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Abstract

Single minded agents have strict preferences, in
which a bundle is acceptable only if it meets a cer-
tain demand. Such preferences arise naturally in sce-
narios such as allocating computational resources
among users, where the goal is to fairly serve as
many requests as possible. In this paper we study
the fair division problem for such agents, which is
complex due to discontinuity and complementarities
of preferences.

Our solution concept—the competitive allocation
from equal incomes (CAEI)—is inspired from mar-
ket equilibria and implements fair outcomes through
a pricing mechanism. We study existence and com-
putation of CAEI for multiple divisible goods, dis-
crete goods, and cake cutting. Our solution is useful
more generally, when the players have a target set of
goods, and very small positive values for any bundle
other than their target set.

1 Introduction

The question of dividing scarce resources among multiple par-
ticipants in a way that is fair has remained a pressing question
that intrigued humans for a long time, be it for dividing land
among citizens! or allocating organizational resources to its
members. The formal study of fair division as we know it
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started during World War II with works of Steinhaus, Knaster
and Banach [Steinhaus, 1951]. Much of the earlier work
focused on one heterogeneous divisible good, i.e. the cake cut-
ting problem [Brams and Taylor, 1996; Robertson and Webb,
19981, while other models and notions of fairness were studied
later in a growing body of literature [Moulin, 2004]. Fair divi-
sion has been recently studied in the computer science com-
munity, as problems in resource allocation and fair division
in particular are arguably relevant for the design of multia-
gent systems, including manufacturing and scheduling, airport
traffic, and industrial procurement [Chevaleyre er al., 2006;
Procaccia, 2013].

Prominent examples of fair division models that surfaced
recently in real scenarios include problem of allocating com-
putational resources (e.g. CPU, memory, bandwith) among
the users of a system [Ghodsi et al., 2011], or the problem of
allocating university courses to students in a way that is fair
and efficient. The latter motivated the introduction of a notion
of fairness known as A-CEEI [Budish, 2011], which approxi-
mates the well known ideal notion of fairness from economics,
the competitive equilibrium from equal incomes [Foley, 1967,
Varian, 1974]. Othman et al. [2014] studied the complexity of
A-CEEI with pessimistic conclusions for general preferences.
Nevertheless, the A-CEEI solution is used to allocate courses
to students at the Wharton Business School at the University
of Pennsylvania.

The largest body of the literature on fair division models
for multiple divisible and indivisible goods, including cake
cutting, focuses on additive valuations, which capture perfect
substitutes, i.e. goods that can replace each other in con-
sumption, such as Pepsi and Coca-Cola. However, many real
allocation problems have complementarities in the preferences
to various degrees. For example, if the user of a computer
system wants to run a specific task, they may need 2 units of
CPU and 5 units of RAM. It is not useful if the user gets only 1
unit of CPU but 6 or more units of RAM — they simply cannot
run the task because CPU is a bottleneck resource.

An important scenario with complements is that of single
minded valuations, where the agent values a particular bundle
and nothing less, and anything extra does not add to the value.
Such valuations arise naturally, for example assembling a bike
requires a set of parts, or an agent’s computational task can
finish if and only if it is allocated a required bundle of resource.
The latter example represents basis for more complex models



that take into account the dynamics over time. Due to their
immense applicability, there is an extensive body of literature
on such single minded valuations in areas such as auctions and
exchange markets (see, e.g., [Briest er al., 2005; Nisan et al.,
2007; Ledyard, 2007; Robu et al., 2013; Feldman and Lucier,
2014; Feige et al., 2015]), however work on fair division with
such valuations is largely missing.

