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Abstract

We study the problem of finding a Pareto-efficient
and envy-free allocation of a set of indivisible re-
sources to a set of agents with monotonic prefer-
ences, either dichotomous or additive. Motivated by
results of Bouveret and Lang [JAIR 2008], we pro-
vide a refined computational complexity analysis
by studying the influence of three natural param-
eters: the number n of agents, the number m of
resources, and the number z of different numbers
occurring in utility-based preferences of the agents.
On the negative side, we show that small values
for n and z alone do not significantly lower the com-
putational complexity in most cases. On the positive
side, devising fixed-parameter algorithms we show
that all considered problems are tractable in case of
small m. Furthermore, we develop a fixed-parameter
algorithm indicating that the problem with additive
preferences becomes computationally tractable in
case of small n and small z.

1 Introduction

Fair allocation of resources is a major theme in society and
technology [Walsh, 2015]. In this work, following Bouveret
and Lang [2008], we focus on finding fair allocations of in-
divisible resources (for general information and an overview,
refer to the recent survey by Bouveret et al. [2016]); herein,
fairness translates into “envy-freeness” and (Pareto-)efficiency,
two of the most common requirements.

Our general setting is as follows. We are given a set of
indivisible resources and a set of agents; each agent may spec-
ify preferences in such a way that for any two subsets of the
resources we can tell which one (if any) she prefers to the
other. The goal is to assign resources to agents such that
some fairness criteria are met. We focus on the criteria of
being envy-free and efficient. An allocation of resources to
agents is called envy-free if each agent likes her subset of as-
signed goods (i.e., her resource bundle) at least as much as
the bundles assigned to other agents. Since assigning every
agent nothing would be envy-free, it is necessary to add a
second requirement: efficiency. More precisely, we search for
a Pareto-efficient allocation, that is, an allocation of resources
where one cannot make any agent better off without making
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at least one agent worse off. Finally, a few words about the
agents’ preferences: As Bouveret and Lang [2008] pointed
out, allowing for arbitrary preference orders comparing all
possible bundles would lead to exponential-size encodings.
Hence, more compact representations are needed. We focus
on monotonic dichotomous preferences and monotonic addi-
tive preferences. The former means that bundles are either
acceptable or not, and the acceptable bundles are characterized
by monotonic Boolean formulas; the latter means that each
bundle has a utility score that is the sum of utilities of the
individual resources contained, and each individual utility is
non-negative. Refer to Section 1 for formal definitions.

It is not always possible to achieve both Pareto-efficiency
and envy-freeness at the same time (e.g., if there are fewer
resources than agents and each agent accepts all non-empty
bundles). Our central computational problem is as follows.

EEF-ALLOCATION

Input: A set A of n agents and a set R of m resources.
Each agents has preferences over the subsets of R.
Question: Is there an allocation of the resources
in R to the agents from A that is Pareto-efficient and
envy-free?

Previous results. For both monotonic dichotomous and
monotonic additive preferences, EEF- ALLOCATION is known
to be complete for E‘zo , which is a class on the second level of
the Polynomial Hierarchy and consists of all problems that can
be solved in nondeterministic polynomial time given an oracle
for NP. Bouveret and Lang [2008] also showed intractabil-
ity (mostly NP-hardness) and polynomial-time solvability
of many restricted cases. Further computational complex-
ity studies were performed for the case of incomplete prefer-
ences, achieving mostly intractability results [Aziz et al., 2014;
Bouveret et al., 2010]. A further slightly different line of
research softens the strict requirement of envy-freeness by
investigating how to decrease the degree of envy, in this sense
taking an “approximate view” on fairness [Lipton e al., 2004;
Nguyen and Rothe, 2013]. In summary, considering its high
practical relevance, there are comparatively few studies on
the computational complexity of EEF-ALLOCATION. In this
work, we add to the complexity knowledge by performing a
first systematic parameterized complexity analysis for EEF-
ALLOCATION.



Our results. We survey our (mostly parameterized) compu-
tational complexity results in Table 1. Compared to the focus
on classic computational complexity investigations in previous
work, we obtain a more fine-grained picture of the complexity
landscape. The three parameters we consider are the number n
of agents, the number z of numbers for additive preferences
(only in combination with n), and the number m of resources.
Moreover, for the additive case, we distinguish between unary
versus binary encodings of the utility values, and consider
the special cases of agents having 0/1 preferences or identical
preferences.

