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Abstract
We revisit the problem of designing strategyproof
mechanisms for allocating divisible items among
two agents who have linear utilities, where pay-
ments are disallowed and there is no prior infor-
mation on the agents’ preferences. The objective
is to design strategyproof mechanisms which are
competitive against the most efficient (but not strat-
egyproof) mechanism.
For the case with two items:
• We provide a set of sufficient conditions for

strategyproofness.
• We use an analytic approach to derive strate-

gyproof mechanisms which are more competi-
tive than all prior strategyproof mechanisms.

• We improve the linear-program-based proof of
Guo and Conitzer [2010] to show new upper
bounds on competitive ratios.

• We provide the first compact proof on upper
bound of competitiveness.

For the cases with any number of items, we build
on the Partial Allocation mechanisms introduced
by Cole et al. [2013a; 2013b] to design a strate-
gyproof mechanism which is 0.67776-competitive,
breaking the 2

3

barrier.
We also propose a new sub-class of strategyproof
mechanisms for any numbers of agents and items,
which we call it Dynamic-Increasing-Price mecha-
nisms, where each agent purchases the items using
virtual money, and the prices of the items depend
on other agents’ preferences.

1 Introduction
Competition for resources is one of the most primitive activi-
ties of human. The problems of distributing resources among
competing agents are found wherever human exists. We have
developed various systems and tools, e.g., economic markets,
auctions/mechanisms, voting systems and money, to facilitate
the distributions and exchanges of resources. The study of
these problems in various settings is now a popular topic con-
cerning both computer scientists and economists, in the field

coined as Multiagent Resource Allocation; see [Chevaleyre et
al., 2006] for a fairly recent survey.

While money is provably reducing the complexity of many
such problems, in many scenarios monetary transfer is in-
applicable; canonical examples include hospital/facility loca-
tion determination, peer-to-peer sharing network, and distri-
bution of computing resources among staffs in the same com-
pany. Mechanism design problems without monetary transfer
are thus naturally motivated. Briefly speaking, a mechanism
is a combination of a communication protocol and an algo-
rithm, for agents to reveal their preferences to an auctioneer,
and for the auctioneer to determine a good allocation of re-
sources. There are different ways to interpret the meaning
of “good allocation”, including social welfare, various mea-
sures of fairness (often coined as “cake cutting”), or revenue
of the auctioneer (when monetary transfer is feasible). Inde-
pendent of the interpretation, a favourable feature of a mech-
anism is strategyproofness — the mechanism motivates the
agents to reveal their preferences truthfully. Strategyproof
(SP) mechanism design without monetary transfer has been
studied under various contexts, e.g.,[Schummer and Vohra,
2002; Procaccia and Tennenholtz, 2009; Dokow et al., 2012;
Dughmi and Ghosh, 2010].

We focus on the problem formulated by Guo and
Conitzer [2010]: design SP mechanisms to allocate divisi-
ble items among two agents who have linear preferences over
the items. The target is to attain social welfares which are
competitive against those in the first-best mechanism (which
is not SP).

In contrast to most of the prior work, we take on an ana-
lytic approach for the problem. While all known SP mech-
anisms (which we will discuss next) are somewhat naturally
motivated, they do not shed any insight on how an optimal
mechanism should look like. We will present results obtained
using analytic methods, which will suggest that analytical in-
sights are necessary for seeking the optimal mechanisms.
Related Work. Guo and Conitzer [2010] considered a sub-
class of SP mechanisms called Swap-Dictatorial mechanisms,
in which each agent is a dictator with probability 1

2

, who
chooses her favourite allocation from a predefined set of
allowable allocations, and the other agent is allocated the
remaining items.1 They studied two sub-classes of Swap-

1Swap-Dictatorial mechanisms can be generalized to more than
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Dictatorial mechanisms, Increasing-Price (IP) mechanisms
and Linear-Increasing-Price (LIP) mechanisms. For the case
with two items, they showed that there is a LIP mechanism
which is 0.828-competitive against the first-best mechanism;
they used a linear program to show that no SP mechanism is
better than 0.841-competitive. They also showed that as the
number of items grows, IP and LIP mechanisms have maxi-
mal competitiveness of 1