1.1 Our Contribution

We study fair division among single minded agents for three
main scenarios, namely multiple divisible goods, cake cutting,
and discrete goods. Our main solution concept—the “com-
petitive allocation from equal incomes” (CAEI)—is inspired
from market equilibria and implements fair outcomes through
a pricing mechanism. The CAEI solution can be seen as a
relaxation of the standard competitive equilibrium from equal
incomes and is a more intuitive notion for discrete resources
than the latter. However many of our results, most notably
for multiple divisible goods, carry over to the competitive
equilibrium from equal incomes solution. The CAEI solution
concept is sandwhiched between the competitive equilibrium
from equal incomes and envy-freeness, and it prunes (via the
prices), the least desirable envy-free allocations. Nevertheless,
CAEI exists if and only if envy-free allocations exist in all the
fair division models we consider.

For multiple divisible goods and cake cutting we show ex-
istence of CAEI, while for discrete goods we give a succinct
characterization of instances that admit this solution; then we
give an efficient algorithm to find one in all cases. Maximizing
social welfare turns out to be NP-hard in general, however we
obtain efficient algorithms for a number of settings, (i) divisi-
ble and discrete goods when the number of different rypes of
agents is a constant, (ii) cake cutting with contiguous demands
and (iii) cake cutting with constant number of agents.

Our results also carry over to valuation models where the
agents have a desired target set (e.g. the set of parts of a bike),
while having very small positive value (¢) for any bundle that
does not contain their desired set. For such scenarios (which
are compatible with experimental evidence that people like to
accumulate “stuff”, even if unneeded), the solution computed
is an e-CAEL

2 Background

We begin by presenting the model and solution concept for the
most general setting. Let N = {1,...,n} be a set of agents
and R a set of resources, where R is a compact subset of a
Euclidean space. Each agent 7 is equipped with a valuation
function V; over the resources, such that for each subset S C
R, V;(S) represents the valuation of agent 4 for bundle S. The
goal is to allocate the resources among the agents in a way
that is fair.

Agent 1 is said to be single minded if there exists a bundle
D; C R that ¢ cannot be happy without; that is, for any
other bundle S C R we have that V;(S) = 1if D; C S and
V;(S) = 0 otherwise.

An allocation x = (x1,...,Xy) is a partition of the set R
of resources such that x; C R is the bundle received by agent
1, the bundles are not intersecting and add up to the whole
space.
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Our solution concept—the “competitive allocation from
equal incomes” (CAEI)—is inspired from market equilibria
and implements fair outcomes through a pricing mechanism.
More formally, each agent is given an artificial unit of currency
by the center. It can be used to acquire goods, and has no
intrinsic value. The agent wants to spend its budget to acquire
a bundle of items that maximizes its utility. A CAEI outcome
is defined as a tuple (p, x), where x is an allocation and p :
R — R, is an integrable, non-negative price density function,
such that for each subset S C R, p(S) = [, ¢ p(z)dz.

Formally, (p, x) is a CAEI solution if and only if:

e Forall i € N, x; maximizes agent ¢’s utility given prices
p and its unit budget.

o All the resources are allocated: U:':l x; = R.
e No agent overspends: p(x;) < 1foralli € N.

The difference between the CAEI solution and the compet-
itive equilibrium from equal incomes (CEEI), is that under
CEE], the agents are additionally required to spend all of their
budget. Since we are in a fair division setting, neither the
center nor the agents have value for the units of currency, thus
the requirement of spending all the budgets can be relaxed
naturally. More importantly, in several of the scenarios we
study, the CEEI solution is not as tractable due to discontinuity
of the valuations and/or discrete goods.

Note that every CAEI allocation is envy-free, since if an
agent envied another agent’s bundle it could just buy it instead,
as the endowments are equal; the prices provide a mechanism
for indicating the interest level in the different resources. How-
ever, since the valuations are discontinuous, CAEI outcomes
are not necessarily efficient. Thus our aim will be to compute
CAEI allocations with improved welfare guarantees.

The social welfare of an allocation x is the sum of utilities
of all the agents: SW (x) = >, Vi(x;).

