
On Logics of Strategic Ability based on Propositional Control

Francesco Belardinelli1 and Andreas Herzig2

1 IBISC, Univ. Evry, France
2 IRIT, Univ. Toulouse, France

Abstract
Recently logics for strategic ability have gained
pre-eminence in the modelisation and analysis of
game-theoretic scenarios. In this paper we provide
a contribution to the comparison of two popular
frameworks: Concurrent Game Structures (CGS)
and Coalition Logic of Propositional Control (CL-
PC). Specifically, we ground the abstract abilities
of agents in CGS on Propositional Control, thus ob-
taining a class of CGS that has the same expressive
power as CL-PC. We study the computational prop-
erties of this setting. Further, we relax some of the
assumptions of CL-PC so as to introduce a wider
class of computationally-grounded CGS.

1 Introduction
Formal languages for reasoning about strategic behaviours
of human and artificial agents have attracted much interest
in recent years [Bulling et al., 2010; Goranko and Jamroga,
2004]. Typically, modal languages for temporal reasoning
have been extended with operators to represent strategic abil-
ities of coalitions [Alur et al., 2002; Chatterjee et al., 2010;
Mogavero et al., 2014]. The resulting formalisms describe a
rather abstract notion of agents’ actions and strategies, which
is appropriate for the various scenarios and use cases that have
been successfully analysed within these frameworks [van der
Hoek et al., 2006; Čermák et al., 2014].

On the other hand, substantial effort has been put towards
making strategic abilities more precise, by grounding formal
semantics in computational theories of agency [Wooldridge,
2000]. In this direction, Coalition Logic of Propositional
Control (CL-PC) [van der Hoek and Wooldridge, 2005;
Gerbrandy, 2006; van der Hoek et al., 2010; 2011; Herzig
et al., 2011] attempts to offer an explanation of the effectivity
functions of Pauly’s Coalition Logic [Pauly, 2002] in terms
of the agents’ control over propositional atoms. Basically, the
models of CL-PC consist in a partition AP1, . . . ,APn of the
set of propositional atoms, where each APi is the set of atoms
whose truth value is controlled by agent i. Here the three key
assumptions of Propositional Control (PC) are apparent: it is
exhaustive (every atom is controlled by at least one agent),
exclusive (every atom is controlled by at most one agent),
and actions are unrestricted: any assignment of i’s atoms is

available to i in any state. It has been argued that Proposi-
tional Control is suitable for the specification and verifica-
tion of rich multi-agent systems [van der Hoek et al., 2006;
Troquard et al., 2011; Ciná and Endriss, 2015; Herzig et al.,
2016]. In particular, [van der Hoek and Wooldridge, 2005]
shows that if we translate Pauly’s coalition formulas ��A��X'
– here written in the syntax of ATL, using the embedding of
[Goranko, 2001] – into CL-PC formulas ◇A �Ag�A ' then
all principles of Coalition Logic are valid in CL-PC. How-
ever, CL-PC is strictly stronger than Coalition Logic: there
are principles of the former that are not valid for the latter.
This is mainly a consequence of the exclusiveness, exhaus-
tiveness and unrestrictedness assumptions in CL-PC.

Our motivation for this paper is to provide a more fine-
grained theoretical analysis of Propositional Control in log-
ics for strategies, particularly w.r.t. Alternating-time Tempo-
ral Logic (ATL). We start by defining a semantics for ATL
based on the same notion of Propositional Control as in CL-
PC, namely, control is exclusive and exhaustive, and actions
are unrestricted. These are strong hypotheses, which we will
show to validate several counterintuitive principles. Thus,
next we relax the exhaustiveness assumption in an attempt to
move towards standard ATL. Ideally, our aim is to single out
a PC-based class of Concurrent Game Structures (CGS) that
has the same class of validities as standard ATL. This would
mean that PC suffices as models for ATL: one might for ex-
ample prove that an ATL formula is satisfiable by providing
a PC-based CGS. Such a strong result is however unlikely as
agents can interact in complex ways in CGS. Nonetheless, in
this paper we take a first step towards this aim, by consid-
ering non-exhaustive PC with restricted actions. We analyse
both semantics, including the model checking and satisfiabil-
ity problems, and discuss differences w.r.t. standard ATL. Our
results point out that unrestrictedness brings us immediately
to the same complexity classes as full ATL.

Our paper is organized as follows. In Section 2 we present
some preliminaries on CL-PC, ATL, and CGS. In Section 3
we introduce CGS-PC with unrestricted actions, and in Sec-
tion 4 weak CGS-PC. For both classes we analyse the seman-
tics and provide results for the model checking and satisfiabil-
ity problems. We conclude by discussing some developments
for future research. Proofs are often omitted for reasons of
space, we only provide those we deem most significant.

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

95

2 Preliminaries
In this section we introduce the technical notions that will be
used throughout the paper: CL-PC and CGS-based ATL. In
the rest of the paper Ag = {1, . . . , n} is the set of agents,
and AP is the set of atomic propositions. Also, we denote
the complement of a set U (w.r.t. some given set V ⊇ U) by
U . Given a formula ', we define AP' as the set of atoms
occurring in '. Furthermore, letting A ⊆ Ag be the set of
agents occurring in ', we define Ag' as Ag if A = Ag, and
as Ag ∪ {e} otherwise, for some e ∉ A. (The fresh agent e
will mimic the set of agents not occurring in '.)