A result particularly interesting from a technical point of
view is that, using the Boolean Hierarchy, we provide al-
most tight upper and lower bounds concerning the number
of NP oracle calls needed to solve EEF-ALLOCATION with
n agents and monotonic dichotomous preferences. Our re-
sults further include parameterized hardness results (W[1]-
hardness/completeness), and encouraging fixed-parameter
tractability (FPT) results, sometimes based on integer lin-
ear program formulations exploiting a famous result due
to Lenstra [1983] (referred to as ILP-FPT). Since for all pa-
rameters even small values may occur in practice (even the
case n = 2 is frequently studied), our classification results
give hope for practically feasible, exact algorithms for the in
general X5 -complete problems. Due to space constraints, we
omit many proof details.

Preliminaries on Resource Allocation. We now formalize
the notions required for our study of EEF-ALLOCATION.

Definition 1. An allocation of a set of resources R to a set of
agents A is a mapping 7 : A — 2R such that 77(a) and 7(a') are
disjoint whenever a # d'. For any agent a € A, we call 7(a)
the bundle of a under m. We call & complete if | J,c4 ©(a) = R.

In our setting, each agent is associated with a preference
relation, which we call the agent’s preferences.

Definition 2. A preference relation < over a set of resources R
is a total preorder over 2R We call < monotonic if X < Y holds
forany X CY CR Wewrite X <Y if X <Y butnotY <X.

To allow for a succinct representation of preferences, we
first consider the restriction that agents either like a bundle or
not, according to a Boolean formula over the resources.

Definition 3. We call a preference relation < over a set of
resources R dichotomous if it is represented by a Boolean
formula @< over R such that for any X,Y C R it holds that
X <Y if and only if X = @< implies Y = ¢<. We say an
allocation 7 satisfies agent a if w(a) = @<,

For dichotomous preferences, < is monotonic if and only if
(< contains only the connectives V and A (in particular no —).
In the second restriction of preference relations we consider,
agents give a utility value to each individual resource. The
utility of a bundle is then the sum of the utilities of its elements.

Definition 4. We call a preference relation < over a set of
resources R additive if there is a utility function u: R — 7
such that for any X,Y C R it holds that X <Y if and only if
u(X) <u(Y), where u(X), for X C R, is defined as ¥,y u(r).
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For additive preferences, =< is monotonic if and only if the
values of u are non-negative. We call additive preferences 0/1
if each utility function maps to {0, 1}, and identical if each
agent has the same utility function.

Given the preferences of each agent, we can define our two
desired criteria for allocations.

Definition 5. Let R be a set of resources, let A be a set of
agents, and let <, denote the preference relation of agent
a € A. We call an allocation 7 of R to A envy-free if for each
pair of agents a,b € A it holds that w(b) <, 7(a). We say that
an allocation 7’ of R to A dominates another allocation 7 if
for all a € A it holds that 7(a) <, 7'(a), and for some a € A
it holds that m(a) <, 7’(a). We call T Pareto-efficient if there
is no allocation of R to A that dominates 7, and we call 7 an
EEF allocation if it is both Pareto-efficient and envy-free.

Preliminaries on Complexity. To study the parameter-
ized complexity [Cygan er al., 2015; Downey and Fellows,
2013; Flum and Grohe, 2006; Niedermeier, 2006] of EEF-
ALLOCATION, we declare some part of the input the parameter
(e.g., the number of agents or the number of resources). We
call a parameterized problem fixed-parameter tractable if it
is in the class FPTof problems solvable in time f(p) - |1]°(1),
where |1] is the size of a given instance encoding, p is the value
of the parameter, and f is an arbitrary computable (typically
super-polynomial) function. We use the O* notation that omits
factors polynomial in the input size to emphasize or to compare
the super-polynomial factors in the running time. To obtain
parameterized intractability, we use a hierarchy of classes of
parameterized problems, FPT CW[1] CW[2] C.-- CXP. It
is widely believed that the first inclusion is proper. The notions
of hardness and completeness for parameterized classes are
defined through parameterized reductions similar to classical
polynomial-time many-one reductions. For this paper, it suf-
fices to additionally ensure that the value of the parameter in
the problem we reduce to depends only on the value of the
parameter of the problem we reduce from.

