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Abstract

In this paper, we consider the popular proportional
sharing mechanism and discuss the incentives and
opportunities of an agent to lie for personal gains in
resource exchange game. The main result is a proof
that an agent manipulating the proportional sharing
mechanism by misreporting its resource amount
will not benefit its own utility eventually. This re-
sult establishes a strategic stability property of the
resource exchange protocol. We further illustrate
and confirm the result via network examples.

1 Introduction

The rapid growth of the wireless and mobile Internet has pro-
vided an opportunity for wide applications of exchanging re-
sources or services over networks, which go beyond the peer-
to-peer (P2P) bandwidth sharing idea. In a traditional P2P
network, each peer is both a supplier and a consumer of re-
sources. Resources (such as processing power, disk storage
or network bandwidth) are shared among multiple intercon-
nected peers who use a mechanism to make a portion of their
resources directly available to other network participants in a
distributed management system [Schollmeier, 2001].

The successes of the resource exchange networks highly
depend on the efficient resource utilization. A P2P system
can be modeled as a pure exchange economy in which each
user brings its own divisible resources to the market and ex-
changes its resources with its neighbors to derive utility. For-
mally, the system is modeled as an undirected graph G, where
each node i represents a peer with w

i

units of divisible re-
sources (or weight) to be distributed among its neighbors.
The utility u

i

is determined by the total amount of resources
obtained from its neighbors. An efficient allocation in such an
exchange economy can be characterized by the market equi-
librium. On the other hand, to encourage users to contribute
more, a fair allocation rule is essential. Ideally a user should
receive as much as it gives. However, such perfect reciproca-
tion may not be feasible due to the network structure. Then a
proportional fairness mechanism is a natural approximation.
Under this mechanism, each peer provides each neighbor a

portion of its contribution in proportion to what it receives
from its neighbors. Recently, Wu and Zhang [Wu and Zhang,
2007] showed that the market equilibrium obtained by a com-
binatorial method, called bottleneck decomposition is a pro-
portional fair solution. They also showed the proportional
dynamics converged to this equilibrium for linear utility func-
tions under mild conditions.

However, agents are strategic. The market equilibrium is
determined by agents’ reported information rather than their
true information. An agent may have the incentive to mis-
report its information if it is profitable. Hurwicz [Hurwicz,
1972] showed that it is impossible to design a truthful mech-
anism that guarantees a market equilibrium outcome in gen-
eral. Even in a Fisher market game with linear utility, it was
shown that an agent may derive a better payoff [Adsul et al.,
2010], more specifically, may double its benefit by strategic
behaviors [Chen et al., 2014]. The resource exchange game
studied in a P2P setting is a special case of Arrow-Debreu
market where agents are only interested in their neighbors’
resources and only care about the total amount of resources
received. Hurwicz’s impossibility theorem may not hold for
restricted settings. A recent work [Cheng et al., 2015] dis-
cussed the issue of agents’ manipulations by cheating on their
connectivity information. The authors proved that the propor-
tional sharing mechanism is robust to such manipulations. As
utlilities are determined by allocation that depends on agents’
weights and the network structure, the strategic manipula-
tions of an agent can only be misreporting its weight or/and
misreporting its connection edges in the network. This work
leaves a clear open question whether an agent could lie on the
amount of resources it can offer. In this paper, we solve this
open problem and prove the truthfulness of the proportional
sharing mechanism. It shows that the proportional sharing
mechanism is truthful, fair and Pareto efficient.
Technical Contributions

Our approach builds on a network bottleneck decomposi-
tion structure initially designed for the analysis of the con-
nection of fairness (proportional sharing) and competitive-
ness (market equilibrium) [Wu and Zhang, 2007] and then
the nonmanipulability [Cheng et al., 2015]. For a given sub-
set of agents, the total resources of their neighbors has a key
importance on their eventual gains with respect to their own
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total resources. The concept of bottleneck captures the ratio
of those two by finding a subset with this ratio at the minimum
value. Recursively applying this operation, the bottleneck de-
composition of G is obtained.

The bottleneck decomposition of G and the utility of agent
u depends on the reported weight x

u

by u, given the other
agents’ weights. With the increasing of x

u

, we characterize
the change process of bottleneck decomposition and prove the
monotonically nondecreasing property of the utility function
of u. Therefore, the desirable truthfulness of the proportional
sharing mechanism follows.
Related Works

The classical economists and algorithmic game theorists
have made an extensive study of competitive equilibrium [Ar-
row and Debreu, 1954], in terms of computation for prices
and allocation [Lange, 1967], complexity and approxima-
tion [Papadimitriou, 2001; Deng et al., 2002; Devanur et
al., 2002; Jain, 2007; Ye, 2008; Duan et al., 2016]. Those
works have started to have an influence in resource alloca-
tion among multiple agents, especially in the important im-
plementations for the Internet enabled economic, manage-
ment and social activities. How to fairly redistribute and
share those resources have become an important issue with
more and more online platforms which facilitate the exchange
of commodities and services [GetRidApp, ; Homeexchang, ;
Nestia, ; Swap, ]

The automated process through information and communi-
cation technology for Internet applications in such problems
has made it possible for the agents to make their best moves.
Hence manipulating one’s own private information becomes
a possibility. Some of the recent theoretical studies have been
in this direction such as recent studies on agent incentives in
the Fisher market equilibrium for linear market [Adsul et al.,
2010; Chen et al., 2014] and for constant elasticity of substi-
tution market [Branzei, 2014].