2.1 Coalition Logic of Propositional Control
The language of CL-PC is defined by the following BNF, for
p ∈ AP and A ⊆ Ag:

' ∶∶= p � ¬' � '→ ' � ◇A'
where ◇A reads “coalition A has the contingent ability to
achieve ”. The other propositional connectives and the box
operator �A, dual of ◇A, are defined as standard.

Two semantics for CL-PC are provided in [van der Hoek
and Wooldridge, 2005]: direct models and Kripke models.
Since they are equivalent we here only present the former.
Definition 1 (Model). Given sets Ag of agents and AP of
atoms, a modelM is a partition AP1, . . . ,AP�Ag� of AP .

Every subset ✓ of AP can be identified with the valuation
✓ ∶ AP → {↵ , tt} that assigns true tt to all atoms in ✓ and
false ↵ to all atoms in ✓. We will use the two presentations
interchangeably, without explicit mention.
Definition 2 (Semantics for CL-PC). We define whether
model M satisfies formula ' according to valuation ✓, or(M, ✓) � ', as follows (we omit the clauses for propositional
connectives as straightforward):
(M, ✓) � p iff p ∈ ✓(M, ✓) � ◇A iff for some ✓A ∶ �i∈AAPi → {↵ , tt},(M, ✓ ⊕ ✓A) �
where ✓ ⊕ ✓A = (✓ ∪ ✓A) � (�i∈AAPi � ✓A) is the update of
✓ according to ✓A.

A formula ' is true in a modelM, orM � ', iff (M, ✓) �
' for all valuations ✓ ∈ 2AP ; ' is valid in a class K of models
iffM � ' for allM ∈ K. Notice that given Ag and a partition
AP1, . . . ,AP�Ag� of AP , there exists a unique modelM.

Models for CL-PC were originally defined on finite sets of
atoms. Here we do not make such an assumption, as it is
not normally considered in temporal logics. Moreover, by the
following result, the two accounts are equivalent w.r.t. satis-
faction of formulas.
Lemma 1. Given model M based on Ag, with partition
AP1, . . . ,AP�Ag� of AP , valuation ✓, and formula ', we have
that (M, ✓) � ' iff (M', ✓') � ', where

• M' is the model based on the set of agents Ag' and
atoms AP', with partition AP1 ∩ AP', . . . ,AP�Ag′� ∩
AP' and, possibly, APe = �i∈Ag′ APi ∩ AP' (in case
the fresh agent e is present);

• ✓' is the restriction of ✓ to AP'.

We observed that, since coalition Logic corresponds to the
X-fragment of ATL [Goranko, 2001], we can express the
ATL formula �A�X in CL-PC as ◇A �A . This remark
prompts the question of interpreting ATL on CL-PC models.
To do so, we introduce formally ATL and its semantics.

2.2 ATL and Concurrent Game Structures
Formulas in ATL are defined by the following BNF, for p ∈
AP and A ⊆ Ag:
' ∶∶= p � ¬' � '→ ' � �A�X' � �A�G' � �A�'U'
The formula �A�X' reads “the agents in A have a strategy

to enforce ' at the next state, no matter what the other agents
do”. Formulas �A�G' and �A�('U'′) read accordingly,
where X stands for ‘next’ and U stands for ‘until’.

The semantics of ATL is in terms of a standard framework
for the representation of games: Concurrent Game Structures.
Definition 3 (CGS). Given sets Ag of agents and AP of
atoms, a Concurrent Game Structure (CGS) is a tuple G =�S,Act, d, ⌧,⇡� such that

• S is a non-empty set of states;
• Act is a non-empty set of individual actions;
• d ∶ Ag × S → (2Act � {�}) is the protocol function that

returns the actions available to agents at each state;

• ⌧ ∶ S ×Act

�Ag� → S is the transition function such that,
for every s ∈ S and joint action ↵ ∈ Act

�Ag�, ⌧(s,↵) is
defined iff ↵i ∈ d(i, s) for every i ∈ Ag;

• ⇡ ∶ S → 2AP is the state-labeling function.
We remark that in Def. 3, states, actions, and the transition

function are given as completely abstract notions: nothing
is specified about the internal structure of states, about the
nature of actions, nor about the computational properties of
the transition function. Obviously, this responds to the need
for a purely mathematical concept, proper of formal seman-
tics. Nonetheless, we are interested in filling these abstract
notions with some computational content, in order to give
a computationally-grounded semantics to ATL [Wooldridge,
2000], specifically by using Propositional Control. But first
we provide the interpretation of ATL on CGS. Hereafter we
write s

↵�→ s

′ whenever s′ = ⌧(s,↵).
Definition 4 (Strategy). Given a CGS G = �S,Act, d, ⌧,⇡�, a
strategy for an agent i ∈ Ag is a function f ∶ S → Act that is
compatible with d, i.e., for every s ∈ S, f(s) ∈ d(i, s).

Since the strategies in Def. 4 only take into account the
present state of the system, they are called positional or mem-
oryless [Bulling et al., 2010]. We recall that in contexts of
perfect information, as the present one, semantically there is
no difference between positional strategies and strategies with
perfect recall. We work with the former for simplicity.

