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Abstract

We study the problem of locating a public facil-
ity on a real line or an interval, when agents’ costs
are their (expected) distances from the location of
the facility. Our goal is to minimize the maximum
envy over all agents, which we will refer to as the
minimax envy objective, while at the same time en-
suring that agents will report their most preferred
locations truthfully. First, for the problem of locat-
ing the facility on a real line, we propose a class
of truthful-in-expectation mechanisms that gener-
alize the well-known LRM mechanism [Procaccia
and Tennenholtz, 2009; Alon et al., 2009], the best
of which has performance arbitrarily close to the
social optimum. Then, we restrict the possible lo-
cations of the facility to a real interval and consider
two cases; when the interval is determined rela-
tively to the agents’ reports and when the interval is
fixed in advance. For the former case, we prove that
for any choice of such an interval, there is a mecha-
nism in the aforementioned class with additive ap-
proximation arbitrarily close to the best approxima-
tion achieved by any truthful-in-expectation mech-
anism. For the latter case, we prove that the approx-
imation of the best truthful-in-expectation mecha-
nism is between 1/3 and 1/2.

1 Introduction
Over the past years, facility location has been a topic of in-
tensive study at the intersection of AI and game theory. In
the basic version of the problem [Procaccia and Tennenholtz,
2009], a central planner is asked to locate a facility on a
real line, based on the reported preferences of self-interested
agents. Agents’ preferences are single-peaked and are ex-
pressed through cost functions; an agent’s cost is the distance
between her most-preferred position (her “peak”) and the lo-
cation of the facility [Procaccia and Tennenholtz, 2009].

Our work falls under the umbrella of approximate mech-
anism design without money, a term coined in [Procaccia
and Tennenholtz, 2009] to describe problems where some ob-
jective function is approximately maximized under the con-
straint that the truthful behavior of the participants must

be ensured. In fact, the setting in [Procaccia and Tennen-
holtz, 2009] is the very same facility location setting pre-
sented above. The objectives studied in [Procaccia and
Tennenholtz, 2009], as well as in a large body of subse-
quent literature [Alon et al., 2009; Lu et al., 2009; 2010;
Fotakis and Tzamos, 2013b] are minimizing the social cost,
or the maximum cost, The social cost is the equivalent to the
utilitarian objective from economics, whereas the maximum
cost is often referred to the egalitarian solution and is in gen-
eral interpreted as a more “fair” outcome, in comparison to
its utilitarian counterpart.

In this paper, we adopt a different fairness criterion from
the fair division literature [Caragiannis et al., 2009; Lipton
et al., 2004; Netzer and Meisels, 2013], that of minimax
envy. Since in the standard facility location setting in com-
puter science agents’ preferences are expressed through cost
functions, quantifying comparisons between costs are possi-
ble and in fact, such comparisons are inherent in both the so-
cial cost and the maximum cost objectives. In a similar spirit,
we can define a quantified version of envy; the envy of an
agent with respect to another agent, is simply their difference
in distance from the facility (normalized by the length of the
location profile). For example, when there are two agents,
placing the facility on either agent’s most preferred point gen-
erates an envy of 1, while placing it in the middle of the in-
terval defined by their most preferred locations generates an
envy of 0. The goal is to find the location that minimizes the
maximum envy of any agent, while at the same time mak-
ing sure that agents will report their most preferred locations
truthfully.

1.1 Our contributions
We study two versions of the problem, when the facility can
be placed anywhere on a real line and when the space of al-
lowed facility locations is restricted to an interval. As we
will argue later on, the usual notion of the (multiplicative)
approximation ratio used typically in facility location prob-
lems is not fit for the minimax envy objective. In fact, it
is not hard to see that no truthful-in-expectation mechanism
can achieve a finite approximation ratio, the reason being
that there are inputs where the minimum envy is 0, which
is not however achievable by any truthful mechanism. For
that reason, we will employ an additive approximation to
quantify the performance of truthful mechanisms. Additive
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approximations are quite common in the literature of ap-
proximation algorithms [Alon et al., 2005; Goemans, 2006;
Williamson and Shmoys, 2011] as well as the mechanism de-
sign literature [Roughgarden and Sundararajan, 2009; Cohler
et al., 2011], even for facility location [Nissim et al., 2012].

First, we study the version where the facility can be placed
anywhere on the real line. We design a class of truthful-
in-expectation mechanisms, that we will call ↵-LRM. which
generalizes the well-known LRM (“left-right-median”) mech-
anism introduced in [Procaccia and Tennenholtz, 2009] and
named in [Alon et al., 2009]. We prove that there exists a
mechanism in the ↵-LRM class that is near-optimal, i.e. it
achieves an ✏ additive approximation, for any ✏ > 0.