The proportional sharing mechanism has been extensively
studied in the exchange economy model. Compared to other
allocation mechanism, the proportional sharing mechanism
is simple, computational efficient and fair. Some of previous
work [Feldman et al., 2009; Zhang, 2005] focus on the price-
taking scheme. But in the resource exchange/sharing model,
money is no longer needed as a medium and the non-price-
taking scheme is considered in our paper and [Wu and Zhang,
2007; Cheng et al., 2015].

2 Preliminaries

In this section, we model the resource exchange setting by
an undirected graph G = (V,E;w). Each vertex u 2 V

represents an agent with an upload resource amount (weight)
w

u

> 0 to be exchanged with its neighbors. Let �(u) be
the neighborhood of u, i.e. the set of vertices adjacent to
u in G. And f

uv

is denoted as the fraction of resource u

allocated to its neighbor v. Obviously, 0  f

uv

 1 and the
resource vertex u provides to v is w

u

f

uv

. F = (f
uv

)
u,v2E

is
called a feasible allocation if

P
v2�(u) fuv = 1, that means u

allocates all its resource out. The utility of agent u is defined
as U

u

(F ) =
P

v2�(u) fvuwv

, i.e. all received resource from
its neighborhood �(u).

2.1 Bottleneck Decomposition

Consider an undirected connected graph G = (V,E;w) with
weight w : V ! R+. For any set S ✓ V , we define w(S) =P

u2S

w(u) and �(S) = [
u2S

�(u). It is possible that S \
�(S) 6= ;. Define ↵(S) = w(�(S))/w(S), referred to as the
inclusive expansion ratio of S, or the ↵-ratio of S for short.

Definition 1 (Maximal Bottleneck) A vertex subset B ✓ V

is called a bottleneck of G if ↵(B) = min
S✓V

↵(S). B is a
maximal bottleneck if for any subset e

B, B ⇢ e
B ✓ V implies

↵( eB) � ↵(B). (B,�(B)) is called the maximal bottleneck
pair in V .

Definition 2 (Bottleneck Decomposition) Given
G = (V,E;w). Start with V1 = V , G1 = G and i = 1.
Find the maximal bottleneck B

i

of G
i

and let G
i+1 be the

induced subgraph on the vertex set V
i+1 = V

i

� (B
i

[ C

i

),
where C

i

= �(B
i

) \ V

i

, the neighbor set of B

i

in the
subgraph G

i

. Repeat if G

i+1 6= ; and set k = i if
G

i+1 = ;. Then we call B = {(B1, C1), · · · , (Bk

, C

k

)}
the bottleneck decomposition of G, ↵

i

the i-th ↵-ratio and
< ↵

i

= w(Ci)
w(Bi)

: i = 1, 2, · · · , k > the ↵-ratio vector.

As stated in [Wu and Zhang, 2007], the problem of com-
puting the bottleneck decomposition can be solved by the
parametric maximum flow algorithm in a polynomial time.
Further, they also derived some properties of the bottleneck
decomposition as follows.

Proposition 3 (

[

Wu and Zhang, 2007

]

) Given graph G, the
bottleneck decomposition of G is unique and
(1) 0 < ↵1 < ↵2 < · · · < ↵

k

 1;
(2) if ↵

i

= 1, then i = k and B

i

= C

i

; otherwise B

i

is an
independent set and B

i

\ C

i

= ;;
(3) if B ✓ V

i

and C = �(B) \ V

i

, then w(C) \ w(B) � ↵

i

,
where if the equality holds, then B ✓ B

i

and C ✓ C

i

.

For the third claim in Proposition 3, we name such a pair of
(B,C) with B ✓ V

i

and C = �(B) \ V

i

as a candidate pair
in V

i

for convenience.

2.2 BD Mechanism

Given bottleneck decomposition, an allocation mechanism
[Wu and Zhang, 2007] can be determined by distinguish-
ing three cases. For convenience, we call such an allocation
mechanism BD Mechanism.
BD Mechanism:

• For ↵

i

< 1, consider the bipartite graph b
G

i

=
(B

i

, C

i

;E
i

) where E

i

= (B
i

⇥ C

i

) \ E. By Propo-
sition 3-(2), B

i

is an independent set in G. Let b
f

uv

be the amount of bandwidth that vertex u 2 B

i

up-
load to v 2 C

i

along edge (u, v) 2 E

i

. By the max-
flow min-cut theorem, there exists flow b

f

uv

� 0 for
u 2 B

i

and v 2 C

i

such that
P

v2�(u)\Ci

b
f

uv

= w

u

and
P

u2�(v)\Bi

b
f

uv

= w

v

/↵

i

. Let b
f

vu

= ↵

i

b
f

uv

which
means that

P
u2�(v)\Bi

b
f

vu

= w

v

.