3 Multiple Divisible Goods

We now formalize the model with multiple divisible goods
and single minded agents. There is a set N = {1,...,n} of
agents and a set M = {1,...,m} of goods. W.l.o.g., each
good comes in one unit that is infinitely divisible. Each agent
i demands a bundle D; = (v; 1, ..., V; m), where v; ; € [0,1]
denotes the fraction required by agent ¢ from good j. The
utility of 4 for a bundle z € [0,1]™ is Vj(z) = 1 if z; > v; ;
forall j € M, and V;(z) = 0 otherwise. Since every part of a
good is equally valued by agents, it suffices to specify its per
unit price, i.e., p; € Ry for good j.

We first show that the CAEI solution is guaranteed to exist
for multiple divisible goods with single minded valuations, and
can moreover be computed in polynomial time. All the results
in this section apply to the CEEI solution as well, which differs
only by requiring that agents exhaust their unit of currency.

Theorem 1. Given a fair division problem with multiple di-
visible goods and single minded agents, a CAEI solution is
guaranteed to exist and can be computed in polynomial time.

Proof. To prove the statement we leverage results on the
existence and computation of market equilibria in Fisher mar-
kets with Leontief utilities (for background see, e.g., chap-
ter 5 in [Nisan ef al., 2007]). Given fair division problem



(N, M, D), we consider a Fisher market where the set of
buyers is N and the set of items is M. Each buyer ¢ has
budget B, = 1 and Leontief utility described by the vec-
tor D; = (vi1,...,Vm), i.e. for any bundle z, u;(z)
Zj

v;

Minljepf:v; ;>0 - } Fisher markets with Leontief utilities
always have exact market equilibria when each item is de-
sired by at least one buyer and each buyer desires at least one
item [Maxfield, 1997].

Let (x, p) be any such equilibrium, where z; ; is the frac-
tion received by agent 4 from good j and p; is the price of

good j. Denote the Leontief utility of buyer ¢ in the market
by uf (X;,P) = Minjecrr, ;>0 z;
ket equilibrium (x, p) is a CAEI solution for the fair division
problem with single minded agents. To this end, we must show
that all the items are allocated, each agent spends no more
than a unit, and gets in exchange an optimal bundle at those
prices. Clearly the first two requirements are met since (x, p)
is a market equilibrium in the Fisher market with identical
budgets.

We additionally show that each agent gets an optimal bundle
in the fair division problem. For every agent i, if the allocation
x satisfies the property that x; ; > v; ; for all j € M, then
Vi(x;) = 1 and 7 gets its demand at these prices. Otherwise,
there is an item &k with v; ;, > 0 but ; ;, < v; 1; then agent i
does not get its demand, thus V;(x;) = 0. Since (x,p) is a
market equilibrium with respect to the Leontief utilities given

by v, we have uf (x;,p) < 72 < 1.

— Uik

Assume by contradiction that in the fair division prob-
lem agent 7 could afford its demand set at prices p, i.e.
Jy € [0,1)" with y; > v; ; Vj € M, and p(y) < 1. Then in
the Fisher market with Leontief utilities, buyer ¢ could also pur-

1/]}>

Vi,j -
} = 1 > uf(x;,p), which is a strict im-

}. We argue the mar-

chase bundle y and get: u£(y,p) = min;.,, ;>0 {
min;.,, ;>0 {Zj
provement over x;, contradicting that (x, p) is a market equi-
librium in the Fisher market. Thus the assumption was false
and (x, p) is a CAEL

Finally, Codenotti and Varadarajan (2004) showed that a
Fisher market equilibrium can be computed in polynomial
time via a convex program formulation, which can be used to
compute a CAFEI solution for single minded agents. O

As the next example illustrates, the solution computed in
Theorem 1 is not necessarily optimal.