2

.
Han et al. [2011] showed a number of upper bound re-

sults on the competitiveness of SP mechanisms, when the
numbers of agents and/or items increase. In particular, they
showed that no swap-dictatorial mechanism can be better than�
1

2

+ o

m

(1)

�
-competitive for m items. They proved the fol-

lowing characterization result: in the case with two items, if
a symmetric mechanism A is second order continuously dif-
ferentiable, then A is SP if and only if A is swap-dictatorial.

Cole, Gkatzelis and Goel [2013a] proposed another sub-
class of SP mechanisms (for any number of agents) called
Partial Allocation (PA) mechanisms, which are not swap-
dictatorial. They showed in another work [2013b] that a vari-
ant of PA mechanism is 2

3

-competitive for two agents and any
number of items.

Recently, non-SP resource allocation mechanisms are un-
der study. The mechanisms are viewed as games and the
agents’ bids are strategies. The canonical measure of effi-
ciency is the Price of Anarchy. See [Feldman et al., 2009;
Brânzei et al., 2014] and the references therein for details.

In a swap-dictatorial mechanism, items are always com-
pletely allocated among the agents — the auctioneer never
holds some of the items from being allocated. However, this
is not true in PA mechanism. We say a mechanism is full if
items are always completely allocated among the agents, and
say it is partial otherwise.

Our Contribution. Our main contribution is to use analytic
methods to derive SP mechanisms with competitiveness bet-
ter than those previously known. We also improve a linear-
program (LP) based proof to show new upper bounds on the
competitive ratios for SP full and partial mechanisms. In ad-
dition, we provide the first compact upper bound proof.

In Sections 3—6, we focus on the case with two agents
and two items. In Section 3, we first prove a characteriza-
tion of symmetric SP mechanisms, which is essentially the
same as the Rochet’s characterization [1985]. Then we pro-
vide a set of sufficient conditions for symmetric SP mech-
anisms. We note that while our set of sufficient conditions
and the characterization in [Han et al., 2011] are both of an-
alytical flavor, the two results are not comparable: their re-
sult focuses on conditions that yield equivalence between SP
and swap-dictatorial mechanisms (which must be full mech-
anisms), while our result is applicable for a broad sub-class
of partial mechanisms, and also mechanisms which are not
second order continuously differentiable.

In Section 4, we look into the solution to a LP of Guo and
Contizer [2010] for making a few observations and heuristic
assumptions, which allow us to derive a 5

6

-competitive full

two agents, by first generating a random order of the agents, and
then each agent takes turn to choose her favourite allocation.

mechanism; we believe it is an optimal full mechanism.2 In
Section 5, by using our set of sufficient conditions, we con-
sider a sub-family of SP partial mechanisms, and show that
one of such mechanisms is strictly better than 5

6

-competitive.
This may be surprising to some practitioners, since it sug-
gests that in general, the competitiveness can be improved by
suitably holding a fraction of items from being allocated.

Guo and Conitzer used the LP to show an upper bound of
0.841 on the competitiveness of SP full mechanisms. We will
discuss how to prune out a lot of unnecessary constraints from
their LP. This allows us to solve the LP with much refined
resolution, and to improve the upper bound to 5

6

+ ✏, where
✏ < 10

�9; we believe the final answer is 5

6

. With a minor
modification to their LP, we show an upper bound of 0.8644
on the competitiveness of SP partial mechanisms.

While the LP-based upper bound proofs are legitimate,
they may look unsatisfactory to some researchers, due to two
reasons. First, such proofs are hardly verifiable by researchers
without the use of a computer. Second, such LPs are ex-
tremely huge for three or more items and thus not solvable
in practice, so they shed no insight for providing a better up-
per bound when the number of items increases. Therefore, a
compact upper bound proof, i.e., a proof which can be easily
verifiable by researchers, is preferred. In Section 6, we use
the SP characterization of Rochet to provide the first compact
proof; the upper bound is 0.9523. While this upper bound
is worse than those yielded by LP-based proofs, the compact
proof is worth an attention since it might shed insight for gen-
eralizations.

