, we say that
an agent i whose top choice is W and second choice is X
is ↵-decisive if d(i,W )  ↵ · d(i,X) such that ↵ 2 [0, 1].
We say that a metric space is ↵-decisive if for some fixed ↵,
every agent is ↵-decisive. Every metric space is 1-decisive,
while a metric space in which every agent has distance 0 to
her top alternative is 0-decisive. In fact, 0-decisive metric
spaces are interesting in their own right: they correspond to
the case when each voter must exactly coincide with some al-
ternative, and so capture the settings where the set of voters
and alternatives is the same.

3 Distortion of the Sum of Agent Costs
In this section, we examine the sum objective and provide
mechanisms with low distortion. We begin by addressing
the question of how well any randomized social choice func-
tion can perform. Our first theorem shows that no random-
ized mechanism can find an alternative that is in expectation
within a factor strictly smaller than 1 + ↵ from the optimum
alternative for ↵-decisive metric spaces. Thus no mechanism
can have distortion better than 2 for general metric spaces.
We observe that 2 is better than the worst-case distortion
lower bound of 3 for deterministic mechanisms from [An-
shelevich et al., 2015].
Theorem 1 The worst-case distortion of any randomized
mechanism when the metric space is ↵-decisive is at least
1 + ↵.

Proof Sketch. We will consider a preference profile with
m = 2 alternatives W,X and n agents (n is even) where
n
2

agents prefer W over X and n
2

agents prefer X over W .
We will consider an ↵-decisive metric space that induces the
preference profile and where X is optimal. All agents i who
prefer X have d(i,X) = 0 and d(i,W ) = 1. The remain-
ing agents have d(i,W ) = ↵

1+↵ , d(i,X) = 1

1+↵ . Thus,
SC(X) = n

2

· 1

1+↵ and SC(W ) = n
2

( ↵
1+↵ + 1). For any ran-

domized mechanism, the distortion is p(X)+p(W )(1+2↵),
where p(X), p(W ) are the probabilities of selecting X and
W , respectively. Similarly, there exists a metric with distor-
tion p(W ) + p(X)(1 + 2↵). Thus, the worst-case distortion
is minimized when p(X) = p(W ) = 1

2

.

The following lemma allows us to quickly upper bound the
worst-case distortion of randomized mechanisms by simply
plugging in the probability that an alternative is selected. It
is used crucially in the proofs of Theorems 3 and 4. Any
missing proofs can be found in the full version on arXiv [An-
shelevich and Postl, 2015].

Lemma 2 For any instance �, social choice function f , and
↵-decisive metric space,

distP(f,�)  1+
(1 + ↵)

P
p(Y )(n� 2

1+↵ |Y
⇤|)d(X,Y )

P
Y 2M |Y ⇤|d(X,Y )

,

where X is the optimal alternative and p(Y ) is the probability
that alternative Y is selected by f given profile �.

The following theorem is our main result of this section. It
states that in the worst case, the distortion of randomized dic-
tatorship is strictly better than 3 (in fact, it is at most 3 � 2

n ,
which occurs when ↵ = 1, |W ⇤| = 1 in the theorem below).
Thus, this simple randomized mechanism has better distor-
tion than any deterministic mechanism, since no determinis-
tic mechanism can have distortion strictly better than 3 in the
worst case, as shown by [Anshelevich et al., 2015]. This is
surprising because randomized dictatorship operates only on
the first preferences of every agent: the full preference rank-
ing is not required.

Theorem 3 If a metric space is ↵-decisive, then the distor-
tion of randomized dictatorship is  2 + ↵ � 2|W⇤|

n , where
W = argminY 2M :|Y ⇤|>0

|Y ⇤|, and this bound is tight.

↵-Generalized Proportional to Squares. While randomized
dictatorship performs well, it still does not achieve the best
possible distortion of 1+↵ for randomized mechanisms. We
will now define an optimal mechanism for ↵-decisive metric
spaces when there are m = 2 alternatives, which is a general-
ization of proportional to squares that is parameterized by ↵.
For ↵ = 1, the mechanism is in fact ordinary proportional to
squares. In this mechanism, an alternative Y is selected with
probability

p(Y ) =
(1 + ↵)|Y ⇤|2 � (1� ↵)|X⇤||Y ⇤|

(1 + ↵)(|X⇤|2 + |Y ⇤|2)� 2(1� ↵)|X⇤||Y ⇤| ,

where X is the second alternative.