Next, we consider the variant of the problem where the
facility is restricted to an interval. This case captures most
real-life scenarios and is often implicit in the motivation of
the problem; when we locate a library in a university, the
candidate locations are clearly constrained to be within the
university premises or when choosing the ideal temperature
in a room, it might not be sensible to consider temperatures
much higher or lower than what any agent would ideally pre-
fer. The reason why this restriction was not discussed explic-
itly in previous work is that the best performance guarantees
for other objective functions are achievable even if we restrict
our attention to the interval defined by the reported locations
of the agents. As we will show, this is no longer the case for
the minimax objective.

When the interval is defined by the report of the agents, we
prove that for any choice of such an interval, there exists a
mechanism in the class ↵-LRM with additive approximation
that is arbitrarily close to the approximation achieved by the
best truthful-in-expectation mechanism. For the case when
all reports lie withing fixed intervals, we prove that the ap-
proximation of the best truthful-in-expectation mechanism is
between 1/3 � ✏ and 1/2, for any ✏ > 0. For both the real-
line and the restriction to the interval, we prove that any truth-
ful deterministic mechanism has a minimum maximum envy
of 1, which shows that without randomization, making some
agent maximally envious is unavoidable.

1.2 Related work
The facility location problem has been studied extensively
in the computer science literature. [Procaccia and Ten-
nenholtz, 2009; Alon et al., 2009; Lu et al., 2009; 2010;
Fotakis and Tzamos, 2013a; 2013b]. Crucially however, most
of the rich literature on facility location in computer science
considers either the social cost or the maximum cost objec-
tive. It is only recently that different objectives have been
considered. Feigenbaum et al. [Feigenbaum et al., 2013]
consider facility location on a real line for minimizing the
L
p

norm of agents’ costs, while Feldman et al. [Feldman
and Wilf, 2013] design truthful mechanisms for approximat-
ing the least squares objective on tree networks. Our work
introduces a different objective which is not based on aggre-
gate measures, but rather on a quantitative notion of individ-
ual fairness.

The objective of envy minimization has attracted consid-
erable attention in the recent literature of fair division and
mechanism design. Lipton at al. [Lipton et al., 2004] and

Caragiannis et al. [Caragiannis et al., 2009] study indivisible
item allocation for the minimax envy criterion and bound the
performance of truthful mechanisms. For the same problem,
Nguyen and Rothe [Nguyen and Rothe, 2013] study the min-
imization of the maximum envy as well as the total envy, but
from a computational standpoint and in the absence of incen-
tives. Netzer and Meisels employ the minimax envy criterion
to resource allocation problems in a distributed framework. It
is worth noting that relaxations of envy-freeness and the goals
of envy minimization have also been considered in the past in
economics [Zeckhauser, 1991].

2 Preliminaries
In the facility location problem, a set N = {1, . . . , n} of
agents have to decide collectively on the location of a fa-
cility y 2 R. Each agent i is associated with a location
x
i

2 R, which is her most preferred point on the real line.
Let x = (x1, . . . , xn

) be the vector of agents’ locations,
that we will refer to as a location profile. Given a loca-
tion of the facility y, the cost of an agent is simply the dis-
tance between her location and the location of the facility,
i.e. cost

i

(y) = |y � x
i

|. For a given location profile x,
we will use lm(x) and rm(x) to denote the locations of
the leftmost and the rightmost agents respectively. We will
let mid(x) = (rm(x) + lm(x))/2. Finally, we will let
L(x) = rm(x)� lm(x) denote the length of profile x.

A mechanism is a function f : Rn ! R mapping loca-
tion profiles to locations of the facility. The cost of an agent
from mechanism f is defined as cost

i

(f) = cost
i

(f(x)). In
this paper, we will also consider randomized mechanisms; a
randomized mechanism f is a random variable X , with prob-
ability density function

p(y, x1, x2, ..., xn

) and
Z 1

�1
p(y, x1, x2, ..., xn

)dy = 1.

Informally, randomized mechanisms output different loca-
tions with different probabilities. The cost of agent i from
a randomized mechanism f is defined as

cost
i

(f) =

Z 1

�1
|y � x

i

|p(y, x1, x2, ..., xn

)dy.

We will be interested in truthful mechanisms, i.e. mecha-
nisms that do not incentivize agents to misreport their loca-
tions. Formally, a mechanism f is truthful if for every agent
i 2 N and for any � 2 R, it holds that

cost
i

(f(x
i

+ �,x�i)) � cost
i

(f(x)),

where x�i is the vector of reported locations of agents in
N\{i}. For randomized mechanisms, the notion of truthful-
ness is truthfulness-in-expectation and the definition is simi-
lar, with respect to the expected cost of an agent.