In Section 7, we consider the cases with two agents and
any number of items. By taking a suitable average of some
PA mechanisms of Cole et al. [2013a; 2013b], we design a SP
mechanism which is at least 0.67776-competitive.

In Section 8, we propose a new sub-class of SP mecha-
nisms for any number of agents and items, called Dynamic-
Increasing-Price (DIP) mechanisms. DIP mechanism is sim-
ilar to IP mechanism in the sense that both introduce vir-
tual money and virtual prices. However, there is no dictator-
swapping process in DIP, and DIP is not swap-dictatorial in
general. Also, the prices in an IP mechanism are indepen-
dent of agents’ preferences, but in a DIP mechanism, for each
agent, the prices of the items depend on other agents’ prefer-
ences. In other words, a DIP mechanism enforces all agents
to be complete price takers. We note that DIP is well moti-
vated by the classical context of markets: when the scale of
the market is large, each agent in the market has tiny effect
on the prices, so the prices she face are almost completely
depending on other agents preferences. We show that the 5

6

-
competitive mechanism is a DIP mechanism.

Due to space constraint, some of the proofs are deferred to
the full version [Cheung, 2016].

2 Preliminaries
Problem Setting. We study the problem of allocating m � 2

divisible items, each of one unit, among two agents, referred
to as agents 1 and 2. A vector (c

1

, · · · , c
m

) is normalized if

2There may be more than one optimal full mechanisms.
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each c

j

� 0 and
P

m

j=1

c

j

= 1. Each agent i has a normal-
ized3 linear utility function u

i

(~x

i

) =

P
m

j=1

u

ij

x

ij

, whereP
m

j=1

u

ij

= 1; her utility function is identified to the normal-
ized utility vector ~u

i

:= (u

i1

, · · · , u
im

). Each agent i reports
to mechanism A a normalized bid vector~b

i

= (b

i1

, · · · , b
im

).
The mechanism then allocates A

ij

(

~

b

1

,

~

b

2

) unit of item j to
agent i. The allocation must be feasible, i.e., for any i, j,
A

ij

(

~

b

1

,

~

b

2

) � 0 and for any j, A
1j

(

~

b

1

,

~

b

2

)+A

2j

(

~

b

1

,

~

b

2

)  1.
Let u

A

i

(

~

b

1

,

~

b

2

) :=

P
m

j=1

u

ij

· A

ij

(

~

b

1

,

~

b

2

), which is
the utility attained by agent i when agent 1 bids ~

b

1

and
agent 2 bids ~

b

2

. Mechanism A is strategyproof (SP) if
for any agent i and for any normalized vectors ~

b

i

,

~

b

3�i

,
u

A

i

(~u

i

,

~

b

3�i

) � u

A

i

(

~

b

i

,

~

b

3�i

), i.e., agent i is always better
off to bid her true utility vector. Strategyproofness is gen-
erally accepted as a favourable feature, since it discourages
agents from having strategic consideration for reporting bids.

Let SWA

(~u

1

, ~u

2

) := u

A

1

(~u

1

, ~u

2

) + u

A

2

(~u

1

, ~u

2

), which is
the social welfare when both agents bid truthfully to mech-
anism A. Let SWOPT(u1

, u

2

) :=

P
m

j=1

max{u
1j

, u

2j

},
which is the maximum possible social welfare among all fea-
sible allocations; the feasible allocation that attains the max-
imum possible social welfare is called the first-best alloca-
tion. A SP mechanism A is ↵-competitive if for any ~u

1

, ~u

2

,
SWA

(~u

1

, ~u

2

) � ↵ · SWOPT(u1

, u

2

). Our target is to design
SP mechanisms with high competitive ratios.
Useful Definitions, Facts and Tool. It is known that every ↵-
competitive SP mechanism has a corresponding symmetric-
over-agents and symmetric-over-items ↵-competitive SP
mechanism [Guo and Conitzer, 2010, Claim 1]. Thus, from
now on we focus only on such symmetric SP mechanisms.