Example 1. Consider 2 agents and 2 goods, where the
demand of agent 1 is D; = (0.5,0.4) and of agent 2 is Dy =
(0, 0.6). The CAEI solution from Theorem 1 prices good 1 at
p1 = 0 and good 2 at p» = 2, and the allocation splits good 2
equally between the two agents. This way agent 2 gets zero
utility, while agent 1 gets utility 1 (and some extra good that
is of no use). Instead, another possible CAEI solution is to
set prices p’ = (1/3,5/3), where agent 2 can now afford a
quantity of 0.6 from good 2, and agent 1 still gets its demand.
Thus the CAEI solution computed via the Leontief market
equilibrium is dominated by another CAEI solution with better
welfare. O

We show that while maximizing social welfare is in general
NP-hard, the problem can be solved in polynomial time when
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Algorithm 1: CoMPUTE-MAX-CAEI
Data: Agents N = {1,...,n},items M = {1, ..., m},
valuations v, types T
Result: Social welfare maximizing CAEI
(OPT, x*, p*) < (—00, NULL,NULL)
foreach S C 7 do
(m, p) < SOLVE-OPTIMAL-SUBSET(S, M)
”;;’J’, Yie N,VjeM
if (SW(x) > OPT) then
OPT + SW(x)
(x*,p") < (x,p)
end
end
return (x*, p*)

AW N =

Tij =

D-IE- I

—

0

the number of fypes of agents is constant. This allows handling
possibly large numbers of agents when their demands fit some
standard templates for resource requests.

Theorem 2. Computing a CEEI solution that maximizes so-
cial welfare for single minded valuations with divisible goods

is NP-hard.

The reduction from the NP-complete problem SET PACK-
ING is deferred to the full version.

Theorem 3. Given a fair division problem with single minded
agents and divisible goods, a welfare maximizing CAEI solu-
tion can be found in polynomial time for a constant number of
agent types.

Proof. We are given a set N = {1,...,n} of agents, M
of items, valuations D, and T a set of types of agents, such
that for each i € N, 7(¢) € T represents the type of agent 4,
and agents with same type have identical valuation (7(i) =
7(i") = vi = vy). Algorithm 1 solves this problem and runs
in polynomial time for fixed | 7.

maximize €

m
ij v, 1
=1

m
Zl’j ‘Ui 2> 1+e
j=1

subject to Vie N:7(i) €S

Vie N:7(i) €S

mm- ij -’Ui,j, V‘] c M,VZ‘:T(Z’) € S

m

> mij = pj,
i1

m

E m;j <1,
i=1

p>0; m2>0;

vieM

Vie N

e>0

Procedure SOLVE-OPTIMAL-SUBSET is given as a linear
program, where p; is the price of good j, m;_ ; is the amount
of money spent by agent ¢ on good j, and € is a variable that
should be strictly positive in the optimal solution if the set S
of agent types can be made simultaneously happy.



The observation underlying the algorithm is that agents of
the same type must have identical utilities (but not necessarily
identical bundles). The COMPUTE-MAX-CAEI procedure
tries to compute a CAEI solution for every set S of types so
that agents of type 7 € S are satisfied, while agents outside
S cannot afford their demand. The LP constraints ensure
these conditions are met and a positive solution is found if and
only if there exists a CAEI solution for the set S. At the end,
COMPUTE-MAX-CAEI selects the maximum over all S. [