The class XP contains all problems that can be solved in
|7 |0(” ) time for a function f solely depending on the parame-
ter p. Note that containment in XP ensures polynomial-time
solvability when p is a constant, whereas FPT additionally
ensures that the degree of the polynomial is independent of p.
Unless P = NP, membership in XP can be excluded by show-
ing that the problem is NP-hard for a constant parameter value
(for short, we say the problem is para-NP-hard). If the prob-
lem is in NP, then we can solve it by one call to an NP oracle
(in practice, this means that one can solve the problem with
one call of a SAT or Integer Linear Program (ILP) solver).

To show that one oracle call may not suffice, we use many-
one reductions to classes BH,, of the Boolean Hierarchy. The
class BHy; can be defined as the class of problems IT for
which there are problems Py,...P;, which are in NP, and
01,...,0r, which are in coNP, such that an instance I of I1
is a yes-instance if and only if for some i it holds that / is a
yes-instance instance of both P; and Q; [Wagner, 1987]. To
solve BH,-complete problems, one needs O(n) oracles calls
in parallel or O(log(n)) oracle calls in a sequential manner
(allowing other computations in between).



preference type #agents (n)

#agents + #numbers (1 + 2) #resources (m)

additive 0/1
additive identical (unary)

ILP-FPT (Thm. 5)

WI(1]-complete (Thm. 3)

ILP-FPT (Thm. 5)
ILP-FPT (Thm. 5)

O*(m™/m!) (Thm. 1)
O*(m" /m!) (Thm. 1)

additive (unary) WI(1]-h (Thm. 3), € XP (Thm. 4) open O*(m*"/m!) (Thm. 1)
additive identical (binary) para-NP-hard (n > 2) & ILP-FPT (Thm. 5) O*(m™ /m!) (Thm. 1)
additive (binary) para-NP-hard (n > 2) & open O*(m®" /m!) (Thm. 1)
dichotomous BH,u-s-hard, € BH,.11 (Thm. 2) n/a O*(m*™) (Thm. 1)

Table 1: Complexity results for EEF-ALLOCATION with several special cases of monotonic preferences. Results marked by &

are from [Bouveret and Lang, 2008].

2 Basic Observations

We start with some observations and introduce some concepts
that simplify our investigations in later sections.

For monotonic additive preferences, we assume that for ev-
ery resource r there is at least one agent a that assigns positive
utility to it, that is, u,(r) > 0. Resources that do not satisfy
this condition can be safely ignored. We may also assume that
no agent assigns utility O to all resources because such agents
can safely be given nothing as they will not envy anyone and
will never be relevant for Pareto-efficiency. Furthermore, we
can use an alternative definition of an EEF allocation.

Definition 6. Given an agent set A, a resource set R, and
utility functions u, : R — Z encoding the preferences of each
agent a € A, an allocation 7w : A — 2R is Pareto-efficient if

I’ 3a* € A ug (' (a*)) > ug ((a*))
AVd €A ua/(ﬂ:/(a,)) > “a/(”(a/))’
and envy-free if
Va,d € A:u,(m(a)) > u,(n(d)).

If we further restrict the preferences to be identical or 0/1-
preferences, then Pareto-efficiency essentially boils down to
completeness. (Note that Bouveret and Lang [2008] use sim-
ilar observations.) The key insight is that with preferences
being identical or 0/1, there is in fact no agent that assigns
higher utility to some resource r than the agent to which re-
source r is allocated. So, by the pigeonhole principle, in
order to increase the sum of utilities for one agent, we have to
decrease the sum of utilities for another agent.

Observation 1. In case of monotonic additive identical pref-
erences or 0/1 preferences, an allocation is Pareto-efficient if
and only if it is complete and every resource r is allocated to
an agent that assigns positive utility to r.

3 Few Resources

In this section, we discuss the complexity of finding EEF
allocations in case of few resources.