We will aim to minimize the maximum envy of all agents.
For a given location of the facility y, the envy of agent i with
respect to agent j is defined as cost

i

(y)�cost
j

(y). The max-
imum envy is defined as

F (y) =
max1i 6=jn

(cost
i

(y)� cost
j

(y))

L(x)
.
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where without loss of generality we can assume that L(x) 6=
0 (otherwise outputting lm(x) trivially minimizes the maxi-
mum envy). We define the maximum envy of a mechanism
f on input profile x to be F (f(x)) = F (f,x). For random-
ized mechanisms, the maximum envy is defined with respect
to the expected costs and given the definition of a randomized
mechanism as a random variable can be written as

F (f,x) =
E [max1i 6=jn

(|X � x
i

|� |X � x
j

|)]
L(x)

.

Our objective will be to find mechanisms that minimize the
quantity F (f,x) over all location profiles. Note that by the
definitions above, the maximum envy of any mechanism is 1
and the minimum envy is 0.

In a location profile with two agents, the location that min-
imizes the envy of any agent is the midpoint of the location
interval. Furthermore, the minimum envy at that location is
0. On the other hand, it is not hard to see that a mechanism
that outputs the midpoint of the location interval is not truth-
ful while at the same time, assigning positive probabilities to
other locations renders the minimum envy strictly positive.
This means that if we employ the commonly used notion of
multiplicative approximation (the approximation ratio) [Pro-
caccia and Tennenholtz, 2009], the ratio of any truthful mech-
anism is infinite and hence this measure of efficiency is not
appropriate for the problem that we study here.

We will instead consider an additive approximation: a
mechanism achieves an approximation of ⇢ 2 [0, 1] if the
maximum envy that it generates for any location profile x
is at most O(x) + ⇢, where O(x) is the minimum possible
envy achievable on profile x. We will be interested in truthful
mechanisms with good additive approximations.

The following lemma will be very useful for analyzing the
approximations of our mechanisms. The lemma implies that
for any number of agents, we can assume that the location
that minimizes the envy is in fact the midpoint of the location
profile. The proof is based on a case analysis, and is omitted
due to lack of space.
Lemma 1. Given a location profile x, the location mid(x)
of the facility minimizes the maximum envy over all agents.

3 Location on the real line
In this section, we consider the variant of the problem where
the location of the facility can be any point y 2 R on the
real line. We start with the following theorem, which implies
that deterministic truthful mechanisms are bound to perform
poorly; the proof is not very involved and is omitted due to
lack of space.
Theorem 1. The approximation of any truthful deterministic
mechanism is 1.
Theorem 1 suggests that in order to any reasonable mini-
max envy guarantees, we need to resort to randomization.
Next, we define a class of truthful-in-expectation mecha-
nisms, parametrized by a constant ↵ 2 (0, 1/4], that we will
call ↵-LRM.
Mechanism ↵-LRM. For any location profile x, let

L↵(x) =
1� 4↵

4↵
L(x).

Place the facility at mid(x) with probability 1 � 2↵, at
lm(x) � L↵(x) with probability ↵, and at rm(x) + L↵(x)
with probability ↵.

Note that the class ↵-LRM generalizes the well-known
LRM mechanism [Procaccia and Tennenholtz, 2009; Alon et
al., 2009], since the LRM mechanism can be obtained from
the above definition by setting ↵ = 1/4. We prove the fol-
lowing:
Theorem 2. Any mechanism in the class ↵-LRM is truthful-
in-expectation.

Proof. Let x = (x1, x2, . . . , xn

) be any location profile. For
ease of notation and without loss of generality, assume that
x1  x2  . . .  x

n

. Agents 1 and n can change the lo-
cation of the facility by misreporting their locations, but any
other agent j can not impact the output unless the misreported
location x0

j

is such that x0
j

< x1 or x0
j

> x
n

. We consider
two main cases.
Case 1: The deviating agent is either agent 1 or agent n. We
only need to prove that agent 1 can not benefit from misre-
porting; the argument for agent n is completely symmetric.
We will consider the cases when agent 1 reports x1 + � and
x1 � �, for � > 0 separately.

• First consider the case when agent 1 reports x1 + � for
� > 0. Without loss of generality, we can assume that
lm(x1 + �,x�1) = x1 + �, because any misreport x1 +
� 2 (x2, xn

] gives agent 1 the same expected cost as the
misreport x1 + � = x2 (and any misreport x1 + � > x

n

is obviously worse for the agent). By this discussion,
it holds that mid(x1 + �,x�1) = (x1 + x

n

+ �)/2.
Then the contribution to the cost of agent 1 by mid(x1+
�,x�1) is larger by (1� 2↵)�/2, when compared to the
contribution to the cost of the agent from mid(x). The
total contribution to the cost of the agent from lm(x)�
L↵(x) and rm(x) + L↵(x) is

↵L↵(x) + ↵(L↵(x) + L(x)) = (1� 2↵)L(x)/2.