4 Cake Cutting

Next we investigate the cake cutting problem with single
minded agents. Cake cutting models the problem of al-
locating a heterogeneous divisible resource, such as land,
time, mineral deposits or computer memory, among agents
with different preferences. The “cake” is represented math-
ematically as the interval [0,1] and the agents have differ-
ent preferences over the interval. A “piece” of cake A is
a union of intervals: A = (Iy,...,I;). The literature on
cake cutting has seen very interesting algorithmic develop-
ments in recent years (see, e.g., [Kurokawa er al., 2013;
Segal-Halevi et al., 2015c; Aziz and Mackenzie, 2016]),
all of which are concerned with additive valuations in the
one-dimensional model. Among the few exceptions we
mention: [Caragiannis er al., 2011] studied fair division
with additive valuations constrained by a minimum length
requirement (PUML), [Branzei et al., 2013] studied exter-
nalities in cake cutting, while [Segal-Halevi er al., 2015a;
2015b], studied cake cutting in two dimensions, where the
agents also care about the shape of the pieces that they receive.
In earlier work, a different multidimensional model of fair
division has been explored under the name of pie-cutting by
Brams et al. [Brams et al., 2008], while a very general model
of fair resource division has been explored in the works of
DallAglio and Maccheroni and of Husseinov and Sagara ,
who prove the existence of fair and efficient allocations under
mild conditions assuming that the valuations are continuous.
However, single minded valuations are discontinuous, and so
their results do not directly imply ours.

In this paper we focus on single minded agents, and so each
agent ¢ will demand a set D, consisting of possibly several
disjoint intervals: D; = (D;1,...,D;m,;). The utility of
agent i for a piece of cake A C [0, 1]is: V;(A) =1ifD; C A
and V;(A) = 0 otherwise.

Examples of single minded agents in cake cutting include
cases where the agent requires land that has buildings on it
(with some particular functionality) or wants to build a house
in a particular location. The case where each single minded
agent requires a contiguous piece (i.e., m; = 1) can in fact be
mapped to a standard problem known as “interval scheduling”
in operations research.

We first show that the CAEI solution always exists and can
be computed efficiently in this model.

Theorem 4. A CAEI solution is guaranteed to exist and can
be computed in polynomial time in the cake cutting problem
with single minded agents.

Proof. Foreachi € N, let D; = (D;1,...,D; ;) be the
disjoint intervals in its demand set, where D; ; = [I; ;,7; ;] C
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[0, 1]. Divide each interval D; ; into two equal pieces, and let

this partition of D; ;. Consider the set of all the distinct points
thus obtained: P = (U;=, Uj2; Fi;) U{0,1} = {q0, g1, - -
dm}, where 0 = go < q1 < ... < ¢m = 1. Then we can view
every segment I, = [qx, qx+1] delimitated by two consecutive
points in P as an indivisible good; moreover, good [, is in the
demand set of each agent ¢ for which [gg, gx+1] C D;. This
gives a related allocation problem with m indivisible goods
and n agents, where no agent has a demand set consisting
of a single good. The latter property follows from the fact
that we partitioned each interval D; ; into two pieces, which
are viewed as distinct goods. From [Branzei et al., 2015], a
competitive equilibrium from equal incomes is guaranteed to
exist and can be computed in polynomial time for every fair
division problem with indivisible goods and single minded
agents, where no agent has a demand set with only one good;
let (x, p) be such an allocation and prices.

Then we can compute a CAEI in cake cutting by allocating
the intervals in P in the same order (from left to right) as the
indivisible goods are allocated under x and setting the price
curve of each interval [gy, gr+1] uniformly such that it sums
up to the price of the corresponding indivisible good. O

lijs , szj} be the set of points resulting from

When the demands are contiguous we can compute a wel-
fare maximizing CAEI in polynomial time. The proof requires
a more delicate construction, the details of which are in the
full version of the paper (Branzei, Lv, Mehta [2016]).

Theorem 5. A welfare-maximizing CAEI can be computed in
polynomial time in cake cutting with single minded agents and
contiguous demands. Moreover, when there are no identical
agents, the welfare maximizing CAEI coincides with the solu-
tion to the pure optimization problem of maximizing welfare.

Proof. The idea is to leverage a connection with the inter-
val scheduling problem [Kleinberg and Tardos, 2005] to first
decide the agents that get allocated, and then to construct an
asymmetric pricing scheme to implement a price equilibrium.