Recall from Section 2 that, for monotonic additive prefer-
ences, in order to find an EEF allocation, we can safely remove
every agent that assigns utility O to all resources and every
resource to which all agents assign utility 0. Hence, together
with a simple preprocessing and brute-force algorithm, we
end up with the following. To this end, we say two EEF-
ALLOCATION instances are equivalent if they are either both
yes-instances or both no-instances.
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Proposition 1. Given an instance of EEF-ALLOCATION
with monotonic additive preferences and m resources, one
can compute an equivalent instance with m resources and at
most m agents in linear time. In particular, one can solve
EEF-ALLOCATION in O* (m*™) time.

Proof. As we have seen, we may assume that no agent assigns
utility O to each resource and no resource is assigned utility O
by all agents. If there are now more than m agents, one will
necessarily envy another in every Pareto-efficient allocation.
Otherwise we generate each of at most m™ allocations 7 and
check in O* (m™) time whether another allocation dominates 7
to ensure Pareto-efficiency. If 7 is not dominated, then check
in m? time whether it is also envy-free. O

After preprocessing, both the number 7 of agents and the
number m of resources are linearly bounded in terms of our
parameter in case of additive preferences. In contrast, for di-
chotomous preferences we give an exponential upper bound
on the number of agents and show that under reasonable com-
plexity assumptions, no polynomial upper bound exists.

Proposition 2. Given an instance of EEF-ALLOCATION with
monotonic dichotomous preferences and m resources, one
can compute an equivalent instance with m resources and
at most 2™ - (m+ 1) agents in quadratic time. Unless NP C
coNP/poly, one cannot compute an equivalent instance of
size polynomial in m in polynomial time.

Proof. We assume formulas to be non-tautological (otherwise
we could just ignore the respective agents) and to be in CNF or
DNF, which allows us to test equivalence by syntactic equality
after efficiently removing redundant terms [Mundhenk and
Zeranski, 2011]). As the key concept for this proof, we define
a maximal set of agents having the same preferences as agent
class. Observe that there are at most 2" bundles of resources
and an agent can either like a bundle or not. Thus, there are
at most 2(2") agent classes and we can also compute all agent
classes in polynomial time (by n? tests for equivalence).

Let 7 be an envy-free allocation and let A’ C A be an agent
class. Note that either all agents from A’ are satisfied, i.e.,
Va' € A": w(d') = @<, or no agent from A’ is satisfied, i.e.,
#d € A':m(d') = @< ,. If |A’| > m, only the latter can happen
because we cannot satisfy more than number of resources m
many agents. To obtain an equivalent instance whose size
only depends on a function in m, we exhaustively apply the
following simple data reduction rule: If there is some agent
class with more than m + 1 agents, then keep arbitrary m + 1



of them and remove the rest. In terms of parameterized algo-
rithmics, this instance is a (super-polynomial sized) problem
kernel with respect to the number m of resources.

For the kernelization lower bound, we use the or-cross-
composition framework by Bodlaender et al. [2014] with SAT
as our source language, using ideas from the proof of Theo-
rem 2. We omit the details due to lack of space. O

By simple brute-force search on this kernel, we obtain fixed-
parameter tractability. However, naive brute-force comes with
running time O*((2™ - (m+1))?™). Fortunately, by using a
smarter algorithm that combines brute-force with the compu-
tation of perfect matchings in auxiliary graphs, we can signifi-
cantly lower the running time. Similar ideas also help improve
for additive preferences in case of identical preferences or 0/1
preferences. We summarize our findings as follows.

Theorem 1. EEF-ALLOCATION with monotonic dichoto-
mous preferences can be solved in O*(B(m)?) time; EEF-
ALLOCATION with monotonic additive preferences can be
solved in O*(S(m,n)? - n!) time; EEF-ALLOCATION with
additive 0/1 preferences or with monotonic additive iden-
tical preferences can be solved in O*(S(m,n)) time, where
B(m) € O(m™) denotes the m-th Bell number, and S(m,n) €
O(m™ /m!) denotes a Stirling number of the second kind.

Theorem 1 basically provides FPT-classification results
which might be practically relevant for very small values for m.
Nevertheless, the corresponding running-time bounds support
our impression that more restrictive preference classes sim-
plify the task of finding an EEF allocation.