When the agents’ utility functions are linear, any weighted
average over SP mechanisms is also SP: if A1

, · · · , Ak are
SP mechanisms, then ¯

A, defined by the allocation rule

¯

A

ij

(

~

b

1

,

~

b

2

) :=

kX

`=1

�

`

·A`

ij

(

~

b

1

,

~

b

2

),

where the �

`

’s are positive and
P

k

`=1

�

`

= 1, is also SP. We
will write ¯

A as
P

k

`=1

�

`

·A`.
For any utility functions u

1

, u

2

, let their attainable utility
region (AUR), denoted by AUR(u

1

, u

2

), be

{(r
1

, r

2

) | 9 a feasible allocation (~x

1

, ~x

2

) s.t. u
i

(~x

i

) = r

i

}

Proposition 1. If u
1

, u

2

are increasing, concave and contin-
uous functions, then AUR(u

1

, u

2

) is a convex subset of R2.

3 A Set of Sufficient Conditions for
Strategyproofness

In Sections 3—6, we focus on the case with two items. In this
case, each normalized utility vector has the form (t, 1 � t),
which is essentially single-parameter. We assume that each
agent i bids a number b

i

2 [0, 1], which is supposed to
3See [Guo and Conitzer, 2010, Section 2] for an explanation on

why the utility functions are normalized.

be the first entry of her normalized utility vector. A sym-
metric mechanism A can be described by a single function
A : [0, 1]

2 ! R+, such that

A

11

(b

1

, b

2

) ⌘ A(b

1

, b

2

) A

12

(b

1

, b

2

) ⌘ A(1� b

1

, 1� b

2

)

A

21

(b

1

, b

2

) ⌘ A(b

2

, b

1

) A

22

(b

1

, b

2

) ⌘ A(1� b

2

, 1� b

1

)

In this section, we give a characterization of symmetric
SP mechanisms (Theorem 2), which follows directly from a
characterization result of Rochet [1985, Theorem 1]; a self-
contained proof is in the full version. Then we use the char-
acterization to provide a set of sufficient conditions for strate-
gyproofness (Theorem 3), which will be used in the next three
sections.

Let ûA

(b

1

, b

2

) := b

1

·A(b

1

, b

2

)+(1�b

1

)·A(1�b

1

, 1�b

2

),
which is the utility attained by agent 1 if her true utility vector
is (b

1

, 1� b

1

), she bids truthfully, and agent 2 bids b
2

.
Theorem 2 ([Rochet, 1985, Theorem 1]). Let A be a sym-
metric mechanism for two items. A is SP iff
(a) for any fixed b

2

2 [0, 1], ûA

(b

1

, b

2

) is a convex function
of b

1

, and
(b) for any fixed b

2

2 [0, 1], z := A(t

1

, b

2

)�A(1�t

1

, 1�b

2

)

is a sub-gradient of ûA

(b

1

, b

2

) at b
1

= t

1

, i.e., for any
b

1

2 [0, 1],

û

A

(b

1

, b

2

) � û

A

(t

1

, b

2

) + z · (b
1

� t

1

).

Theorem 3. Let A be a symmetric mechanism, described by
function A(b

1

, b

2

). If for any fixed b

2

, A(b

1

, b

2

) is increasing,
continuous and piecewise continuously differentiable w.r.t. b

1

,
and if for any t

1

, t

2

2 [0, 1], the equality4

t

1

· @A
@b

1

(t

1

, t

2

) = (1� t

1

) · @A
@b

1

(1� t

1

, 1� t

2

) (1)

holds within each piecewise interval, then A is SP.