When agent 1 reports x1 + �, the corresponding contri-
bution to the cost of the agent from lm(x1 + �,x�1) �
L↵(x1+�,x�1) and rm(x1+�,x�1)+L↵(x1+�,x�1)
is (1 � 2↵)(L(x) � �)/2 which is smaller than the
contribution to the cost of the agent from locations
lm(x) � L↵(x) and rm(x) + L↵(x) by (1 � 2↵)�/2
and hence agent 1 can not benefit by misreporting.

• If agent 1 reports x1��, for � > 0 it holds that mid(x1�
�,x�1)(x1 + x

n

� �)/2. Then the contribution to the
cost of the agent from mid(x1 � �,x�1) is smaller by
(1 � 2↵)�/2, when compared to the contribution to the
cost from mid(x). Again, the contribution to the cost
from locations lm(x)� L↵(x) and rm(x) + L↵(x) is
↵L↵(x) + ↵(L↵(x) + L(x)) = ((1� 2↵)L(x))/2.

When agent 1 reports x1 � �, the corresponding con-
tribution from lm(x1 � �,x�1) � L↵(x1 � �,x�1)
and rm(x1 � �,x�1) + L↵(x1 � �,x�1) is (L(x) +
�)(1 � 2↵)/2, which is larger than the contribution to
the cost of the agent from locations lm(x)�L↵(x) and
rm(x)+L↵(x) by (1�2↵)�/2 and hence agent 1 cannot
benefit from misreporting.
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Case 2: The deviating agent is some agent i /2 {1, n}. From
the earlier discussion, in order to affect the location of the
facility, it has to be the case that for any misreport x0

i

of agent
i, it holds that x0

i

< x1 or x0
i

> x
n

. We will only consider the
case when x0

i

< x1; the other case is completely symmetric.
Let � > 0 be such that x0

i

= x1 � �. Since x1 � � is now the
leftmost point of the location interval, it holds that mid(x1 �
�,x�i) = (x1 � � + x

n

)/2. Then the contribution to the
cost of agent i from mid(x1 � �,x�i

) is smaller by at most
((1� 2↵)�)/2, compared to the contribution to the cost from
mid(x). On the other hand, the contribution to the cost of the
agent by lm(x1 � �,x�i

) � L↵(x1 � �,x�i

) and rm(x1 �
�,x�i

)�L↵(x1��,x�i

) when compared to the contribution
from lm(x)�L↵(x) and rm(x)�L↵(x) is larger by at least
↵(�+(1� 4↵)�/2↵) = (1� 2↵)�/2 and thus agent i cannot
benefit from misreporting her location.

Next, we prove that a mechanism in this class is arbitrarily
close to the optimal assignment, that minimizes the maximum
envy.

Theorem 3. For any ✏ > 0, there exists a mechanism in the
class ↵-LRM with additive approximation ✏.

Proof. Recall that O(x) is the minimum maximum envy on
profile x. By Lemma 1, it holds that O(x) = F (mid(x),x)
and hence the maximum envy achieved by a mechanism ↵-
LRM, for some ↵ 2 (0, 1/4] is at most (1�2↵)O(x)+2↵ and
the approximation of the mechanism is at most 2↵�2↵O(x).
For any ✏ > 0, we can choose ↵ small enough to achieve an
approximation of ✏.

4 Location on an interval
In real-world applications, the designer might not have the
freedom to place the facility anywhere he wants; the allowed
locations might be constrained by physical borders (like a
university campus) or practicality constraints (placing the li-
brary to far away even with a small probability is impractical).

We will consider the minimax envy when the facility is re-
stricted to some interval [a, b], and consider two cases; when
the interval is relative, i.e. determined by the reports of the
agents or fixed in advance, with all the reports lying within
the interval. Again, we have the following theorem, the proof
of which is omitted due to lack of space.

Theorem 4. The approximation of any deterministic truthful
mechanism for facility location on an interval is 1.

Next, we state some useful lemmas that will allow us to first
consider profiles with two agents and then generalize the re-
sults to any number of agents. We start with a lemma that
uses a mechanism for n agents to simulate a mechanism for
two agents. Similar lemmas in spirit have been proven before
in the literature [Lu et al., 2010; Filos-Ratsikas et al., 2015];
we omit the proof due to lack of space.