4 Few Agents

In this section, we discuss the complexity of finding EEF
allocations in case of few agents.

Bouveret and Lang [2008] already showed NP-
completeness for EEF-ALLOCATION with monotonic
dichotomous preferences and only n = 2 agents. Although
this excludes hope for fixed-parameter algorithms with respect
to n, the NP-membership indicates that one might be able
to solve EEF-ALLOCATION with only few calls to an NP
oracle. Providing almost tight upper and lower bounds, we
show how many calls to an NP oracle are needed to solve
EEF-ALLOCATION with n agents. This is in line with recent
research by de Haan and Szeider; Endriss et al. [2014; 2015],
which, motivated by the practical success of SAT solvers,
investigates whether certain problems can be solved by an
algorithm having access to a SAT oracle using FPT time.

Theorem 2. EEF-ALLOCATION with monotonic dichoto-
mous preferences and n > 5 agents is in BH,n11 and BH,u4-
hard.

Proof. Membership. Note that the fact that each instance
has n agents allows us to assume that the set A of agents is the
same over all instances (albeit the preferences may differ). Let
Ap,...,Aon denote all subsets of A. Now, for any 1 <i <2",
let P; be the problem of deciding whether there is an envy-free
allocation satisfying exactly the agents in A;, and let Q; be the
problem of deciding whether there is no allocation 7 : A — 2R
satisfying all agents in A; and one additional agent.
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P, is in NP: We can clearly check in polynomial time if an
allocation satisfies exactly the agents in A; and is envy-free.

The complement of Q; is in NP: We can check in polyno-
mial time if an allocation satisfies A; and an additional agent.

Obviously there is an EEF allocation for an instance if and
only if this instance is a yes-instance for some P; (indicating
that an envy-free allocation 7 satisfies exactly A;) and at the
same time for Q; (indicating that no allocation dominates 7).

Hardness (construction only). We set n' :== 2" — 5 and
provide a polynomial-time reduction from the following
BH,,/-hard problem [Wagner, 1987]: Given Boolean formu-
las x1,..., %y and y,..., ¥, we ask whether for some i it
holds that y; is satisfiable while y; is unsatisfiable. We as-
sume w.l.o.g. that the variables of any pair of formulas are
disjoint and formulas are non-empty. We also assume that
each formula is in negation normal form, i.e., no binary con-
nectives other than V and A occur, and negation occurs only
directly in front of variables. Given any set S, we write S’ to
denote {V' | v € S}. For any Boolean formula &, we denote
the set of variables in & by Var(a), and for any i we define
Vi = Var(y;) U Var(y;) as well as L; = V;UV/. Let x;* and v
be the result of replacing each literal of the form —v by V' in
xi and y;, respectively.

In the following, we construct an EEF-ALLOCATION in-
stance with agents 1,...,n having as preferences @y, ..., @,,
respectively. Let the set of resources be {x,y} UL U---UL,.

91
o =xV /\(v\/v’)\/---\/ /\ (v,

vevy vevy
O3 =xV YV X

Qs =y (Y[ V- V),
@5 = Q4.

The intuition behind the remaining n — 5 agents is that after
satisfying them, only the literals for at most one pair of for-
mulas x;, ;" are left for distribution. If n' =4, for example,
we realize this by means of an additional agent that claims
Ly ULy or L3 ULy, and another agent that claims Ly, Lo, L3,
or Ls. This can be generalized such that one agent claims
one half of all literals, the next claims one quarter, and so
on. Formally, for 1 <i<n—5and 0 < j <2/ — 1, we define
Fij=Ljypi U UL}y iy i For 1 <i<n—35, we now

X,

define @5,; =xV \/?:_01 /\lePiJ /. This reduction is doable in

polynomial time since 7 is logarithmic in #’. The resulting
EEF-ALLOCATION instance is a yes-instance if and only if
some ¥; is satisfiable while y; is unsatisfiable. Due to lack of
space, we only give some intuition: Agent 1 must receive x
in any EEF allocation 7, which forces 7 to satisfy all agents
except4 and 5. Agent 3’s bundle encodes a model for some y;,
as the agents 6, ...,n—5 and 2 prevent her from getting both v
and v/ for any variable v. If y; were satisfiable, there would be
envy between agents 4 and 5 under 7 since 7 is efficient. [