A collective strategy for a coalition A is a set fA = {fi �
i ∈ A} of strategies. If fA is a collective strategy, s ∈ S, and
↵ ∈ Act

�Ag�, then ↵ ∈ f̂A(s) whenever (i) for i ∈ A, ↵i ∈
fi(s); and (ii) for i ∈ A, ↵i ∈ d(i, s). Further, the outcome
out(s, fA) is the set of all infinite runs � = s, s1, s2, . . . such
that for every j � 0, for some ↵ ∈ f̂A(sj), we have sj

↵�→ sj+1.
For a run � and j � 0, �[j] denotes the j+1-th state sj .

96

Definition 5 (Semantics for ATL). We define whether CGS G
satisfies formula ' at state s, or (G, s) � ', as follows (again
we omit clauses for propositional connectives):

(G, s) � p iff p ∈ ⇡(s)(G, s) � �A�X iff for some fA, for every � ∈ out(s, fA),(G,�[1]) � (G, s) � �A�G iff for some fA, for every � ∈ out(s, fA),
for every j � 0, (G,�[j]) � (G, s) � �A� U ′ iff for some fA, for every � ∈ out(s, fA),
for some j � 0, (G,�[j]) � ′, and
j > n � 0 implies (G,�[n]) �

A formula ' is true in a CGS G, or G � ', iff (G, s) � ' for
all states s ∈ S; ' is valid in a classK of CGS iff G � ' for all
CGS G ∈ K. We denote by Val(K) the set of ATL-validities
in class K.

3 CGS with Propositional Control
We observed that the notion of CGS provided in Def. 3 is
fairly abstract. For instance, the transition function ⌧ is un-
constrained: given a state and an action, ⌧ can in principle
return any state in S as a successor. In this section we intro-
duce a notion of CGS that is based on Propositional Control.
As customary in CL-PC, we assume that the set AP of atoms
is partitioned into sets APi ⊆ AP , where i ∈ Ag. Further,
for every P ⊆ AP , we consider atomic actions +P and −P ,
which respectively represent the action of setting the atoms in
P to true and false.

We now introduce CGS with Propositional Control by pro-
viding concrete instances to the abstract elements in Def. 3.
Definition 6 (CGS-PC). A Concurrent Game Structure for
Propositional Control is a CGS G = �S,Act, d, ⌧,⇡� such that

• S = 2AP1 × . . . × 2AP�Ag� , where each 2APi is the set of
valuations ✓i ⊆ APi (which we identify with functions
✓i ∶ APi → {↵ , tt});1

• Act is the set of actions (+P,−P ′), for disjoint P,P ′ ⊆
AP ;

• protocol d satisfies: (+P,−P ′) ∈ d(i, s) iff P,P ′ ⊆ APi;

• transition function ⌧ is such that, for every s ∈ S and
↵ ∈ Act

�Ag�, if s′ = ⌧(s,↵), then each s

′
i is obtained

by updating si according to ↵i = (+P,−P ′), that is,
s

′
i = (si ∪ P) � P ′;

• function ⇡ is such that ⇡((s1, . . . , s�Ag�)) = �i∈Ag si.

By Def. 6, the actions of each agent i are unrestricted: all
and only actions involving atoms in APi are enabled for i. We
require sets P and P

′ in action (+P,−P ′) to be disjoint for
ease of presentation (the restriction can be avoided by some
mechanism resolving conflicting assignments.) We refer to+P (resp. −P ′) as the positive (resp. negative) effects of the
action. In what follows we write actions +{p} and −{p}, for
p ∈ AP , simply as +p and −p. As it is the case for CL-
PC, given sets Ag of agents and AP of atoms with partition
AP1, . . . ,AP�Ag�, there is a unique CGS-PC built on Ag and

1We could as well set S to 2AP , but prefer the current presenta-
tion in view of relaxing exhaustivity of control.

AP . Notice also that the transition relation �→ such that s �→
s

′ iff s ↵�→ s

′ for some joint ↵, is universal. Indeed, given
states s and s

′, for every i ∈ Ag, consider action �i = (+(s′i �
si),−(si�s′i)). Then, we have that (s′i�si) and (si�s′i) are

disjoint, and s

��→ s

′.
Clearly, CGS-PC are a particular instance of CGS, that is,

the class CGS−PC of all CGS-PC is a subclass of the class
CGS of all CGS. In particular, the set Val(CGS) of validi-
ties in CGS is a subset of Val(CGS−PC). In the next sec-
tion we will see that this inclusion is strict.

We now consider some formulas that are valid in
CGS−PC but not in CGS, as well as the computational
properties of the former. These provide interesting insights
on the impact of the assumptions underlying Propositional
Control in CGS, and the distance of the latter w.r.t. standard
ATL.

First, all ATL operators can be reduced to �A�X .
Lemma 2. The following formulas are valid in CGS−PC:�A�G' ↔ ' ∧ �A�X' (1)

�A�('U'′) ↔ '

′ ∨ (' ∧ �A�X'′) (2)
�A�F' ↔ ' ∨ �A�X' (3)

Proof. We prove (1). The ‘→’ direction holds in standard
CGS. As to the ‘←’ direction, suppose (G, s) � ' ∧ �A�X',
that is, (G, s) � ' and for some action tuple ↵A, for all action
tuples ↵A, s

↵A⋅↵A����→ s

′ implies (G, s′) � '. Now consider
action tuple ↵′A s.t. ↵′i = (+�,−�) for every i ∈ A, and any

action tuple ↵′
A

. If s′ ↵′A⋅↵′A����→ s

′′ then also s

↵A⋅↵′′A����→ s

′′ by
considering action ↵′′i = (+(s′′i � si),−(si � s′′i)) for every
i ∈ A. But then (G, s′′) � ' by hypothesis. By reasoning
along this way, we find a strategy fA (“first ensure ' and then
do nothing”) such that for every � ∈ out(s, fA) and j � 0,(G,�[j]) � '. The proofs for (2) and (3) are similar.