Lemma 2. Let f be a truthful mechanism for n agents with
locations x1, . . . , xn

. Let f
k

be the mechanism for two agents
with locations x0

1, x
0
2 such that

f
k

(x0
1, x

0
2) = f(x1, x2, . . . , xk

, x
k+1, . . . , xn

)

whenever x1 = x2 = . . . = x
k

= x0
1 and x

k+1 = x
k+2 =

. . . = x
n

= x0
2. Then, f

k

is truthful. Furthermore, if the
output of f is restricted to an interval [a, b], the output of f

k

is restricted to the interval [a, b] as well.
Using Lemma 2, we prove the following lemma that allows us
to bound the approximation of truthful mechanisms by only
considering the case of two agents.
Lemma 3. Let f be a truthful mechanism for n players with
approximation ⇢. Then, there exists a truthful mechanism g
for two agents with approximation at most ⇢.

Proof. Let f be such a mechanism as above and let g be some
mechanism f

k

for two agents constructed as in Lemma 2, for
some value of k. Since the approximation of f is the worst
case approximation over all input profiles, the achieved ap-
proximation of f (i.e. the difference between the minimax
envy of the mechanism and the minimum maximum envy) on
some input of the form x = (x1, x2, . . . , xk

, x
k+1, . . . , xn

),
with x1 = · · · = x

k

and x
k+1 = · · · = x

n

is at most
⇢. By the construction of mechanism g and given that
cost

i

(f(x)) = cost
i

0(f(x)) for all i, i0 = 1, . . . , k and that
cost

j

(f(x)) = cost0
j

0(f(x)) for all j, j0 = k + 1, . . . , n, the
approximation of g on any profile (x0

1, x
0
2) is at most ⇢.

4.1 Relative Interval
Here, we consider the case where the allowed interval is de-
termined by the reports of the extremal (leftmost and right-
most) agents. This setting corresponds to scenarios where the
designer aims to balance the quality of the solution with the
set of reports, in order to meet some natural restrictions ex-
post. For example, the designer might want to make sure that
in every possible run of the mechanism, the facility does not
lie too far away from any agent, no matter how small the prob-
ability of that happening is. In the following, we will prove
that for any choice of such an interval, there is a mechanism
in the class ↵-LRM that achieves the best possible approxi-
mation among all truthful-in-expectation mechanisms.

First, we consider the case when the allowed interval is
(strictly) contained in the interval defined by the profile.
Lemma 4. Let (x1, x2) be any location profile with two
agents and assume without loss of generality that x1  x2.
For any k 2 [0, 1), there does not exist a truthful mechanism
such that it always holds that

f(x1, x2) 2

(1 + k)x1

2
+

(1� k)x2

2
,

(1� k)x1

2
+

(1 + k)x2

2

�

i.e. the length of the allowed interval is r = k(x2 � x1).

Proof. Assume for contradiction that there exists a truthful
mechanism f in this setting. For ease of notation, let (x, y)
denote the location profile (x1, x2) and for any such profile,
let

l
x,y

=
(1 + k)x

2
+
(1� k)y

2
, r

x,y

=
(1� k)x

2
+
(1 + k)y

2
denote the endpoints of the allowed interval and let g

x,y

=
E[|X

x,y

� l
x,y

]| denote the expected distance between the fa-
cility and the left endpoint l

x,y

of the allowed interval. It is
easy to see that

0  g
x,y

 k(y � x) (1)
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Next, consider a location profile (x0, y0) (with x0 < y0) and
observe that since k < 1, the expected cost of agent with
location x0 is g

x0,y0 +(1� k)(y0�x0)/2. Now consider the
case when the agent with location x0 reports z0 such that

(1 + k)z0/2 + (1� k)y0/2 = x0,

i.e. her report sets x0 as the left endpoint of the allowed inter-
val. In that case, her cost is x0 is g

z0,y0 and since mechanism
f is truthful-in-expectation, we have that

g
x0,y0 + (1� k)(y0 � x0)/2  g

z0,y0 (2)

Combining (1) and (2), we obtain

g
x0,y0 

✓
2k

1 + k
� 1� k

2

◆
(y0 � x0) (3)

Since for any location profile (x0, y0), there exists some z0
such that (1+k)z0/2+(1�k)y0/2 = x0, Inequality (3) holds
for all location profiles. By applying the same argument on
the interval (z0, y0) and repeating this process by combining
the new upper bound with Inequality (3), we obtain g

x0,y0 
a
i

(y0 � x0), where a
n

is given by the recursive relation:

a
i+1 =

2

1 + k
a
i

� 1� k

2
, a1 = k (4)

By Equation (4), we have that

a
i

=
1 + k

2
+

✓
2

1 + k

◆
n�1

· k � 1

2
(5)

As 0  k < 1, there exist some m such that a
m

< 0 and
hence g

x0,y0 < 0, contradicting Inequality (1). We conclude
that a truthful mechanism for this case does not exist.