The interval scheduling problem is as follows. There are n
jobs to be run on a supercomputer, where each job ¢ runs from
time s; to time f;. There are multiple such requests arriving
simultaneously, and the goal is to process as many of them
as possible, but the computer can only run one job at a time.
The question is how to schedule the jobs so that the maximum
number of requests is served. The optimal allocation—that
maximizes the number of jobs scheduled—is given by a greedy
algorithm: Schedule first the job with the earliest finishing
time, then remove the jobs intersecting with it, and repeat
among the remaining jobs.

This problem can be mapped to cake cutting with single
minded agents by considering an agent for each job, i.e. N =
{1,...,n}, and setting the demand of each agent i to the
schedule of job i, that is D; = {[s;, fi]}, where s;, f; are
normalized in [0, 1].

While our aim is to indeed maximize the number of com-
pleted jobs, we want to achieve this in a way that is fair. That
is, we will compute an allocation of the cake x and a price
curve p such that (x, p) represent a CAEI solution, where
p(z) is the value of the price density function at point x. This
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Figure 1: Four agents with contiguous single minded demands,
indicated by the blue brackets the intervals (left). On the right,
the two agents selected in the optimal schedule are circled and
the prices marked on top of each differently priced interval
(the price listed indicates the price of the whole interval for
the corresponding bracket).

can be accomplished by allocating the agents in the same name
order that the greedy algorithm allocates the corresponding
jobs, with the caveat that if multiple agents have the same
finishing time, then the one with the lafest starting time must
be selected. For each k-th agent that gets selected to receive
their full demand, we select two very small intervals at the left
and right endpoints of their demand, respectively, and price
them (uniformly) to sumup to &k - € and 1 — k - ¢, respectively.
When there are no identical demands, the agents that don’t
get served but for which there is an unallocated piece of their
demand, can receive a small such piece (at a total price of
1); otherwise, they get nothing (but their demand now has the
property that it costs more than 1). This allocation can be done
so that the whole cake is divided.

Then to handle identical agents, the algorithm can be mod-
ified such that whenever selecting the earliest finishing time
and finding multiple agents with the same finish and start time,
then take a very small interval at the leftmost point of the
unallocated cake and divide it equally among the identified
identical agents, setting the price uniformly to sum up to their
budgets. Then iterate on the remaining cake. The complete
proof is deferred to the full version, while an example with 4
agents is given in Figure 1. U

On the other hand, if the demands are not contiguous, then
the problem of computing a welfare maximizing CAEI is NP-
hard. The reduction from SET PACKING is in the full version.

Theorem 6. Given a cake cutting problem with single minded
valuations, computing a welfare-maximizing CAEI is NP-hard.

We can also maximize social welfare for discontinuous
demands in polynomial time when the number of agents is
constant. The idea is to try out every possible set S C N of
happy agents, who will receive their required land at a price
of one, while the remaining agents split the remaining cake
at prices so they cannot afford their demand. Then select the
outcome that maximizes welfare among all choices of S.

Theorem 7. Given a cake cutting problem with single minded
agents, a welfare maximizing CAEI can be computed in poly-
nomial time when the number of agents is constant.

S Multiple Discrete Goods

Our setting for discrete goods is as follows. There is a set
N = {1,...,n} of agents and M = {1,...,n} of items,
where each item j comes in Q; indivisible copies. Each agent
1 has a demand set D; C M, and wants a copy of each item
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7 € D;; D; is not a multi-set. Without loss of generality,
we assume that each type of item is required by some agent.
We illustrate the model with an example: there are agents
N ={1,2}, items M = {1, 2,3}, quantities Q; = Q3 = 1,
Q2 = 2, and demands D, = {1,2}, Dy = {2,3}.