• When B

k

= C

k

with ↵

k

= 1, similarly we con-
struct a bipartite graph b

G = (B
k

, B

0
k

;E0
k

) such that
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B

0
k

is a copy of B

k

. There is an edge (u, v0) 2 E

0
k

if and only if (u, v) 2 E[B
k

]. By Hall’s theorem, for
any edge (u, v) 2 E[B

k

], there exists flow b
f

uv

0 such
that

P
v

02�(u)\B

0
k

b
f

uv

0 = w

u

and b
f

uv

0 = b
f

vu

0 . Let
b
f

uv

= b
f

uv

0 .
• For any other edge, (u, v) 62 B

i

⇥ C

i

, i = 1, 2, · · · , k,
define b

f

uv

= 0

It is clear that BD Mechanism assigns all resource of each
agent to its neighbors from the same pair, that is all available
resources exchanged along edges in B

i

⇥ C

i

, i = 1, · · · , k.
In terms of ”fairness” and ”efficiency”, BD Mechanism is ex-
actly a proportional sharing mechanism.
Definition 4 (Proportional Sharing Mechanism) For each
vertex u, the allocation (f

uv

: v 2 �(u)) of its resource
w

u

is proportional to what it receives from its neighbors
(w

v

· f
vu

: �(u)). That is f
uv

= fvuwvP
k2�(u) fkuwk

.

Proposition 5 (

[

Wu and Zhang, 2007

]

) BD Mechanism is a
proportional sharing mechanism.

As stated before, the P2P system can be modeled an ex-
change economy where each agent u sells its own divisible
resource and use the money earned through trading to buy
its neighbors’ resource. An efficient allocation in such an
exchange economy can be characterized by the market equi-
librium. Given a bottleneck decomposition, if a price vector
P is well defined as: p

u

= ↵

i

w

u

, if u 2 B

i

; and p

u

= w

u

otherwise, then such a price vector combining the allocation
F obtained from BD Mechanism satisfying
Proposition 6 (

[

Wu and Zhang, 2007

]

) (P,F) is a market
equilibrium, where F = (f

uv

) is obtained from BD Mech-
anism.

2.3 Resource Exchange Game

From a system design point of view, though BD Mecha-
nism shall allocate resources among interconnected partici-
pants fairly and efficiently it is unknown whether an agent is
willing to follow such a distributed network mechanism at the
execution level. Can agents make strategic moves for gains in
their utilities? Specific to the resource exchange model, the
resources all agents have are their private information. They
may manipulate BD Mechanism by misreporting the resource
they own. We call such a problem with incentive factors the
resource exchange game.

In the resource exchange game, let the resource amount
reported by agent u be x

u

2 (0, w
u

]. The reason why
x

u

cannot exceed the true bandwidth w

u

is that each
agent must upload all its reported resource to its neigh-
bors. The collection x = (x1, x2, · · · , xn

) is referred to as
the weight profile and x�u

= (x1, · · · , xu�1, xu+1, · · · , xn

)
is the weight profile without agent u. Thus x =
(x

u

,x�u

). Let the bottleneck decomposition be B(x) =
{(B1(x), C1(x)), · · · , (Bk

(x), C
k

(x))} and BD Mechanism
outputs an allocation F (x) based on the given weight profile
x. The utility of agent u written as U

u

(x) is [Wu and Zhang,
2007]:

U

u

(x) =

⇢
x

u

· ↵
i

(x), u 2 B

i

(x);
x

u

/↵

i

(x), u 2 C

i

(x), (1)

where ↵

i

(x) is the i-th ↵ ratio according to weight profile x.
For mechanism design, the notion of truthfulness is per-

haps the most important concept.

Definition 7 A mechanism is truthful if no agent can benefit
strictly from misreporting its resource amount irrespective of
what is reported by other agents. Formally, given agent u and
profile x = (x

u

,x�u

), it holds that for any x�u

U

u

(w
u

,x�u

) � U

u

(x
u

,x�u

). (2)

It is obvious that truthfully reporting resource amount w
u

is the dominant strategy for each agent u in the resource ex-
change game, if a mechanism is truthful.