Theorem 4 If a metric space is ↵-decisive and m = 2, then
the distortion of ↵-generalized proportional to squares is 1+
↵, and this is tight.

3.1 1-Euclidean Preferences
We now consider a well-known and well-studied special case
of 1-Euclidean preferences [Elkind and Faliszewski, 2014;
Procaccia and Tennenholtz, 2009] in which all agents and al-
ternatives are on the real number line and the metric is defined
to be the Euclidean distance. First, we observe that in this
setting, a Condorcet winner (an alternative which pairwise
defeats all others) always exists, so the distortion is at most 3,
and this is tight for deterministic mechanisms. In designing
an optimal randomized mechanism, we heavily use proper-
ties of this metric space from [Elkind and Faliszewski, 2014].
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Namely, using only the preference profile, we can determine
the ordering of the agents on the line (which is unique up to
reversal and permutations of identical voters) and the unique
ordering of the alternatives that are between the top prefer-
ence of the first agent and the top preference of the last agent.

Algorithm 1 Optimal randomized mechanism for the ↵-
decisive, 1-Euclidean space
Input: A preference profile �
Output: A probability distribution over the alternatives

>N ordering of agents ([Elkind and Faliszewski, 2014])
>M ordering of alternatives ([Elkind and Faliszewski,
2014])
i0  median agent of >N

X  top preference of i0
Y  alternative directly before X in >M

Z  alternative directly after X in >M

if |Y X| < |ZX| then
p(Z) (1+↵)|ZX|2�(1�↵)|XZ||ZX|

(1+↵)(|XZ|2+|ZX|2)�2(1�↵)|XZ||ZX|

p(X) (1+↵)|XZ|2�(1�↵)|XZ||ZX|
(1+↵)(|XZ|2+|ZX|2)�2(1�↵)|XZ||ZX|

else if |Y X| > |ZX| then
p(Y ) (1+↵)|Y X|2�(1�↵)|XY ||Y X|

(1+↵)(|XY |2+|Y X|2)�2(1�↵)|XY ||Y X|

p(X) (1+↵)|XY |2�(1�↵)|XY ||Y X|
(1+↵)(|XY |2+|Y X|2)�2(1�↵)|XY ||Y X|

else
p(X) 1

end if

We show that this mechanism has worst-case distortion at
most 1 + ↵ through a series of steps in which we reduce the
set of possible optimal alternatives from m to 2. First, we
claim that the optimal alternative must be one of the two al-
ternatives on either side of the median agent from our agent
ordering. One of these alternatives must be the top prefer-
ence X of the median agent. However, since we do not know
if the median agent’s top preference is to the left or right of
it, we must consider three alternatives: her top preference X
and the two alternatives to the left and right of X , which we
call Y, Z, respectively. This reduces our set of possible opti-
mal alternatives from m to 3. The following lemma further
reduces the possible optimal alternatives to 2.
Lemma 5 If |Y X|  |ZX|, then Y cannot be better than X ,
and if |ZX|  |Y X|, Z cannot be better than X .

Finally, we can use the ↵-generalized proportional to
squares mechanism on the restricted set of alternatives X and
one of Y, Z to achieve a distortion of 1 + ↵, which is tight
since our lower bound example from Theorem 1 occurs in the
1-Euclidean setting.
Theorem 6 In the 1-Euclidean setting, Algorithm 1 has dis-
tortion at most 1 + ↵, and thus has the best possible worst-
case distortion.

3.2 Distortion in the (m� 1)-Simplex
In this section we consider a specialized, yet natural, setting
inspired by [Anshelevich et al., 2015], known as the (m�1)-
simplex setting. In this setting, we assume that the m alter-
natives are all distance 1 from each other and for every agent

i, 8Y 2 M , d(i, Y )  1. This includes the case when m
alternatives are the vertices of the (m � 1)-simplex and all
of the agents lie inside this simplex. Although this is a very
constrained setting, it is a reasonable assumption in the case
when all of the alternatives are uncorrelated, i.e., when all
the alternatives are equally different from one another. In this
setting, the distortion of randomized dictatorship does not im-
prove because the worst case occurs on a line.
Theorem 7 If the (m�1)-simplex setting is ↵-decisive, then
plurality has distortion  1 + 2↵.