The goal is to find a set of prices for each item—such that
every copy from the same item has an identical price—together
with an allocation x such that (x, p) is a CAEI solution. In
our example, a CAEI solution is attained at: p; = 0.5,p2 =
0.5,p3 = 0.5 and x; = {1, 2}, x5 = {2, 3}

Next we provide a succinct characterization of the instances
that admit a CAEI solution. To this end, a useful notion will be
that of over-demand. We say that an item j is over-demanded
among a set of agents S if the aggregate demand of the agents
in S exceeds the available supply from item j, namely @);. We
illustrate this in the next example.

Example 1. Consider a market M with single minded agents
and discrete goods, where M = {1, 2}, with quantities Q1 =
2 and Q2 = 4, and agents N = {1,...,4}, with demands:
Dy = Dy = D3 = {1}, D4y = {1,2}. Then the aggregate
demand of the set of agents S = {1,2,3} with singleton
demands, consists of 3 copies of item 1, which exceeds (1, the
available supply from this item. Thus item 1 is over-demanded
among S.

The next theorem shows that these are essentially the only
instances that don’t have a fair outcome. We say that demand
of agent i is singleton if | D;| = 1.

Theorem 8. Given a fair division problem with single minded
agents and discrete goods, a CAEI solution exists if and only
if there is no set of agents with singleton demands that give
rise to an over-demanded item among that set. Moreover, a
solution can be computed in polynomial time if it exists.

Proof. Consider Algorithm 2. Clearly, if there is a set of
agents S with singleton demands, such that D; = {j} for
some j € M and all ¢ € S, where |S| > @Q;, then no CAEI
can exist. This is because p; < 1 causes over-demand, and
p; > 1 makes it un-affordable and thereby un-sold.

We claim all other instances admit a CAEI. Algorithm 2
forms a sequence S of active agents, initially containing all
the agents sorted in increasing order of | D;|, and then iterates
over the item types, at each step searching for an item that is
desired by more agents among the active ones (i.e. in S) than
there are copies available. If such an item j is found, then j is
allocated at a price of p; = 1, one copy to each of the first Q);
agents in S that want it. All the active agents that got item j
are removed from S, and the algorithm searches for another
such over-demanded and unallocated item among the updated
set S. Otherwise, when no such item is found, all the goods
left are in abundant supply for the agents in .S and can be given
for a small price (¢) among them. Note that these last agents,
which are allocated bundles at a price of € per good, receive
not only items that they desire, but in fact all the remaining
items.

We argue that the pricing rule ensures that a CAEI is com-
puted. In particular, all the goods are allocated—at latest, the
player (or set of players), which receive items in the last round
of the algorithm, get all the remaining items. Moreover, the



Algorithm 2: COMPUTE-DISCRETE-CAEI

Input: Agents N = {1,...,n},items M = {1, ..., m},
demand sets D;, quantities @ ;
Output: CAEI (x, p), or NULL if none exists

A + 0 // item types allocated so far
S < SORT-BY-DEMAND-SET-SIZE(N) // Sort the
players in increasing order of demand set size
while (3j € M \ A : OVER-DEMAND(j, S) = TRUE) do
pj < 1; ALLOCATE-OVERDEMAND(}, S);
A<+ AU{j}

1 for each (j € M) do

2 if (Q; <card({i € N |D;=1{j}})) then
3 | return NULL // No solution

4 end

s end

6

7

e ®

end
e+ 1/ (1 +30 Qj) // very small value

for each (j € M\ A) do
p; < €; ALLOCATE-REMAINDER(j, S);
A+ AU{j}

11

12
13

end
Procedure ALLOCATE-OVERDEMAND (j, S)
Q Q3 S; < {k €S| j€ Dy} /active agents
that want item j
// Give one copy of j to every active agent that wants
it until running out of copies
for each (i € S;) do
if (Q > 0) then
append(x;,j); Q <+ Q — 1/ Agent i gets a
copy of j; decrease the # of copies left
S« S\ {i} #/ mark i as inactive
end
end
Procedure AL1.OCATE-REMAINDER (j, S)
S; < {k € S| j € Dy} // active agents that want
item j
for each (i € S;) do
| append(x;, j)
end
K «+ Q; — |S;j| #/ # of copies of j left unallocated
if (K > 0) then
0« S;.last() // The last player in S; gets all the
additional copies of j
append(xy, {j} x K)
end