This result entails that the parameter n does not allow us to
reduce the problem to, e.g., SAT in FPT time, which would
have been good news due to the Z; -completeness of the gen-
eral problem. In fact, membership in BH,.;1 enables us to



solve an EEF-ALLOCATION instance with 2"+! parallel NP
oracle calls or O(n) sequential NP oracle calls. If we are
not only interested in solving the decision problem but, e.g.,
also in computing a solution, there are good (rather technical
complexity-theoretic) reasons to believe that the number of
sequential oracle calls may further increase [Jenner and Torén,
1995]. Actually, O(n*m) sequential NP oracle calls are suf-
ficient for finding an EEF-allocation: Consider the extended
version of EEF-ALLOCATION where the input additionally
specifies a partial allocation of some resources to agents and
one asks for an EEF-allocation that extends the partial allo-
cation. Start with the empty partial allocation and extend it
step by step to a complete EEF-allocation as follows. Iter-
atively take an unallocated resource r; and find an agent to
which r; can be allocated in an EEF-allocation by solving the
extended EEF-ALLOCATION problem (using O(n) sequential
NP oracle calls each time). To see that the extended EEF-
ALLOCATION problem can indeed be solved with only O(n)
sequential NP oracle calls, one can use a BH,.+1-membership
proof that works analogously to the proof of Theorem 2.

We next consider the case of additive preferences, for
which Bouveret and Lang [2008] have shown NP-hardness
even in the case of identical preferences and n = 2 agents.
However, their hardness result relies on preferences encoded
in binary, which leaves the possibility open that a pseudo-
polynomial-time algorithm exists. We show that the problem
with preferences encoded in unary is W[1]-complete if all
agents have the same preferences, which implies NP-hardness
and W(1]-hardness for the parameter n if the agents may have
different preferences. In Theorem 4, we will show that the
latter W[1]-hardness can be complemented by showing that
the problem can be solved in polynomial time for constant n.

Theorem 3. EEF-ALLOCATION with monotonic additive
preferences encoded in unary is \W[1]-complete with respect to
the number n of agents if all agents have the same preferences.

Proof. For W/1]-hardness, we give a parameterized reduction
from the UNARY BIN PACKING problem, which is W/[1]-hard
with respect to the number b of bins [Jansen et al., 2013].

UNARY BIN PACKING

Input: Positive integers wy,...,wy,,b,C in unary.
Question: Is there an assignment of m items with
weights wy, ..., w, to at most b bins such that none
of the bins exceeds weight capacity C?

The set of resources consists of a set R := {ry,...,rn}
of item resources and a set D := {d,,...,d,} of dummy re-
sources, where q ;== b-C — Y| <;<,, Wi is the total amount of
“unused capacity”. Create agents ay,...,a; such that each
agent a; has a utility function u; that sets u;(d;) = 1 for any
dummy resource d; and u;(r;) = w; for each item resource r;.

We show that there is an assignment of m items with weights
wi,..., W, to at most b bins such that none of the bins exceeds
capacity C if and only if there is an EEF allocation.

“Only if” direction: Assume that there is an assignment of
m items with weights wy,...,w,, to at most b bins such that
none of the bins exceeds capacity C. For each bin j, let P(j)
denote the set of ite.ms assigne?d to j anq let W(j):=Y;c P(j) Wi
denote the total weight of the items assigned to j. We create an
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EEF allocation 7 as follows. For each 1 < j <b, () contains
all item resources corresponding to the items from P(j) and
further C — W (j) dummy resources. First, no agent envies any
other agent since each receives a bundle with utility sum C.
Second, 7 is also Pareto-efficient by Observation 1, since 7 is
complete and all utilities are positive.