As a consequence of Lemma 2, we can think of the LHS of
(1)-(3) as shorthands for the RHS. However, the expansion is
exponential in the length of the original formula.

The next equivalences follow from Lemma 2 and the uni-
versality of the transition relation�→.
Lemma 3. The following formulas are valid in CGS−PC:�A�X' ↔ (' ∧ �A�G') ∨ (¬' ∧ �A�F')

�A�X' ↔ �A�X�A�X'
Hereafter we consider some interesting consequences of

the exclusiveness and exhaustiveness of Propositional Con-
trol, as formulated for atomic propositions, where �̇i∈A' ab-
breviates �i∈A(' ∧ �j∈A,j≠i ¬'[j�i]) and where '[j�i] re-
sults from uniformly replacing all occurrences of i in ' by
j.
Lemma 4. The following formulas are valid on CGS−PC:�A�X(p ∨ q) ↔ �A�Xp ∨ �A�Xq (4)

�A�X(p ∧ q) ↔ �A�Xp ∧ �A�Xq (5)

�A�Xp ↔ �̇i∈A�i�Xp (6)

�A�X¬p ↔ �̇i∈A�i�X¬p (7)
�A�Xp ↔ �A�X¬p (8)

97

Proof. As regards (4), the ‘←’ direction is standard in CGS.
As to the ‘→’ direction, suppose that (G, s) � �A�X(p ∨ q).
This means that for some action tuple ↵A, for all action tuples
↵A, s

↵A⋅↵A����→ s

′ implies (G, s′) � p ∨ q. If (G, s′) � p, then
for some i ∈ A, p ∈ APi, and therefore (G, s) � �i�Xp.
By coalition monotonicity we obtain (G, s) � �A�Xp, and
finally (G, s) � �A�Xp ∨ �A�Xq. The case (G, s′) � q is
analogous. The proof of (5) is similar; whereas formulas (6)
and (7) are valid because control is exhaustive.

Intuitively, (4) and (5) entail that a coalition A controls a
non-tautological disjunction (resp. satisfiable conjunction) of
atoms iff A controls each disjunct (resp. conjunct). Also, by
(6) and (7) a coalition A controls an atom p iff p is controlled
by exactly one member of A.

The following validities also illustrate the role of exclusive-
ness and exhaustiveness of control in CGS-PC.
Lemma 5. The following formulas are valid on CGS−PC:

�Ag�Xp (9)
�Ag�X¬p (10)

�̇i∈Ag���G��i�Xp ∧ �i�X¬p� (11)

Observe that the above principles (1)-(11) are sometimes
too restrictive. Consider 4: it may be the case that I can throw
a coin on a chessboard without being able to throw it on a
white filed or a black field.

Using the above lemmas, we now prove the following re-
sult on the relationship between CL-PC and the Concurrent
Game Structures for Propositional Control. Recall that in
CL-PC, �A�X' is a shorthand for ◇A�A'. Moreover, abus-
ing notation a bit, we consider �A�G-, �A�F -, and �A�U -
formulas as shorthands according to (1)-(3).
Theorem 6. For every ATL formula ', CL−PC � ' iff
CGS−PC � '.

Proof. ‘⇐’: Suppose CL−PC �� ', that is, for some modelM and valuation ✓ of AP , (M, ✓) �� '. Then, consider the
(unique) CGS-PC G defined on the same Ag and the same
partition of AP asM. We now prove that for every ATL for-
mula , (M, ✓) � iff (G, ✓) � , by induction on . For
 = p, (M, ✓) � iff p ∈ ✓, iff (G, ✓) � . The inductive
cases for propositional connectives are straightforward. As
for ATL operators, if (M, ✓) � �A�X ′, then for some A-
valuation ✓A, for every A-valuation ✓A, (M, (s⊕✓A)⊕✓A) �

′. But this means that for some A-action ✓A, for every A-

action ✓A, ✓
✓A⋅✓A���→ ✓

′ implies (G, ✓′) � ′ by induction hy-
pothesis, i.e., (G, ✓) � �A�X ′. As a result, (G, ✓) �� ', and
therefore ' is not a validity in CGS−PC either.

We omit the ‘⇒’-direction, which is proved similarly.

By Theorem 6, CGS−PC is indeed the class of CGS that
correspond to CL−PC w.r.t. the language of ATL, as the two
frameworks share the same set of validities. Note that The-
orem 6 does not provide a complexity result, given that the
expansion of abbreviations may result in exponential growth.

As anticipated in the introduction, our aim is to analyse
the computational properties of ATL interpreted on CGS-PC.
Specifically, we are interested in the following problems:

• Model checking: given a CGS-PC G, a state s, and a
formula ', determine whether (G, s) � '.

• Satisfiability: given a formula ', determine whether '
is satisfied in some model.