3 Truthfulness of BD Mechanism

As we know, the bottleneck decomposition of G depends on
the structure of network and the resource all agents have. So
for any agent u and any weight profile x�u

, the bottleneck de-
composition B of G shall change with the reported resource
x

u

. Thus B can be viewed as a function of x
u

if x�u

is fixed.
On the other hand, we observe that bottleneck decomposition
of G could be the same when x

u

falls in an interval. Based on
such an observation, we partition interval (0, w

u

] into several
disjoint subintervals {ha

i

, b

i

i}
i

and construct a series of bot-
tleneck decompositions {Bi}

i

such that when x

u

2 ha
i

, b

i

i,
B(x

u

,x�u

) = Bi = {(Bi

1, C
i

1), · · · , (Bi

k

i , C
i

k

i)}. W.l.o.g.,
assume that 0 < a

i

 b

i

= a

i+1  b

i+1. We use symbol ”hi”
to denote the subinterval, because ha

i

, b

i

i could be one of five
forms [a

i

, b

i

], [a
i

, b

i

), (a
i

, b

i

], (a
i

, b

i

) and a

i

= b

i

. If a
i

= b

i

,
then ha

i

, b

i

i contains exactly one point which can be viewed
as a special closed interval. Further, in order to keep the one-
to-one correspondence between the subintervals and the bot-
tleneck decompositions, we use a

i

and b

i

to denote the left
and right endpoints of the i-th subinterval, respectively. Thus
for any two adjacent interval ha

i

, b

i

i and ha
i+1, bi+1i, there

are only two cases: 1. ha
i

, b

i

] and (a
i+1, bi+1i; 2. ha

i

, b

i

) and
[a

i+1, bi+1i; depending on which interval contains the break
point a

i+1 = b

i

.
In the sequel, we first characterize the pairs agent u be-

longs to in adjacent Bi and Bi+1 in Subsection 3.1. Then
the monotonicity of utility functions is derived by such useful
characterizations in Subsection 3.2.

3.1 Characterization of {Bi}
In order to show the structure properties of bottleneck de-
composition B in-depth, we redefine the bottleneck decom-
position in more detail below.

Definition 8 (Bottleneck Decomposition) Let Bi =
{(Bi

1, C
i

1), · · · , (Bi

k

i , C
i

k

i)} be the bottleneck decomposition
of graph G when x

u

2 ha
i

, b

i

i and let the ↵-ratio of (Bi

j

, C

i

j

)
be ↵

i

j

= w(Ci

j

)/w(Bi

j

), j = 1, · · · , ki. For pair (Bi

j

, C

i

j

)
with ↵

i

j

< 1, each vertex in B

i

j

(or C

i

j

) is called a B-class
(or C-class) vertex. For the special case B

i

k

i = C

i

k

i , i.e.,
↵

i

k

i = 1, all vertices in B

i

k

i are categorized as both B-class
and C-class. Define V

i

1 = V , V i

j+1 = V

i

j

� (Bi

j

[ C

i

j

) for
j = 1, · · · , ki � 1 and G

i

j

for the induced subgraph on V

i

j

.
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Note that a vertex in V

i

k

i with ↵

i

k

i = 1 could simultaneously
be B-class and C-class, in the case B

i

k

i = C

i

k

i . Moreover to
highlight the ↵-ratio of pairs (Bi

j

, C

i

j

) containing agent u, we
denote it ↵i

j

(x
u

). Further, if V i

h

= V

i+1
h

for some index h,
then the maximal bottleneck pair in V

i

h

or V i+1
h

just is a can-
didate pair in the other. So Proposition 3-(3) can be applied
on those candidate pairs. In the subsequent discussions, such
a technique will be used repeatedly.

In the following, we assume that u 2 B

i

j

[ C

i

j

and u 2
B

i+1
`

[ C

i+1
`

in Bi and Bi+1 respectively. As we know, the
bottleneck decomposition of G changes because of the re-
ported resource of agent u. Agent u’s strategic move is only
able to influence such pairs which are decomposed after pairs
that u is in. But those with index less than j and ` still keep
the same. So

Lemma 9 For any agent u, if u 2 B

i

j

[ C

i

j

and u 2 B

i+1
`

[
C

i+1
`

in Bi and Bi+1 respectively, then V

i

h

= V

i+1
h

for each
h = 1, 2, · · · ,min{j, `}.

Since agent u may be a B-class vertex or C-class vertex
in Bi and Bi+1 respectively, there are totally 4 cases: u 2
B

i

j

\Ci+1
`

, u 2 C

i

j

\Bi+1
`

, u 2 B

i

j

\Bi+1
`

and u 2 C

i

j

\Ci+1
`

.
Specially for the first two cases, we assume that ↵i

j

(x
u

) < 1

if x
u

2 ha
i

, b

i

i and ↵

i+1
`

(x
u

) < 1 if x
u

2 ha
i+1, bi+1i. This

assumption is reasonable. For example, if u 2 B

i

j

\C

i+1
`

and
↵

i

j

(x
u

) = 1 when x

u

2 ha
i

, b

i

i, then u can be viewed as a
C-class vertex and B

i

j

can be rewritten as C

i

j

, which makes
such a case be that of u 2 C

i

j

\ C

i+1
`

.

Lemma 10 For bottleneck decomposition Bi and Bi+1, it is
impossible that u 2 B

i

j

\ C

i+1
`

and u 2 C

i

j

\B

i+1
`

.