By Lemma 4 and Lemma 2, we obtain the following theorem.
The proof is simple and omitted due to lack of space.
Theorem 5. Let x be any location profile with n agents and
assume without loss of generality that x1  x2  ...  x

n

.
For any k 2 [0, 1), there does not exist a truthful mechanism
such that it always holds that

f(x) 2

(1 + k)x1

2
+

(1� k)xn

2
,

(1� k)x1

2
+

(1 + k)xn

2

�

Next, we consider intervals that are the same with the in-
terval defined by the agents’ reports.
Lemma 5. Let (x1, x2) be any location profile with two
agents and assume without loss of generality that x1  x2.
For any k > 1, and for any truthful mechanism f such that

f(x1, x2) 2

(1 + k)x1

2
+

(1� k)x2

2
,

(1� k)x1

2
+

(1 + k)x2

2

�

i.e. the length of the allowed interval is r = k(x2 � x1), the
approximation of f is at least 1/(1 + k)� ✏ for any ✏ > 0.

Proof. Since O(x) = 0 in the case of two agents, it suffices
to prove that for any truthful mechanism f , the worst case
maximum envy of the mechanism over all profiles is at least
1/(1 + k) � ✏, for any ✏ > 0. Assume by contradiction that
there exists a truthful mechanism f such that for any input
profile (x1, x2), it holds that

F (f, x1, x2) < 1/(1 + k)� ✏.

Again, we will denote the profile (x1, x2) by (x, y). Let

A
i

= E

|X

xi,yi �
x
i

+ y
i

2
|
�

denote the expected distance between the facility and the mid-
point of the interval [x

i

, y
i

] for some location profile (x
i

, y
i

).
First, we argue that there exists a profile (x0, y0) (with

x0 < y0), for which A0 � (y0 � x0)/4. Let (x, y) be any
profile and observe that one agent (say the agent at location y)
has cost at least (y� x)/2. Then, consider the profile (x, y0),
with y0 = 2y � x, i.e. y is the midpoint of the new interval;
by truthfulness, the expected distance between the facility and
the midpoint should be at least (y � x)/2 = (y0 � x)/4. A
similar argument also appears in [Procaccia and Tennenholtz,
2009] (Theorem 3.4).

Let p
i

= Pr(X
xi,yi 62 [x

i

, y
i

]) denote the probability that
the facility is placed outside the interval [x

i

, y
i

] and let

Ein

i

= E
����Xxi,yi �

x
i

+ y
i

2

���� | Xxi,yi 2 [x
i

, y
i

]

�

denote the expected distance between the facility and the
midpoint of the interval [x

i

, y
i

], conditioned on the fact that
X

xi,yi lies in the interval. Similarly, let

Eout

i

= E
����Xxi,yi �

x
i

+ y
i

2

���� | Xxi,yi 62 [x
i

, y
i

])

�

denote the expected distance between the facility and the mid-
point of the interval, conditioned on X

xi,yi lying outside the
interval. By the definition of the maximum envy, it holds that

F (f, x0, y0) = p0 +
2(1� p0)Ein

0

y0 � x0
< 1/(1 + k)� ✏

A0 = p0E
out

0 + (1� p0)E
in

0 � (y0 � x0)/4.

By the restriction of the facility location to the allowed inter-
val, we have Eout

0  k(y0 � x0)/2. Then

p0 >
1

2(1 + k)
(6)

Eout

0 >
(k + 1)(y0 � x0)

4
(7)

Let Ex

i

= E[(|X
xi,yi � x

i

| | X
xi,yi 62 [x

i

, y
i

])] denote the
expected distance between the facility and x

i

conditioned
on the fact that X

xi,yi lies outside the interval and also let
Ey

i

= E[(|X
xi,yi � y

i

| | X
xi,yi 62 [x

i

, y
i

])] denote the ex-
pected distance between the facility and y

i

conditioned on
that X

xi,yi lies outside the interval. We have that

Ex

i

+ Ey

i

= 2Eout

i

(8)

By (7) and (8), we get that

Ex

0 + Ey

0 >
(k + 1)(y0 � x0)

2

and then

E[|X
x0,y0 � x0|] + E[|X

x0,y0 � y0|] >✓
1 +

(k � 1)p0
2

◆
(y0 � x0)
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Without loss of generality, we can assume that

E[|X
x0,y0 � x0|] >

✓
1

2
+

(k � 1)p0
4

◆
(y0 � x0) (9)

By (6) and (9), we have

E[|X
x0,y0 � x0|] >

✓
1

2
+

k � 1

8k + 8

◆
(y0 � x0)

Now consider the location profile (x1, y1), with x1 = 2x0 �
y0 and y1 = y0. Then, by truthfulness of mechanism f , it
must hold that

A1 >

✓
1/4 +

k � 1

16k + 16

◆
(y1 � x1).