Proof. Recall the definition of û

A

(b

1

, b

2

). By the assump-
tions on A, @û

A

@b1
(t

1

, t

2

) exists everywhere (except perhaps at
the endpoints of the piecewise intervals), and its value is

A(t

1

, t

2

) � A(1� t

1

, 1� t

2

)

+ t

1

· @A
@b

1

(t

1

, t

2

) � (1� t

1

) · @A
@b

1

(1� t

1

, 1� t

2

).

The final two terms cancel out due to (1). Hence,

@û

A

@b

1

(t

1

, t

2

) = A(t

1

, t

2

) � A(1� t

1

, 1� t

2

). (2)

Since A is continuous and piecewise continuously differen-
tiable w.r.t. its first parameter, at any endpoint (t

1

, t

2

) of a
piecewise interval, the left and right partial derivatives of ûA

w.r.t. its first parameter are equal, i.e., @û

A

@b1
(t

1

, t

2

) exists at
the endpoint too.

When t

1

increases, A(t
1

, t

2

) increases but A(1�t

1

, 1�t

2

)

decreases. By (2), @û

A

@b1
(t

1

, t

2

) increases with t

1

within each

4A clarification: at any specific point (y1, y2), @A
@b1

(y1, y2) is the
value of the partial derivative of A w.r.t. its first parameter at that
point, i.e., @A

@b1
(y1, y2) = lim�!0

A(y1+�,y2)�A(y1,y2)
� .

196



piecewise interval. Thus, ûA

(b

1

, b

2

) is convex w.r.t. b
1

, i.e.,
condition (a) in Theorem 2 holds.

(2) and condition (a) imply that A(t

1

, t

2

)�A(1�t

1

, 1�t

2

)

is a subgradient of ûA

(b

1

, t

2

) at b
1

= t

1

, i.e., condition (b) in
Theorem 2 holds.

Note that the allocation functions of Partial Allocation
mechanisms in Cole et al. [2013a; 2013b] are discontinuous,
so Theorem 3 is not applicable.

4 A 5
6 -Competitive Full Mechanism

Guo and Conitzer [2010] introduced the linear program (LP)
below, which represents the optimal full mechanism when the
bids are restricted to be multiples of 1/N for some integer
N . Let [N ] denote the set of all multiples of 1/N which are
between zero and one.

max�

8t
1

, t

0
1

, t

2

2 [N ], û

A

(t

1

, t

2

) � t

1

·A(t0
1

, t

2

)

+ (1� t

1

) ·A(1� t

0
1

, 1� t

2

);

8t
1

, t

2

2 [N ], SWA

(t

1

, t

2

) � (1 + |t
1

� t

2

|)�;
8t

1

, t

2

2 [N ], A(t

1

, t

2

) +A(t

2

, t

1

) = 1; (3)
8t

1

, t

2

2 [N ], A(t

1

, t

2

) � 0.

They solved the LP with N = 50. The optimal � value, which
is 0.841, is an upper bound on the optimal competitiveness of
SP full mechanisms for two items.

The LP has ⇥(N

2

) variables and ⇥(N

3

) constraints,
which is efficiently solvable only for small N . However, one
would expect that the strategyproofness constraints with large
|t
1

� t

0
1

| are unnecessary. So we keep only those constraints
with |t

1

� t

0
1

| = 1/N . This reduces the number of constraints
to ⇥(N

2

), allowing us to solve the LP with a much refined
resolution of N = 400. The upper bound is improved to
5

6

+ ✏, where ✏ < 10

�9. We believe that 5

6

is the final answer.
We make two observations from the solution to the LP, and

make two heuristic assumptions. We then use the observa-
tions and assumptions to derive a full mechanism which is
5

6

-competitive.
Observation 1. There exists a function f : [0, 1] ! R such
that A(t

1

, t

2

) = f(t

1

)�f(t

2

)+

1

2

. Furthermore, f is increas-
ing, continuous and piecewise differentiable.
Observation 2. For all t 2 [0, 1/5], f(t) = 0. For all t 2
[4/5, 1], f(t) is a constant.
Assumption 3. The function A(t