Proof: (sketch) For simplicity, we only show the impos-
sibility of u 2 B

i

j

\ C

i+1
`

and discuss the case that the
corresponding intervals of Bi and Bi+1 have the forms of
ha

i

, b

i

] and (a
i+1, bi+1i. There are two cases that j < `

and j � `. If j < `, then V

i

j

= V

i+1
j

by Lemma
9. If x

u

= b

i

, then the bottleneck decomposition is Bi

and (Bi+1
j

, C

i+1
j

) is a candidate pair of V i

j

, which induces
w(Ci+1

j

)/w(Bi+1
j

) � w(Ci

j

)/(w(Bi

j

\{u})+b

i

) by Proposi-
tion 3-(3). But if x

u

increases to b

i

+ ✏ 2 (a
i+1, bi+1i for any

small ✏ > 0, then the bottleneck decomposition changes to be
Bi+1 and (Bi

j

, C

i

j

) is a candidate pair of V i+1
j

. So we have
w(Ci

j

)/(w(Bi

j

\ {u})+ b

i

+ ✏) � w(Ci+1
j

)/w(Bi+1
j

). Com-
bining such two inequalities, w(Ci

j

)/(w(Bi

j

\{u})+b

i

+✏) �
w(Ci

j

)/(w(Bi

j

\ {u}) + b

i

). It’s a contradiction. The proof
for case j � ` is similar. ⇤

Lemma 10 demonstrates the impossibility of cases u 2
B

i

j

\ C

i+1
`

and u 2 C

i

j

\ B

i+1
`

. So our focus turns to those
that u is in the same classes in adjacent Bi and Bi+1.

Lemma 11 For bottleneck decomposition Bi and Bi+1 cor-
responding to intervals ha

i

, b

i

i and ha
i+1, bi+1i,

1. if u 2 B

i

j

and u 2 B

i+1
`

, then `  j;
2. if u 2 C

i

j

and u 2 C

i+1
`

, then ` � j.

Proof:(sketch) For the first claim, we suppose to the contrary
that ` > j which guarantees V

i

j

= V

i+1
j

by Lemma 9. So
(Bi

j

, C

i

j

) is a candidate pair in V

i+1
j

if bx
u

2 ha
i+1, bi+1i and

we can get the first inequality of (3). Similarly, the role of
candidate of (Bi+1

j

, C

i+1
j

) in V

i

j

if x

u

2 ha
i

, b

i

i promises
the second inequality of (3)

w(Ci

j

)

bx
u

+ w(Bi

j

\ {u})
�

w(Ci+1
j

)

w(Bi+1
j

)
�

w(Ci

j

)

x

u

+ w(Bi

j

\ {u})
(3)

It’s a contradiction since bx
u

> x

u

. ⇤
Lemma 11 shows that the relationship between the indexes

of pairs which contain u, if u is in the same classes in ad-
jacent Bi and Bi+1. Furthermore, the following claims will
concretely describe the relation between B

i

j

and B

i+1
`

, Ci

j

and C

i+1
`

. The key of proofs is how to analyze the tran-
sient changes of bottleneck decompositions at the break point
x

u

= b

i

= a

i+1.
Lemma 12 For bottleneck decomposition Bi and Bi+1 and
u 2 B

i

j

\B

i+1
`

,
1. if corresponding adjacent intervals have the forms as
ha

i

, b

i

] and (a
i+1, bi+1i, then u 2 B

i

`

, Bi

`

= B

i+1
`

[ B

i+1
`+1

and C

i

`

= C

i+1
`

[ C

i+1
`+1.

2. if corresponding adjacent intervals have the forms as
ha

i

, b

i

) and [a
i+1, bi+1i, then u 2 B

i

`+1, Bi+1
`

= B

i

`

[B

i

`+1

and C

i+1
`

= C

i

`

[ C

i

`+1.

Proof: Here we prove the first claim in two steps: 1. u 2 B

i

`

;
and 2. Bi

`

= B

i+1
`

[ B

i+1
`+1. The proof for the second one is

similar. Lemma 11 guarantees that index `  j which implies
V

i

`

= V

i+1
`

by Lemma 9. Now Suppose to the contrary that
u 62 B

i

`

. Let us focus on the break point that x
u

= b

i

. At
this point, the bottleneck decomposition of G is Bi and the
candidate role of (Bi+1

`

, C

i+1
`

) in V

i

`

keeps that

↵

i+1
` (bi) =

w(Ci+1
` )

w(Bi+1
` \ {u}) + bi

� w(Ci
`)

w(Bi
`)
. (4)

If the strict inequality in (4) holds, then there must exist
a positive number ✏ > 0 such that b

i

+ ✏ = a

i+1 + ✏ 2
(a

i+1, bi+1i and

↵

i+1
` (bi + ✏) =

w(Ci+1
` )

w(Bi+1
` \ {u}) + (bi + ✏)

>

w(Ci
`)

w(Bi
`)
. (5)