As an auxiliary step to study these problems, consider the
following corollary of Theorem 6 and Lemma 1.
Corollary 7. Given CGS-PC G based on Ag, with partition
AP1, . . . ,AP�Ag� of AP , state s, and formula ', we have that(G, s) � ' iff (G', s') � ', where

• G' is the CGS-PC based on sets AP' and Ag' as de-
fined in Lemma 1;

• s' is the restriction of s to AP'.
By Corollary 7, the size of the input for the model check-

ing problem can be given as �G'� + �'�, where the size �G'� =�Ag'�+ �AP'� of G' is polynomial in '; whereas satisfiability
can be restricted to CGS-PC built on Ag' and AP'.

We are now able to prove the following.
Theorem 8. Both the model checking problem and the satis-
fiability problem for CGS−PC are �P

3 -complete.

Proof. As regards model checking, we follow [Bulling et
al., 2010]. For the lower bound we make use of QSAT2, a
⌃P

2 -complete problem, as an intermediate step. Specifically,
given an instance ∃p1, . . . , pr∀pr+1, . . . , pk' of QSAT2, for
boolean ' built on atoms p1, . . . , pk, we consider the CGS-
PC G defined on Ag = {1,2} s.t. AP1 = {p1, . . . , pr} and
AP2 = {pr+1, . . . , pk}. Then, QSAT2 is reduced to model
checking �1�X'. Finally, to obtain �P

3 -hardness, �1�X' is
combined with nested cooperation modalities, so as to reduce
the SNSAT3 problem along the lines of [Laroussinie et al.,
2008].

As to the upper bound, we outline the following procedure
for checking (M,s) � �A�X' with no nested modalities.
First, we guess an action tuple ↵A. Then, we check if the
CTL formula AX' is true in state s of the resulting model
by asking an oracle for counteractions ↵A to make X' false,
and then we revert the oracle’s reply. Nested ATL modalities
can be dealt with in polynomial time.

As regards satisfiability, notice that we can check whether a
formula ' is satisfiable by model checking it on the CGS-PCG', as defined in Corollary 7. Hence, the problem is in �P

3 .
As to hardness, we can reduce SNSAT3 to CGS-PC satisfi-
ability similarly to what done above for the model checking
problem.

As a consequence of Theorem 8, model checking CGS-PC
has exactly the same complexity as the implict model check-
ing problem for ATL [Bulling et al., 2010]. On the other
hand, satisfiability for standard ATL is EXPTIME-complete.
So the assumptions underlying PC have a noticeable compu-
tational impact on satisfiability. Observe that our complexity
results differ from those for CL-PC, where both model check-
ing and satisfiability are PSPACE complete [van der Hoek and
Wooldridge, 2005].

98

4 Weakening CGS-PC
In Section 3 we introduced the class of CGS-PC, which we
proved to have the same set of validities as CL-PC. How-
ever, we may consider some of these validities (e.g., those in
Lemma 2) as being too strong and look for a more ATL-like
semantics. Ideally, one would like to define a class K of CGS
for Propositional Control such that Val(K) = Val(CGS).
We discussed the limitation of such an endeavour when it
comes to interaction between agents. Nonetheless, in this
section we move a step towards standard CGS by dropping
the assumptions of exhaustiveness and unrestricted actions.
Specifically, we introduce the notion of weak CGS-PC, or
CGS-PC−.
Definition 7 (CGS-PC−). A weak Concurrent Game Struc-
ture for Propositional Control is a CGS G = �S,Act, d, ⌧,⇡�
such that

• S, Act, ⌧ , ⇡ are defined as for CGS-PC;
• the protocol d satisfies: (+P,−P ′) ∈ d(i, s) only if
P,P

′ ⊆ APi;
By Def. 7 the difference between CGS-PC− and CGS is

that control is no longer exhaustive and protocol d no longer
allows for changing any atom at any state. We will see that
these small changes have a noticeable impact on validities.
First of all, since an agent a might have only a subset of the
set of actions (+P,−P ′) with P ∪ P ′ ⊆ APa available at a
state s, the transition relation �→ between states is neither re-
flexive, nor symmetric, nor transitive. (For example, reflexiv-
ity fails in a CGS-PC as soon as there is an agent without the
empty action (�,�) in her repertoire.) So it is not a univer-
sal relation. This contrasts with the situation for CGS-PC in
Section 3.

Clearly, CGS-PC are particular instances of CGS-PC−,
which in turn are instances of CGS. In particular, we have
the following strict inclusions:

V al(CGS) ⊂ V al(CGS−PC

−) ⊂ V al(CGS−PC)
as a result of the following lemma (and subsequent results).
Lemma 9. Formulas (1)-(11) are not valid in CGS−PC

−;

Proof. We provide counterexample CGS-PC− for (3) and (4).
As to (3), consider the CGS-PC− G = �S,Act, d, ⌧,⇡�,

defined on set Ag = {a} of agents, s.t. for every s ∈ S,
d(a, s) = {(+p,−�) � p ∈ APa}, that is, agent a can only
set the value of exactly one atom to true in any state. Con-
sider now state s0 = �✓a� for ✓a = �. Clearly, for q, r ∈ APa,(G, s0) � �a�F (q ∧ r). However, (G, s0) �� q ∧ r and(G, s0) �� �a�X(q ∧ r).