Plurality, although a deterministic mechanism, does very
well in this setting, because for ↵ = 0 the alternative with
the most votes is clearly optimal. In general, as ↵ ! 0, the
agents are forced closer to the vertices of the simplex, and
plurality better approximates finding the optimal alternative.
However, when ↵ is not small, plurality fares poorly com-
pared to the proportional to squares mechanism. Indeed, for
↵  1

7

, plurality is better than proportional to squares, but
otherwise the opposite is true.
Theorem 8 If the (m � 1)-simplex setting is ↵-decisive,
the proportional to squares mechanism has distortion 
1

2

�
1 + ↵+

p
2
p
↵2 + 1

�
.

Unlike all of the previous distortion bounds we have pro-
vided, this is the first that is not linearly increasing in ↵.
It increases slower than the distortion of plurality, which is
1 + 2↵. For smaller values of ↵, such as ↵ = 0, which is
where plurality has the largest advantage over proportional
to squares, the distortion of proportional to squares is still
at most 1+

p
2

2

⇡ 1.2071, which is reasonably small. For
1 � ↵ � .5, the values of 1+↵ and 1

2

�
1 + ↵+

p
2
p
↵2 + 1

�

are relatively close. This implies that proportional to squares
is nearly optimal for sufficiently large values of ↵.

4 Median Agent Cost
In this section, we will examine the median objective func-
tion. Anshelevich et al. [2015] show that no deterministic
mechanism can achieve a worst-case distortion of better than
5, and that the Copeland mechanism achieves this bound. We
begin this section by showing that randomized mechanisms
have a general worst-case distortion lower bound of 3 rather
than 5 like deterministic mechanisms.
Theorem 9 For m � 2, the worst-case median distortion is
at least 3 for all randomized mechanisms.

Unfortunately, it is not difficult to show that both random-
ized dictatorship and proportional to squares have unbounded
distortion, even for m = 2. As a result, we focus on designing
a randomized mechanism which will always achieve a distor-
tion of at most 4 for the median objective. We claim that to
design a randomized mechanism for the median objective, it
makes sense to consider the uncovered set, which is the set
of alternatives X that pairwise defeats every other alternative
Y either directly (i.e., X pairwise defeats Y ) or indirectly
through another alternative Z (i.e., X does not pairwise de-
feat Y , but X pairwise defeats Z, which in turn pairwise de-
feats Y ). We rely on the following two lemmas concerning
the quality of alternatives in the uncovered set.
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Lemma 10 ([Anshelevich et al., 2015]) If an alternative W
pairwise defeats (or pairwise ties) the alternative X , then
med(W )  3 ·med(X).

Lemma 11 ([Anshelevich et al., 2015]) If an alternative W
is in the uncovered set, then med(W )  5 ·med(X), where
X is any alternative.

Thus, we want to mix over the entire uncovered set and
ensure that some alternatives that pairwise defeat the optimal
alternative (i.e., alternatives only a factor of 3 away) are cho-
sen with high probability to decrease the distortion. However,
since we do not know the optimal alternative, we must have
this property hold for every alternative. This is made precise
in the following theorem. Let G = (M,E) be the majority
graph, i.e., a graph in which the alternatives are vertices and
the edges denote pairwise victories: an edge (Y, Z) 2 E if
Y is preferred to Z by a strict majority of the voters. Let
S be the uncovered set, and p be some probability distri-
bution over S. Finally, define ⇡(Y ) for any alternative Y
to be the total probability distribution “covered” by Y , i.e.,
⇡(Y ) =

P
(Y,Z)2E p(Z). Then, we have that

Theorem 12 If a mechanism selects alternatives only from
the uncovered set S with probability distribution p, and if for
all alternatives X we have that ⇡(X)  1

2

, then the expected
median distortion of this mechanism is at most 4.