“If” direction: Assume that there is an EEF allocation 7.
Recall that 7 must be complete due to Observation 1, so the to-
tal sum of utilities over all bundles in 7 is exactly - C. Since &
is Pareto-efficient and envy-free, the total utility ¥, .c z(;) ui(r;)
of the bundle allocated to agent i is exactly C: It is the same
for each agent because the agents have the same preferences
and the allocation is envy-free. Hence, assigning all items
corresponding to the resource items of bundle 7(i) to bin i
is a solution for the UNARY BIN PACKING instance. This
completes the W/[1]-hardness proof. For W[1]-membership we
can reuse ideas from the hardness proof. O

5 Few agents and Few Ultility Levels

In this section, we focus on instances of EEF-ALLOCATION
with monotonic additive preferences where the utility func-
tions of the agents have only few different values. To this
end, let z denote the number of different values that occur
in the utility functions (c.f. [Fellows er al., 2012]), and let
Zmax denote the maximum number that occurs in any utility
function. Since EEF-ALLOCATION is NP-hard already for
additive 0/1 preferences (z = 2 and zmax = 1) [Bouveret and
Lang, 20081, we further assume that there are only few agents
to obtain positive results.

The decisive advantage of monotonic additive preferences
is that knowing all u,(7(a")) values for all allocations 7 and
all pairs (a,a’) of agents is enough to check the existence of
an EEF allocation. By a dynamic programming algorithm
based on this observation, we show that EEF-ALLOCATION
with monotonic additive preferences encoded in unary can
be solved in polynomial time if the number n of agents is a
constant. Note that in case of preferences encoded in unary, z
and zmax are upper-bounded by the instance size.

Theorem 4. EEF-ALLOCATION with monogtonic additive
preferences can be solved in O((m - zmax + 1) -mn?) time.

Proof. We denote the agents by integers 1,...,n and use the
following (n” + 1)-dimensional binary table where entry

T(k7x1.,1 3 7x1,n7x2,1> e 7x2,n7xn,17 e a-xn,n)

(for 1 <k <mand 0 <x;; <m-zmax) is 1 if and only if there
is an allocation 7 that (i) assigns each of the first k resources to
some agent and (ii) ensures that u;(7(j)) =x; j for 1 <i,j <n.

After computing the table T our algorithm answers “yes”
if there is some entry T(m, X1.1,...,X10, X215+, X205 -+ -,
Xn1s ---%nn) = 1 such that the following hold: (i) For all
i,j € {1,...,n} it holds that x;; > x; ;; and (ii) there is no
entry T(m, X} -y X) s X 5oy X s vvns Xy s vy Xy ) = 1
where 31 < i* <n: x}ﬁ > xp e and VI <i<nixj; > xig
otherwise, the algorithm answers “no”. We now show how to
compute this table in polynomial time.

In the following, for technical reasons we assume that
T(k, X11,.,X1ns X205 -3 X205 Xn15---,Xnn) = 0 Whenever



one tries to access an entry out of the table’s range (e.g.,
with k& < 1 or x;; < 0). We compute all entries T (k,

X1y Xl X215+, X200 X 15 - -, Xn,n) ASSUMIng that all en-
tries T(k -1, X11y-- X1 X215+ +3X2n5 Xn1s--- ,xn.n) are
known. The key insight is that for each allocation 7’

of the first k resources, there is an allocation @ of the
first k — 1 resources such that resource r; can be as-
signed to some agent i* and the following equations hold
for every agent i: (a) u;(7'(i*)) = w;(w(i*)) + ui(ry), and
(b) u; (7' (j)) = ui(m(j)) for j # i*. Formally, we set the en-
try T(k, X115+ 9 Xn> X215+ 5 X205 « o5 Xn1s--- ,xn,,,) to 1 if
and only if there is some i* € {1,...,n} such that

T(k_ 17y1,1>"‘7y1,n7"'7yn,13"'7yn,n) = 17
where, for any 1 < i, j < n, we define y; ; as

X j—ui(r
Yi,j:{ i,j z( k)

Xij

if j=1*,
otherwise.