As to (4), consider the CGS-PC− G = �S,Act, d, ⌧,⇡�,
defined on set Ag = {a, b} of agents, s.t. for every s ∈
S, d(a, s) = {(+pa,−�) � pa ∈ APa}; while d(b, s) ={(+pb,−�), (+p′b,−�)}, that is, agent b can (and must) set
the value of exactly one of atoms pb, p

′
b to true in any state.

Consider state s0 = �✓a, ✓b� for ✓a = ✓b = �. Clearly,(G, s0) � �a�X(pb ∨ p′b). However, (G, s0) �� �a�Xpb and(G, s0) �� �a�Xp

′
b.

As to (6) and (7), suppose none of the agents has an action
making p true in his repertoire: then �A�Xp is true for every
A, i.e., the negative condition in �̇i∈A�i�Xp fails.

Generally speaking, (1)-(11) all fail due to restrictions on
enabled actions.

The fact that control is exclusive (for all i, j ∈ Ag, APi ∩
APj = �), that the actions available to agent i may involve
only a proper subset of ‘her’ actions on APi, and that control
is constant in time makes that only a weakened version of
(11) is valid.
Lemma 10. The following formula is valid on CGS−PC

−:

�
i∈Ag

���G � (�Ag�Xp→ �i�Xp) ∧ (�Ag�X¬p→ �i�X¬p) �
(12)

Proof. Let i be the agent s.t. p ∈ APi, if any; any agent in
Ag, otherwise. In the latter case, if (G, s) � �Ag�Xp then
for some s

′ ∈ G, s → s

′ and (G, s′) � p. But the truth value
of p has not changed in the transition from s to s

′, that is,(G, s) � p. Since no agent can affect the truth value of p,(G, s) � �i�Xp. On the other hand, if p ∈ APi for some
i ∈ Ag, then we have two subcases to consider. If action+p is not enabled in state s, then once again the value of p
does not changed from s to s

′, that is, (G, s) � p and also(G, s) � �i�Xp. If +p does appear in some action available
to i in s, then (G, s) � �i�Xp by setting the value of p to
true. The proof for (G, s) � �Ag�X¬p is similar.

On the other hand, Cor. 7 does not hold for CGS-PC−.
First of all, notice that, given a CGS-PC−, G' as defined in
Cor. 7 is a CGS-PC. Therefore, if G is the first CGS-PC− in
the proof of Lemma 9, we have that (G, s) �� (3). However,(G(3), s(3)) � (3), as (3) is valid in the class of CGS-PC.

For CGS-PC− we have the following result, according to a
different notion of restriction G'.

Lemma 11. Given a CGS-PC− G based on Ag and
AP1, . . . ,AP�Ag�, state s, and formula ', we have that(G, s) � ' iff (G', s') � ', where

• G' = �S',Act', d', ⌧',⇡'� is the CGS-PC− based on
set Ag' of agents defined as in Lemma 1, and on set
AP' ∪ S of all atoms appearing in ' together with the
states in G as new atoms, with AP

′
i = APi ∩ AP' for

every i ∈ Ag', and APe = S. Moreover, ↵ ∈ d(i, s) iff
the restriction ↵�AP ′

i

belongs to d'(i, s′) for s′e = s and

i ∈ Ag, and ↵ ∈ d(e, s′) iff ↵ = (−s′e,+t), where t is a
successor of s′e in G.

• s' is the tuple (✓1 ∩AP', . . . , ✓Ag' ∩AP', s).
Notice that the restriction G' for CGS-PC− is an infinite

state systems in general, differently from the case for CL-PC
and CGS-PC.

We can now consider the model checking and satisfiability
problems for CGS-PC−.

Theorem 12. 1. The model checking problem for
CGS−PC

− is �P
3 -complete.

2. The satisfiability problem for CGS−PC

− is EXPTIME-
hard.

99

Proof. As to model checking, the result follows from the
corresponding result for CGS−PC. Specifically, the lower
bound follows by remarking that the CGS-PC used in the
reduction of SNSAT3 in Theorem 8 is a CGS-PC− trivially.
The upper bound follows from the result available for implicit
model checking of ATL w.r.t. CGS [Bulling et al., 2010].

As to satisfiability, we follow [van der Hoek et al., 2006]
and reduce the problem of deciding whether a given agent has
a winning strategy in the two-player game PEEK-G4 [Stock-
meyer and Wong, 1979]. An instance of PEEK-G4 consists
in a quadruple (X0,X1,X2,Win) where X0, X1 and X2 are
finite sets of propositional variables such that X0 ⊆X1 ∪X2,
X1 and X2 are disjoint, and Win is a propositional formula
over X1∪X2. The idea is that X0 is the initial valuation and
that X1 and X2 are variables that are respectively under the
control of agent 1 and 2. At X0, 1 starts by selecting a vari-
able in X1 and assigning it to either true or false (possibly
leaving it unchanged); then 2 selects a variable in X2 and as-
signs it; and so on. An agent wins if his move makes the win-
ning condition ' true. The problem is to decide whether 2 has
a winning strategy in a given instance (X0,X1,X2,Win) of
the game. Given (X0,X1,X2,Win), consider the following
formulas describing it in the language of ATL:
'0 = � �

p∈X0

p

� ∧ � �
p∉X0

¬p� ∧ t1
'1 = �����G��t1 → �����X¬t1� ∧ �¬t1 → �����Xt1��
'2 = �����G�t1 → �

p1∈X1

���1��Xp1 ∧ ��1��X¬p1��
'3 = �����G�t1 → �

p2∈X2

�(p2 → �����Xp2) ∧
(¬p2 → �����X¬p2)��

'4 = �����G�¬t1 → �
p2∈X2

���2��Xp2 ∧ ��2��X¬p2��
'5 = �����G�¬t1 → �

p1∈X1

�(p1 → �����Xp1) ∧
(¬p1 → �����X¬p1)��

'6 = �����G �
p,q∈X1∪X2

��(p ∧q)→ �����X(p∨q)� ∧
�(p∧¬q)→ �����X(p∨¬q)� ∧
�(¬p∧q)→ �����X(¬p∨q)� ∧
�(¬p∧¬q)→ �����X(¬p∨¬q)��

Formula '0 characterizes the initial state, where t1 ex-
presses that it is agent 1’s turn. '1 says that the agents play in
turns. '2 says that at her turn, 1 can assign each of her vari-
ables at will, while '3 says that at that turn, 2 cannot modify
any of her variables. '4 and '5 say the same thing for 2. '6

says that at each turn at most one variable can change truth
value. Player 2 has a strategy guaranteeing Win if and only if('0 ∧'2 ∧'3 ∧'4 ∧'5 ∧'6)→ ��2��FWin
is valid in CGS-PC−. Moreover, the length of '0 ∧� ∧ '6 is
quadratic in the cardinality of X1 ∪X2.

We conjecture that EXPTIME membership of the satisfia-
bility problem for CGS−PC

− can be shown by proving that
' is satisfiable in CGS−PC

− iff '∧ is satisfiable in CGS,
where formula is of length polynomial in the length of '
and characterizes CGS−PC

−. Such a formula should char-
acterize that control is exclusive and constant: we conjecture
that is the formula (12) of Lemma 10.

5 Conclusion
In this paper we took the first steps to fill the gap between
ATL and CL-PC by introducing two classes of CGS that are
based on Propositional Control. The first class CGS−PC

consists in a single structure (modulo agents and partition of
atoms) that can be represented in a compact way, and whose
complexity is the same as CL-PC. The second CGS−PC

−
is a family of structures, depending on the restriction of ac-
tion availability at each state, whose computational properties
closely resemble those of standard ATL.
Related Literature. Recent years have witnessed a growing
interest in various forms of Propositional Control, possibly
combined with dynamic and epistemic aspects [van der Hoek
et al., 2011; Balbiani et al., 2013; 2014]. It is beyond the
scope of this paper to provide an exhaustive account. We
focus on [van der Hoek et al., 2006], which is closest to our
contribution. The approach of this work is based on Simple
Reactive Modules (SML), which are basically agents whose
propositional control is described by rules of the form ' �(+P,−P ′), where ' is a boolean condition and (+P,−P ′) is
an action. In this respect SML can be seen as a class strictly
included between CGS-PC and weak CGS-PC, different from
both. Also, while our motivation is mainly theoretical, the
focus in [van der Hoek et al., 2006] is on the verification of
multi-agent systems.
Future Work. There are a many interesting extensions of the
present framework for future work. A low-hanging fruit is
to add control changing actions to CGS, as done in [van der
Hoek et al., 2010]. One of the consequences, for instance, is
that formula (12) has to be weakened by dropping the tempo-
ral quantifier �����G. Another interesting research direction
is to lift the exclusiveness assumption and allow for multi-
ple agents to control the same atom. The value of the atom
at the next state can then be determined by a boolean func-
tion taking into account all choices of agents. We anticipate
to consider various classes of boolean functions, representing
interesting notions in game theory and social choice theory,
in the spirit of [Grandi and Endriss, 2013]. Finally, we plan
to extend our approach by an epistemic dimension, taking in-
spiration from recent approaches that are based on the con-
cept of Propositional Visibility [van der Hoek et al., 2011;
van Benthem et al., 2015; Herzig et al., 2015; Charrier et al.,
2016], where an agent might observe or not the value of a
propositional atom. Just as CGS can be built from Proposi-
tional Control, models of epistemic logic can be built from
Propositional Visibility; and similarly to PC models, they can
be represented in a compact way.

Acknowledgements. Thanks are due to the AAMAS review-
ers whose comments helped us to improve the paper.

100

References
[Alur et al., 2002] R. Alur, T. A. Henzinger, and O. Kupfer-

man. Alternating-time temporal logic. Journal of the
ACM, 49(5):672–713, 2002.

[Balbiani et al., 2013] Philippe Balbiani, Andreas Herzig,
and Nicolas Troquard. Dynamic logic of propositional as-
signments: A well-behaved variant of PDL. In Proc. LICS
2013, pages 143–152. IEEE Computer Society, 2013.

[Balbiani et al., 2014] Philippe Balbiani, Andreas Herzig,
François Schwarzentruber, and Nicolas Troquard. DL-PA
and DCL-PC: model checking and satisfiability problem
are indeed in PSPACE. CoRR, abs/1411.7825, 2014.

[Bulling et al., 2010] N. Bulling, J. Dix, and W. Jamroga.
Model checking logics of strategic ability: Complexity.
In Specification and Verification of Multi-agent Systems,
pages 125–159. Springer, 2010.