As we know, once weight x
u

increases up to b

i

+ ✏ = a

i+1+
✏ 2 (a

i+1, bi+1i, the bottleneck decomposition shall change
to be Bi+1. As a candidate pair in V

i+1
`

, the ratio of (Bi

`

, C

i

`

)
can not be strictly less than ↵

i+1
`

(b
i

+ ✏) which induces the
impossibility of (5) and the strict inequality of (4). So

↵

i+1
` (bi) =

w(Ci+1
` )

w(Bi+1
` \ {u}) + bi

=
w(Ci

`)

w(Bi
`)
. (6)

Then B

i+1
`

✓ B

i

`

by Proposition 3-(3) and u 2 B

i

`

, because
u 2 B

i+1
`

. Furthermore, we confirm that Bi+1
`

⇢ B

i

`

. Oth-
erwise the pairs containing u are the same in Bi and Bi+1

which leads to Bi = Bi+1. It’s contradicts the partition of
(0, w

u

].
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Next, we shall show that Bi

`

= B

i+1
`

[ B

i+1
`+1. For this

purpose, let us define B

c = B

i

`

� B

i+1
`

6= ; and C

c =
C

i

`

�C

i+1
`

6= ;. We can see that (Bc

, C

c) is a candidate pair
in V

i+1
`+1 . Moreover, we have

w(Ci
`)

w(Bi
`)

=
w(Ci+1

` )

w(Bi+1
` \ {u}) + bi

=
w(Cc)
w(Bc)

�
w(Ci+1

`+1)

w(Bi+1
`+1)

, (7)

where the first equality comes from (6), the second one is
from a simple arithmetic calculation and Proposition 3-(3)
promises the last inequality. Now let us discuss the inequality

w(Ci+1
` )

w(Bi+1
` \ {u}) + bi

�
w(Ci+1

`+1)

w(Bi+1
`+1)

= ↵

i+1
`+1. (8)

If the strict inequality of (8) is right, then we can also find
a positive number ✏ > 0 such that b

i

+ ✏ = a

i+1 + ✏ 2
(a

i+1, bi+1i and

↵

i+1
` (bi + ✏) =

w(Ci+1
` )

w(Bi+1
` \ {u}) + (bi + ✏)

>

w(Ci+1
`+1)

w(Bi+1
`+1)

. (9)

It is easy to see that the bottleneck decomposition of G is
Bi+1 when x

u

= b

i

+ ✏ = a

i+1 + ✏ 2 (a
i+1, bi+1i. So

by the increasing monotonicity property of ↵-ratios with in-
dexes, we have ↵

i+1
`

(b
i

+ ✏) < ↵

i+1
`+1 which illustrates the

incorrectness of (9). So the equality of (8) holds and

w(Cc)
w(Bc)

=
w(Ci+1

` )

w(Bi+1
` \ {u}) + bi

=
w(Ci+1

`+1)

w(Bi+1
`+1)

.

Therefore B

c ✓ B

i+1
`+1 by Proposition 3-(3). On the other

hand, in order to keep the maximality of Bi

`

’s size, there is
only unique possibility that Bc = B

i+1
`+1 and B

i

`

= B

i+1
`

[
B

i+1
`+1. ⇤
Note that, with the increasing of x

u

from ha
i

, b

i

i to
ha

i+1, bi+1i, we can visualize the operations as split and com-
bine to describe the changes of pairs containing u. Naturally,
we can imagine that there are similar results for the case that
u 2 C

i

j

\ C

i+1
`

.

Lemma 13 For bottleneck decomposition Bi and Bi+1 and
u 2 C

i

j

\ C

i+1
`

,
1. if corresponding adjacent intervals have the forms as
ha

i

, b

i

] and (a
i+1, bi+1i, then u 2 C

i+1
j+1, Bi

j

= B

i+1
j

[B

i+1
j+1

and C

i

j

= C

i+1
j

[ C

i+1
j+1.

2. if corresponding adjacent intervals have the forms as
ha

i

, b

i

) and [a
i+1, bi+1i, then u 2 C

i+1
j

, Bi+1
j

= B

i

j

[B

i

j+1

and C

i+1
j

= C

i

j

[ C

i

j+1.

3.2 Monotonicity of utility function on (0, wu]
For the sake of convenience, we use U

u

(x
u

) and ↵

u

(x
u

) to
denote the utility function and the ↵-ratio function of agent
u for any given x�u

respectively, where x

u

2 (0, w
u

]. As
before shown in (1), U

u

(x
u

) = x

u

·↵
u

(x
u

) if u is in B-class;
otherwise U

u

(x
u

) = x

u

/↵

u

(x
u

).
First, we discuss the monotone property of U

u

(x
u

) in any
single subinterval ha

i

, b

i

i. Then the bottleneck decomposi-
tion of G is Bi = {(Bi

1, C
i

1), · · · , (Bi

k

i , C
i

k

i)} when x

u

2

ha
i

, b

i

i. So agent u may be in B

i

j

or Ci

j

, j = 1, 2, · · · , ki. To
be specific, its ↵-ratio is

↵

u

(x
u

) = ↵

i

j

(x
u

) =

8
<

:

w(Ci
j)

xu+w(Bi
j\{u})

, u 2 B

i

j

;

xu+w(Ci
j\{u})

w(Bi
j)

, u 2 C

i

j

.