By steps similar to the ones above, we get that

p1 >
5

4
· 1

2(k + 1)
and Eout

1 >

✓
1/2 +

5k � 5

16

◆
(y1 �x1)

We can use this method to obtain the sequence
(x0, y0), (x1, y1), ..., (xm

, y
m

). For each input profile,
p
i

> a
i

, Eout

i

> b
i

(y
i

� x
i

)

b
i+1 =

(1 + k)(1 + (2b
i

� 1)a
i

)

4
(10)

a
i+1 =

2b
i+1 � 1

(k � 1)(k + 1)
, a0 =

1

2(1 + k)
, b0 =

k + 1

4
(11)

By (10) and (11), we get that

b
i+1 =

1 + k

4
·
 
1 +

(2b
i

� 1)2

(k + 1)(k � 1)

!

Note that b
i

is an increasing and bounded sequence, and the
limit of b

i

is k/2. By the same argument, we conclude that
the limit of a

i

is 1/(1 + k). Thus, there exists m such that
p
m

> 1/(1 + k)� ✏ and F (f, x
m

, y
m

) > 1/(1 + k)� ✏,

which is a contradiction and hence there does not exist a
truthful-in-expectation mechanism f with worst case maxi-
mal envy less than 1/(1 + k)� ✏.

When the allowed interval is the location profile, we have
the following lemma and the following theorem.
Lemma 6. Let (x1, x2) be any location profile with two
agents and assume without loss of generality that x1  x2.
For any truthful mechanism f such that it is always the case
that f(x) 2 [x1, x2], the approximation of f is at least 1/2.
Theorem 6. Let x be any location profile with n agents and
assume without loss of generality that x1  x2  ...  x

n

.
For any k > 1 and any truthful mechanism f such that it
always holds that

f(x) 2

(1 + k)x1

2
+

(1� k)xn

2
,

(1� k)x1

2
+

(1 + k)xn

2

�
,

the approximation of f is at least 1/(1 + k) � ✏ for any
✏ > 0. Furthermore, for any truthful mechanism g such that
g(x) 2 [x1, xn

], the approximation of g is at least 1/2.
We omit the proofs due to lack of space. For an appropriate
choice of ↵, we can construct a mechanism in the class ↵-
LRM that always outputs a valid location within the interval;
for k � 1, we can set ↵ = 1/2(1 + k) and the approximation
of f will then be at most 1/(1+k)�O(x)/(1+k)  1/(1+
k). By Theorem 6, the mechanism is optimal among truthful
mechanisms.

4.2 Fixed interval
In this subsection, we consider the setting where the allowed
interval is fixed and the most preferred positions of the agents,
as well as the set of their reports lie in this interval. This
corresponds to scenarios where the facility location is con-
strained by physical borders and agents are asked to choose
their most preferred points within these restrictions. For ex-
ample, when planning to build a university library, it makes
sense to assume that the library will be built within the uni-
versity campus and the participants should only specify their
preferences over locations present within the premises.

Recall that the approximation of any mechanism in the
class ↵-LRM is at most 2↵� 2↵O(x). For ↵ = 1/4, we ob-
tained the LRM mechanism which has an approximation of
at most 1/2. Due to lack of space, we only state the theorem
that establishes the upper bound on any truthful mechanism.
Theorem 7. Let f be any truthful-in-expectation mechanism
for n agents and let I = [0, 1] be the fixed interval. Then the
approximation of f is at least 1/3� ", for any " > 0.

5 Conclusion
The minimax envy is an alternative criterion for the quality of
truthful facility location mechanisms and future work could
adopt the same approaches that have be popularized in other
objectives in facility location literature, like studying more
general metric spaces or multiple facilities. Finally, our work
adds to the existing work on fair division on the minimax ob-
jective and offers a new natural setting on which the objective
can be applied. It would be interesting to apply the same ob-
jective to other domains, in combination with truthfulness.

Acknowledgments
Qingpeng Cai and Pingzhong Tang were supported by
the National Basic Research Program of China Grant
2011CBA00300, 2011CBA00301, the NSFC Grant
61033001, 61361136003, 61303077, a Tsinghua Ini-
tiative Scientific Research Grant and a National Youth
1000-talent program. Aris Filos-Ratsikas was supported
by the ERC Advanced Grant 321171 (ALGAME) and
acknowledges support from the Danish National Research
Foundation and The National Science Foundation of China
(under the grant 61061130540) for the Sino-Danish Center
for the Theory of Interactive Computation, within which
this work was performed and the Center for Research in
Foundations of Electronic Markets (CFEM), supported by
the Danish Strategic Research Council.