Proof Sketch. Let X be the optimal alternative. By Lem-
mas 10 and 11, we know expected distortion is at most
⇡(X) · 5 + (1� ⇡(X)) · 3 = 3 + ⇡(X) · 2  4.

Thus, we want a mechanism that manages to ensure that
for every alternative X , the alternatives that can be more than
a factor of 3 away from X (i.e., the ones it pairwise defeats)
are selected with probability at most 1

2

. The mechanism we
describe, Uncovered Set Min-Cover, uses a linear program
to accomplish this. We define the subset of the edges on the
uncovered set as E(S) = {E = (Y, Z) : Y 2 S,Z 2 S}.
We also give the LP (and its dual which is not used by the
algorithm, but is necessary for our proofs), which is used as a
subroutine by our mechanism.

(Linear Program) (Dual)
minimize p

max

maximize b
min

subject to pY � 0, Y 2 S subject to bY � 0, Y 2 S
X

(Y,Z)

2E(S)

pZ  p
max

, Y 2 S
X

(Z,Y )

2E(S)

bZ � b
min

, Y 2 S

X

Z2S

pZ = 1.
X

Z2S

bZ = 1.

Theorem 13 The expected median distortion of Uncovered
Set Min-Cover is  4.

This theorem is immediate from Theorem 12 if we can
show that for the distribution formed by Uncovered Set Min-
Cover, we have that ⇡(X)  1

2

for all X . We prove this fact
using the following two lemmas, the proofs of which can be
found in the full version of this paper.

Algorithm 2 Uncovered Set Min-Cover
Input: A preference profile �
Output: A probability distribution p over the alternatives of

the uncovered set
G = (M,E) majority graph of �
S  uncovered set of G
p solution to LP (see above)

Lemma 14 Let G = (M,E) be the majority graph in which
ties are broken arbitrarily. For the dual of LP, there does not
exist b such that for all Y 2 S,

P
Z2S:(Z,Y )2E bZ > 1

2

, i.e.,
it must be that b

min

 1

2

.
Due to LP-Duality, the above lemma immediately implies

that p
max

 1

2

, and thus ⇡(X)  1

2

for all X 2 S. This
does not complete the proof of Theorem 13, however, since
it is possible that the optimal alternative X is outside of the
uncovered set S.
Lemma 15 Suppose we have a probability distribution p
over alternatives in the uncovered set S, and for all Y 2 S,
we have that ⇡(Y ) =

P
(Y,Z)2E p(Z)  1

2

. Then, this also
must hold for alternatives outside of S, i.e., for all X 62 S,
we also have that ⇡(X)  1

2

.
The proof of the above lemma crucially relies on properties

of the uncovered set S. This completes the proof of Theorem
13: by Lemma 14 we have that ⇡(X)  1

2

for all X 2 S, by
Lemma 15 we have that this is true even for X 62 S, and by
Theorem 12 we obtain the desired distortion bound.

Finally, we consider special metric spaces. For 1-
Euclidean, we are trivially able to obtain an optimal mech-
anism: selecting the Condorcet winner, since it is guaranteed
to exist for the 1-Euclidean setting. By Lemma 10, we know
that the Condorcet winner is guaranteed to be within a factor
of 3 of the optimal alternative.

In the (m� 1)-simplex setting, almost any alternative is of
high median quality. This is due to the fact that the alterna-
tives are very spread out. Unless an alternative has at least n

2

agents very close to it, its median cost is guaranteed to be at
least 1

2

in general metric spaces. The following result shows
than any mechanism which selects an alternative preferred by
at at least n

2

voters as their top choice (if one exists) will have
low median distortion. Thus, for example, plurality is a good
mechanism for this setting.
Theorem 16 If the (m�1)-simplex setting is ↵-decisive, any
mechanism that satisfies the majority criterion has median
distortion at most 1 + ↵.

5 Conclusion
Many open questions still remain. While we were able to
show that proportional to squares is an optimal mechanism
for m = 2 alternatives in the sum setting, our best known
mechanism for arbitrary m is randomized dictatorship, which
has a distortion arbitrarily close to 3 in the worst case. We
suspect there may exist a generalization of proportional to
squares that is able to achieve a distortion of 2, but it is likely
significantly more complex and may require the full prefer-
ence profile instead of agents’ top preferences.
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