14
15
16

17

18
19
20

21
2
23
24
25

26
27
28
29
30
31

32

33

pricing rule is such that each agent ¢ is allocated all of its
bundle at once, regardless of whether x; contains ¢’s required
demand set or not. The agents are divided in two categories,
namely those who get exactly one item at a price of 1 (Line

9) and those who get multiple items at a price of € (Line 13).

In both cases, the pricing rule ensures that the allocation x;
costs at most 1. By a case analysis, it can be seen that each
agent gets an optimal bundle at the given prices; due to space
constraints, this is delegated to the full version. O

We illustrate Algorithm 2 on an example.
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Example 2. Let N = {1,2,34,5}, M = {1,2,3,4,5}, quan-
tities Q1 = 2, Q2 = 4, Q3 = 2, Q4 = 3, Q5 = 2, de-
mands: Dy = {1}, Dy = {1,2}, D3 = {1,3}, D4 = {2,3.4},
D, = {2,3,4,5}. Only agent 1 has singleton demand {1}
and |Q1]| > 1, so there is a CAEL Algorithm 2 sorts the
agents in increasing order by demand set size and initializes
S = (1,2,3,4,5). The search for over-demanded items be-
gins. Item 1 is wanted by 3 agents in .S, namely {1, 2,3},
but 2 < 3; it is over-demanded. Set p; = 1,
x1 = x3 = {1}. Update S < S\ {1,2} = {3,4,5}. Next
item 3 is over-demanded (wanted by agents 3, 4, 5 but Q3 = 2).
Set p3 = 1 and x3 = x4 = {3}. Update S = {5}. All the
items are in sufficient quantities now, give all of them to agent
5 at price e = 1/14 each.

It is NP-hard to compute a welfare-maximizing CAEI (see
[Branzei et al., 2015]), but if we no longer insist on all the
items being allocated, then we get a polynomial time algorithm
by solving the problem as if the goods were divisible, and then
rounding the solution.

Theorem 9. Consider a fair division problem with agents
N, m items in quantities ) = (Q1, ..., Qm ), and demand
D; C{1,...,m} foragenti € N. Let T be the types of the
agents, where same type agents have the same demand. Then
a welfare maximizing CAEIL, where all items need not be sold,
can be computed in polynomial time if | T| is a constant.

6 Discussion

We studied the computation and complexity of the competi-
tive allocation from equal incomes, a method for fair division,
for single minded agents for multiple divisible and discrete
goods, and cake-cutting. Although a solution can be computed
efficiently, social welfare maximizing solutions are hard to
compute in general. However, we solved the latter efficiently
for several interesting special scenarios. However, cases with
constantly many goods, or altogether characterizing easy in-
stances remain unresolved. will be interesting to settle these.
We note that our results also work valuation classes where the
agents have a desired target set (e.g. the set of parts of a bike),
and very small positive value (¢) for any other bundle of goods.
For such scenarios, the solution computed is an e-CAEI.

In the full version of the paper, we also explain how the
CAEI solution can rule out (via the prices) the least desirable
envy-free allocations, while remaining envy-free on exactly
the same instances where an envy-free solution is guaranteed
to exist. On the other hand, the standard CEEI solution is not
the right notion for cake cutting or discrete goods; for instance,
with discrete goods, even when there exist goods in abundant
quantities for everyone, it can be the case that the number
of units is “wrong” and cannot result in the exact clearing
prescribed by CEEIL

An immediate generalization is that of Leontief valuations,
where even existence of succinct characterization of instances
that admit CEEI or CAEI in case of discrete goods is not clear,
while the bigger question of understanding fair division with
complementarities remains a mystery at large.
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