[Čermák et al., 2014] Petr Čermák, Alessio Lomuscio,
Fabio Mogavero, and Aniello Murano. MCMAS-SLK:
A model checker for the verification of strategy logic
specifications. In Computer Aided Verification, volume
8559 of LNCS, pages 525–532. Springer, 2014.

[Charrier et al., 2016] Tristan Charrier, Andreas Herzig,
Emiliano Lorini, Faustine Maffre, and François
Schwarzentruber. Building epistemic logic from ob-
servations and public announcements. In Proc. KR,
2016.

[Chatterjee et al., 2010] Krishnendu Chatterjee, Thomas A.
Henzinger, and Nir Piterman. Strategy logic. Inf. Comput.,
208(6):677–693, 2010.

[Ciná and Endriss, 2015] Giovanni Ciná and Ulle Endriss. A
syntactic proof of arrow’s theorem in a modal logic of so-
cial choice functions. In Proc. AAMAS 2015, May 2015.

[Gerbrandy, 2006] Jelle Gerbrandy. Logics of propositional
control. In Nakashima et al. [2006], pages 193–200.

[Goranko and Jamroga, 2004] Valentin Goranko and Woj-
ciech Jamroga. Comparing semantics of logics for multi-
agent systems. Synthese, 139(2):241–280, 2004.

[Goranko, 2001] Valentin Goranko. Coalition games and al-
ternating temporal logics. In Proc. TARK 2001, TARK ’01,
pages 259–272, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

[Grandi and Endriss, 2013] Umberto Grandi and Ulle En-
driss. Lifting integrity constraints in binary aggregation.
Artif. Intell., 199:45–66, 2013.

[Herzig et al., 2011] Andreas Herzig, Emiliano Lorini,
Frédéric Moisan, and Nicolas Troquard. A dynamic logic
of normative systems. Proc. IJCAI, 2011:228–233, 2011.

[Herzig et al., 2015] Andreas Herzig, Emiliano Lorini, and
Faustine Maffre. A poor man’s epistemic logic based on
propositional assignment and higher-order observation. In
van der Hoek et al. [2015], pages 156–168.

[Herzig et al., 2016] Andreas Herzig, Emiliano Lorini, Faus-
tine Maffre, and Francois Schwarzentruber. Epistemic
boolean games based on a logic of visibility and control. In

Subbarao Kambhampati, editor, Proc. IJCAI 2016. AAAI
Press, July 2016.

[Laroussinie et al., 2008] François Laroussinie, Nicolas
Markey, and Ghassan Oreiby. On the expressiveness
and complexity of ATL. Logical Methods in Computer
Science, 4(2), 2008.

[Mogavero et al., 2014] Fabio Mogavero, Aniello Murano,
Giuseppe Perelli, and Moshe Y. Vardi. Reasoning about
strategies: On the model-checking problem. ACM Trans.
Comput. Log., 15(4):34:1–34:47, 2014.

[Nakashima et al., 2006] Hideyuki Nakashima, Michael P.
Wellman, Gerhard Weiss, and Peter Stone, editors. Proc.
AAMAS. ACM, 2006.

[Pauly, 2002] Marc Pauly. A modal logic for coalitional
power in games. J. Log. Comput., 12(1):149–166, 2002.

[Stockmeyer and Wong, 1979] Larry J. Stockmeyer and
C. K. Wong. On the number of comparisons to find the
intersection of two relations. SIAM J. Comput., 8(3):388–
404, 1979.

[Troquard et al., 2011] Nicolas Troquard, Wiebe van der
Hoek, and Michael Wooldridge. Reasoning about social
choice functions. J. Philosophical Logic, 40(4):473–498,
2011.

[van Benthem et al., 2015] Johan van Benthem, Jan van Ei-
jck, Malvin Gattinger, and Kaile Su. Symbolic model
checking for dynamic epistemic logic. In van der Hoek
et al. [2015], pages 366–378.

[van der Hoek and Wooldridge, 2005] Wiebe van der Hoek
and Michael Wooldridge. On the logic of cooperation
and propositional control. Artif. Intell., 164(1-2):81–119,
2005.

[van der Hoek et al., 2006] Wiebe van der Hoek, Alessio Lo-
muscio, and Michael Wooldridge. On the complexity of
practical ATL model checking. In Nakashima et al. [2006],
pages 201–208.

[van der Hoek et al., 2010] Wiebe van der Hoek, Dirk
Walther, and Michael Wooldridge. Reasoning about the
transfer of control. J. Artif. Intell. Res. (JAIR), 37:437–
477, 2010.

[van der Hoek et al., 2011] Wiebe van der Hoek, Nicolas
Troquard, and Michael Wooldridge. Knowledge and con-
trol. In Liz Sonenberg, Peter Stone, Kagan Tumer, and
Pinar Yolum, editors, Proc. AAMAS 2011), pages 719–
726. IFAAMAS, 2011.

[van der Hoek et al., 2015] Wiebe van der Hoek, Wesley H.
Holliday, and Wen-Fang Wang, editors. Logic, Rational-
ity, and Interaction - 5th International Workshop, LORI
2015 Taipei, Taiwan, October 28-31, 2015, Proceedings,
volume 9394 of LNCS. Springer, 2015.

[Wooldridge, 2000] M. Wooldridge. Computationally
Grounded Theories of Agency. In Proc. of ICMAS, pages
13–22. IEEE Press, 2000.

101