(10)

It is easy to observe that the ↵-ratio of u is monotonically in-
creasing if it is a C-class vertex; and monotonically decreas-
ing, otherwise. The utility function of agent u is

U

u

(x
u

) =

8
<

:

xuw(Ci
j)

xu+w(Bi
j\{u})

, u 2 B

i

j

;

xuw(Bi
j)

xu+w(Ci
j\{u})

, u 2 C

i

j

,

which is continuous on ha
i

, b

i

i and derivable on (a
i

, b

i

). Fur-
thermore, the derivative function of U

u

(x
u

) can be computed
easily, which is nonnegative on ha

i

, b

i

i. Combining the con-
tinuity of U

u

(x
u

) on ha
i

, b

i

i, we have
Lemma 14 For any agent u, any weight profile x�u

, and any
single interval ha

i

, b

i

i ⇢ (0, w
v

], utility function U

u

(x
u

) is
monotonically nondecreasing on x

u

2 ha
i

, b

i

i.
Next we shall challenge the monotonicity of U

u

(x
u

) on the
whole interval (0, w

u

]. One of the biggest difficulties we are
facing is that the ↵-ratio function and the utility function of
agent u may vary with the bottleneck decompositions. If we
can investigate the continuity of ↵-ratio and utility function of
agent u at each break point, the monotone property of U

u

(x
u

)
can be achieved by Lemma 14.
Lemma 15 For bottleneck decomposition Bi and Bi+1 and
u 2 B

i

j

\B

i+1
`

or u 2 C

i

j

\C

i+1
`

, the utility function U

u

(x
u

)
is continuous at break point.
Proof: Here we only show the continuity of U

u

(x
u

) at break
point x

u

= b

i

for the case that u 2 B

i

j

\Bi+1
`

and the adjacent
intervals have the forms as ha

i

, b

i

] and (a
i+1, bi+1i. Under

this case, Lemma 12 promises u 2 B

i

`

. So ↵

u

(x
u

) = ↵

i

`

(x
u

)
if x

u

2 ha
i

, b

i

] and ↵

u

(x
u

) = ↵

i+1
`

(x
u

) if x
u

2 (a
i+1, bi+1i.

Furthermore, equation (6) in the proof of Lemma 12 tells us
that if x

u

= b

i

↵

i
`(bi) =

w(Ci
`)

w(Bi
` \ {u}) + bi

=
w(Ci+1

` )

w(Bi+1
` \ {u}) + bi

= ↵

i+1
` (bi)

Therefore, the continuity of ↵-ratio function at break point
x

u

= b

i

holds as

lim
✏!0+

↵

u

(b
i

+ ✏) = lim
✏!0+

↵

i+1
`

(b
i

+ ✏) = ↵

i+1
`

(b
i

)

= ↵

i

`

(b
i

) = ↵

u

(b
i

),

And the utility function is also continuous at x
u

= b

i

,

lim
✏!0+

U

u

(b
i

+ ✏) = lim
✏!0+

(b
i

+ ✏) · ↵i+1
`

(b
i

+ ✏)

= b

i

· ↵i

`

(b
i

) = U

u

(b
i

).

⇤
Combining the monotone property in each subinterval

and the continuity at each break point, the monotonicity of
U

u

(x
u

) on whole interval (0, w
u

] is derived directly.
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Corollary 16 For any agent u and any given weight profile
x�u

, utility function U

u

(x
u

) is monotonically nondecreasing
on (0, w

u

].
Obviously, the monotone property of U

u

(x
u

) in Corollary 16
for any given x�u

ensures the correctness of U
u

(w
u

,x�u

) �
U

u

(x
u

,x�u

), where x

u

2 (0, w
u

]. So the main result of this
paper is deduced directly.
Theorem 17 BD Mechanism is truthful for the resource
sharing game.

Remarks: The strategy of weight misreporting cannot be
replaced by the strategy of edge cutting [Cheng et al., 2015].
Let us consider an example of a triangle in which three agents
have the same weights. Obviously if one edge is cut, the
resources can only be allocated along the remaining edges.
But if one agent plays the strategy of weight misreporting,
the resources are still be allocated on each edge whatever
x

u

2 (0, w
u

].

4 Numerical Example

In this section, we analyze a representative numerical exam-
ple to have an intuitive understanding on the above results.
Consider the network of Fig. 1. Each cycle represents a
vertex and the number in the cycle is depicted the vertex’s
weight. As stated before, the bottleneck decomposition of

 �

 �

 ��

��

��

�� ��

��

��

��

 �

Figure 1: A network with 12 vertices where v5 is the agent u
who has a strategic move to misreport its own resource.