References
[Alon et al., 2005] Noga Alon, Asaf Shapira, and Benny Su-

dakov. Additive approximation for edge-deletion prob-
lems. In Foundations of Computer Science, 2005. FOCS
2005. 46th Annual IEEE Symposium on, pages 419–428.
IEEE, 2005.

[Alon et al., 2009] Noga Alon, Michal Feldman, Ariel D
Procaccia, and Moshe Tennenholtz. Strategyproof ap-
proximation mechanisms for location on networks. arXiv
preprint arXiv:0907.2049, 2009.

142



[Caragiannis et al., 2009] Ioannis Caragiannis, Christos
Kaklamanis, Panagiotis Kanellopoulos, and Maria
Kyropoulou. On low-envy truthful allocations. In
Algorithmic Decision Theory, pages 111–119. Springer,
2009.

[Cohler et al., 2011] Yuga J Cohler, John K Lai, David C
Parkes, and Ariel D Procaccia. Optimal envy-free cake
cutting. In AAAI, 2011.

[Feigenbaum et al., 2013] Itai Feigenbaum, Jay Sethuraman,
and Chun Ye. Approximately optimal mechanisms for
strategyproof facility location: Minimizing l p norm of
costs. arXiv preprint arXiv:1305.2446, 2013.

[Feldman and Wilf, 2013] Michal Feldman and Yoav Wilf.
Strategyproof facility location and the least squares objec-
tive. In Proceedings of the fourteenth ACM conference on
Electronic commerce, pages 873–890. ACM, 2013.

[Filos-Ratsikas et al., 2015] Aris Filos-Ratsikas, Minming
Li, Jie Zhang, and Qiang Zhang. Facility location with
double-peaked preferences. In Proceedings of the 29th
AAAI Conference on Artificial Intelligence (AAAI-15),
2015.

[Fotakis and Tzamos, 2013a] Dimitris Fotakis and Christos
Tzamos. On the power of deterministic mechanisms for
facility location games. In Automata, Languages, and Pro-
gramming, pages 449–460. Springer, 2013.

[Fotakis and Tzamos, 2013b] Dimitris Fotakis and Christos
Tzamos. Strategyproof facility location for concave cost
functions. In Proceedings of the fourteenth ACM con-
ference on Electronic commerce, pages 435–452. ACM,
2013.

[Goemans, 2006] Michel X Goemans. Minimum bounded
degree spanning trees. In Foundations of Computer Sci-
ence, 2006. FOCS’06. 47th Annual IEEE Symposium on,
pages 273–282. IEEE, 2006.

[Lipton et al., 2004] Richard J Lipton, Evangelos Markakis,
Elchanan Mossel, and Amin Saberi. On approximately fair
allocations of indivisible goods. In Proceedings of the 5th
ACM conference on Electronic commerce, pages 125–131.
ACM, 2004.

[Lu et al., 2009] Pinyan Lu, Yajun Wang, and Yuan Zhou.
Tighter bounds for facility games. In Internet and Network
Economics, pages 137–148. Springer, 2009.

[Lu et al., 2010] Pinyan Lu, Xiaorui Sun, Yajun Wang, and
Zeyuan Allen Zhu. Asymptotically optimal strategy-proof
mechanisms for two-facility games. In Proceedings of
the 11th ACM conference on Electronic commerce, pages
315–324. ACM, 2010.

[Netzer and Meisels, 2013] Arnon Netzer and Amnon
Meisels. Distributed envy minimization for resource
allocation. In ICAART (1), pages 15–24, 2013.

[Nguyen and Rothe, 2013] Trung Thanh Nguyen and Jörg
Rothe. How to decrease the degree of envy in alloca-
tions of indivisible goods. In Algorithmic Decision The-
ory, pages 271–284. Springer, 2013.

[Nissim et al., 2012] Kobbi Nissim, Rann Smorodinsky, and
Moshe Tennenholtz. Approximately optimal mechanism
design via differential privacy. In Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference,
pages 203–213. ACM, 2012.

[Procaccia and Tennenholtz, 2009] Ariel D Procaccia and
Moshe Tennenholtz. Approximate mechanism design
without money. In Proceedings of the 10th ACM con-
ference on Electronic commerce, pages 177–186. ACM,
2009.

[Roughgarden and Sundararajan, 2009] Tim Roughgarden
and Mukund Sundararajan. Quantifying inefficiency in
cost-sharing mechanisms. Journal of the ACM (JACM),
56(4):23, 2009.

[Williamson and Shmoys, 2011] David P Williamson and
David B Shmoys. The design of approximation algo-
rithms. Cambridge University Press, 2011.

[Zeckhauser, 1991] Richard Zeckhauser. Strategy and
choice. MIT Press, 1991.

143