For correctness, note that if our algorithm answers “yes”,
then there clearly is an EEF allocation by the definition of
the table T. Now, assume towards a contradiction that the
algorithm answers “no”, although there is an EEF allocation 7.
This means that either entry T (m, u;(7(1)),...,u;(7w(n)),
up(1(1)),...,uz2(mw(n)), uy(mw(1)),...,u,(m(n))) = 0 or this

: : / / / /
entry is 1 but there is an entry T (m, x| 1,...,X] X5 15+, Xp

/ / _ % . . o
cees Xy ps e Xy ,) = 1 where 31 <7 <nix > upe(m(i))

and V1 <i <n: x;,‘i, > uy(7(i")). The former would imply
that 7 does not allocate all m resources, which cannot be true
since 7 is Pareto-efficient and we assume that for each re-
source r, there is at least one agent a with u,(r) > 0. The latter
would imply that 7 is not Pareto-efficient—a contradiction.
As for the running time, observe that the table is of size

m-(m- Zmax + 1)”2, which is a polynomial in the instance size
if the number n of agents is a constant and zp,x is encoded in
unary. To compute a table entry, one has to check at most n
previous table entries (involving n subtractions per check). [

The algorithm from Theorem 4 can be used not only to
decide the problem but also to actually find an EEF alloca-
tion. To this end, one basically replaces the binary entries by
concrete allocations.

Parameterized by n and z alone, EEF-ALLOCATION
is para-NP-hard: Bouveret and Lang [2008] showed NP-
hardness for EEF-ALLOCATION with two agents and for
EEF-ALLOCATION with 0/1 preferences. Theorem 4 gives
XP membership for parameter n and unary encoding of the
utility values. Since the latter implies that z and zp,x are poly-
nomially upper-bounded by the instance size, cases where n
and z are both small seem to be easier to solve. We further
explore this by considering the combined parameter (n + z)
and the parameter n for 0/1 preferences.

Theorem 5. EEF-ALLOCATION is fixed-parameter tractable
(i) with respect to the combined parameter (n+ z) for identical
monotonic additive preferences, and (ii) with respect to n alone
for additive 0/1 preferences, where n denotes the number of
agents and z is the number of different values that occur in the
utility functions.
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Proof. We define the fingerprint of some resource r; to be
the size-n integer vector f; := (u1(r;),uz(r),...,us(r;)). We
denote the set of fingerprints by F' and the number of resources
that have fingerprint f by #(f). Observe that there are at most
7" different fingerprints and that, given an EEF allocation 7, ex-
changing any two resources with the same fingerprint between
two bundles in 7 results in another EEF allocation. Moreover,
we can characterize EEF allocations by solely specifying how
many resources with fingerprint f are allocated to agent a; for
each agent a; € A and each fingerprint f.

Using the fingerprint concept, we develop an integer linear
programming formulation as follows. For each agent a; € A
and each fingerprint f, create one integer variable xlf that
denotes the number of resources with fingerprint f allocated
to agent a;.

We achieve envy-freeness by adding the constraints

Vi<i<n 1<i<n: Y xl fll=Y )l O
feF feF
where f[i] denotes the i-th entry in fingerprint f.
To obtain Pareto-efficiency, we add the constraint sets
VfeF: Y x/ =#(f), and 2)
1<i<n
VfeF, 1 <i<nwith f[i] =0:x/ =0. 3)

Constraint set (2) ensures completeness and Constraint set (3)
ensures that each resource is allocated to an agent that assigns
positive utility to this resource. Hence, due to Observation 1,
we obtain Pareto-efficiency.

Finally, fixed-parameter tractability follows by the famous
result of Lenstra [1983] (later improved by Kannan; Frank and
Tardos [1987; 1987]) that says that an ILP with p variables

and / input bits can be solved in O(p>°P*°(P)¢) time. O

6 Conclusion

The goal of this work was to contribute to a more fine-grained
understanding of the computational complexity landscape of
EEF-ALLOCATION for monotonic preferences (dichotomous
and additive), which is Z‘; -complete in general. On the posi-
tive side, we obtained encouraging fixed-parameter tractability
results, indicating practical feasibility of relevant special cases.
Indeed, it remains to explore whether the efficiency of the algo-
rithms can be further improved—our focus was on complexity
classification rather than engineering best possible running
times—and, in the same spirit, to consider even more special
but practically relevant cases such as a fixed small number of
agents. Indeed, in the long run implementation and experi-
ments with the developed algorithms seems promising. To this
end, also studying further natural parameterizations could be
helpful. A different theoretical route would be to extend the in-
vestigations also to incomplete preferences [Aziz et al., 2014;
Bouveret et al., 2010] or approximate envy-freeness [Lipton
et al., 2004; Nguyen and Rothe, 2013].
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