G shall change with agent u’s reporting weight x
u

for any
given x�u

. So the interval (0, w
u

] is partitioned into differ-
ent disjoint subintervals, each ha

i

, b

i

i corresponding to one
decomposition Bi. For the example shown in Fig. 1, Table
1 lists all subintervals and all pairs containing u in different
subintervals.

From Table 1, there are some important informations wor-
thy of note. First, u is in the same classes in adjacent Bi

and Bi+1 that verifies Lemma 10. The relation between ad-
jacent B-sets or C-sets is that of containing and contained
which has been proved in Lemma 12 and 13. Second in non-
adjacent decompositions, u may be in different classes. For
example, when x

u

2 [1, 3), u is in C-class with ↵

u

(x
u

) =
(2 + x

u

)/15 < 1. And when x

u

2 [16, 32], then u is a B-
class vertex in B2 with ↵

u

(x
u

) = 20/(8+x

u

) < 1. So there
must be a crucial decomposition Bi. In such a decomposi-
tion, u can be viewed as a B-class and a C-class vertex si-
multaneously which means that ↵

u

(x
u

) = 1 if x
u

2 ha
i

, b

i

i.
Obviously in Table 1, x

u

= 13 just is the turning point and
the corresponding decomposition is the crucial one. Third, if
the class containing u changes with x

u

2 (0, w
u

], then the
changing process must be from C-class to B-class with the
increasing of x

u

, not vice versa.

xu B C

(0, 1) {v4} {u}
[1, 3) {v2, v4} {v1, v3, u}
3 {v2, v4, v10, v11, v12} {v1, v3, u, v9}

(3, 10.5) {v2, v4} {v1, v3, u}
10.5 {v2, v4, v8} {v1, v3, u, v6, v7}

(10.5, 13) {v2, v4} {v1, v3, u}
13 {v1, v2, v3, v4, u} {v1, v2, v3, v4, u}

(13, 16) {v1, v3, u} {v2, v4}
[16, 32] {v1, v3, u, v8} {v2, v4, v6, v7}
(32, 49) {v1, v3, u} {v2, v4, v7}

49 {v1, v3, u, v10, v11, v12} {v2, v4, v7, v9}
(49,1) {v1, v3, u} {v2, v4, v7}

Table 1: All subintervals, each corresponding one decompo-
sition. The second and third column represent the pair (B,C)
which u is in, where u is written in bold.

The left of Fig. 2 well illustrates the property of continuity
and monotonically nondecreasing property of U

u

(x
u

). But
for ↵-ratio shown in the right of Fig. 2, ↵

u

(x
u

) is mono-
tonically increasing when x

u

< 13 and it is monotonically
decreasing when x

u

> 13. This result just coincides with the
facts that u is in C-class when x

u

< 13 and in B-class when
x

u

> 13 shown in Table 1. In addition, ↵
u

(x
u

) reaches its
peak at x

u

= 13 as ↵
u

(x
u

)  1.

Figure 2: The figures of utility function U

u

(x
u

) and ↵-ratio
function ↵

u

(x
u

).

5 Conclusion

In this article, we discuss the issue of possible strategic ma-
nipulations of agents with respect to BD Mechanism for the
application of resource exchange. Our work resolves an open
problem on the strategic stability of a resource exchange pro-
tocol (i.e., the BD mechanism) from the mechanism design
perspective.

We show that, no agent could gain by misreporting its re-
source amount in a BD Mechanism. Combining the work
of Cheng, et al., [Cheng et al., 2015], we establish a strong
incentive stability result that an agent could not improve its
utility by cutting off any incident edge or by reporting less re-
source. We note that an agent could not benefit even from the
combination of the above two strategies. If an agent does so,
it is equivalent to a two-stage strategy. At the first stage, the
agent cuts some of the adjacent edges. At the second stage,
it decreases its weight in the updated network. The results in
[Cheng et al., 2015] and in our paper show that the utility of
this agent would be non-increasing. So this completes the re-
search on truthfulness of the popular proportional mechanism
on resource exchange.
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[Schollmeier, 2001] Rüdiger Schollmeier. A definition of
peer-to-peer networking for the classification of peer-to-
peer architectures and applications. In P2P, pages 101–
102, 2001.

[Swap, ] Swap. www.swap.com
[Teng and Magoules, 2010] Fei Teng and Frederic

Magoules. Resource pricing and equilibrium alloca-
tion policy in cloud computing. In CIT, pages 195–202,
2010.

[Wu and Zhang, 2007] Fang Wu and Li Zhang. Proportional
response dynamics leads to market equilibrium. In STOC,
pages 354–363, 2007.

[Ye, 2008] Yinyu Ye. A path to the Arrow-Debreu com-
petitive market equilibrium. Mathematical Programming,
111(1-2): 315–348, 2008.

[Zhang, 2005] Li Zhang. The efficiency and fairness of a
fixed budget resource allocation game. ICALP, pages 485-
496, 2005.

193