1

, t

2

) satisfies the equality
(1), except at points where t

1

2 {1/5, 4/5}.
With the observations and assumption, (1) yields

8t 2 [0, 1] \
⇢
1

5

,

4

5

�
, tf

0
(t) = (1� t)f

0
(1� t). (4)

With Observation 2, the social welfare attained when t

2

=

0 is 1 + t

1

�
f(t

1

)� f(1� t

1

) +

1

2

�
, and SWOPT(t1, t2) =

1 + t

1

. The following inequality must hold for A to be 5

6

-
competitive: 1 + t

1

�
f(t

1

)� f(1� t

1

) +

1

2

�
� 5

6

(1 + t

1

),
or

f(t)� f(1� t) � 1/3� 1/(6t). (5)

Observe that by (4), once the values of f(t) for 0  t  1

2

are known, the values of f(t) for 1

2

 t  1 can be deter-
mined. We now state the final heuristic assumption: in (5),
the equality holds for t 2 [1/5, 1/2].

Assumption 4. 8t 2
⇥
1

5

,

1

2

⇤
, f(t)� f(1� t) =

1

3

� 1

6t

.

With (5) and Assumption 4, we can solve f using calculus,
which is:

f(t) =

8
>><

>>:

0, t 2
⇥
0,

1

5

⇤
;

5

6

� 1

6t

� 1

6

ln(5t), t 2
⇥
1

5

,

1

2

⇤
;

1

2

� 1

6

ln(5� 5t), t 2
⇥
1

2

,

4

5

⇤
;

1

2

, t 2
⇥
4

5

, 1

⇤
.

(6)

Theorem 4. The full mechanism A as described in Assump-
tion 1 and (6) is feasible, SP and 5

6

-competitive.

Proof. Feasibility trivially holds. Strategyproofness follows
from Assumption 3 and Theorem 3.

For competitiveness, note that SWA

(t

1

, t

2

) equals

1 + (t

1

� t

2

) · [f(t
1

)� f(t

2

)� f(1� t

1

) + f(1� t

2

)] .

Showing that A is 5

6

-competitive is equivalent to showing that
SWA

(t

1

, t

2

) � 5

6

(1 + |t
1

� t

2

|), which can be done with an
appropriate case analysis (which is needed due to the piece-
wise definition of f ) and simple calculus; we defer the details
to the full version.

5 A Partial Mechanism — Strictly Better than
5
6 -Competitive

By changing the equality sign in (3) to a  sign, that LP cov-
ers partial mechanisms also. The modified LP provides an
upper bound of 0.8644. We look into its solution, as we did
in Section 4, but we do not recognize a nice pattern.

Since we solve the modified LP with high resolution, we
believe that an optimal partial mechanism attains competi-
tiveness close to 0.8644, beating the 5

6

+ ✏ upper bound for
full mechanism. Yet, to formally prove that an optimal partial
mechanism is strictly better than an optimal full mechanism,
we ought to provide a concrete, and preferably compact,
SP partial mechanism which is strictly better than (

5

6

+ ✏)-
competitive. This is the purpose of the current section.

Let f
1

: [0, 1/2] ! R and f

2

: [1/2, 1] ! R be two in-
creasing and continuously differentiable functions such that
8t 2 [0, 1/2], tf

0
1

(t) = (1 � t)f

0
2

(1 � t), and f

1

(0) =

f

2

(1/2) = 0. Also, let Q,R : [0, 1] ! R+ be two func-
tions. Then define the function A(t

1

, t

2

)

:=

⇢
Q(t

2

) · f
1

(t

1

) +R(t

2

), t

1

2 [0, 1/2]

A

�
1

2

, t

2

�
+Q(1� t

2

) · f
2

(t

1

), t

1

2 (1/2, 1] .

It is easy to verify that the above function A satisfies all con-
ditions required in Theorem 3, and thus it yields a SP mecha-
nism, modulo feasibility constraint.

Our strategy is to pick some choice of f
1

, f

2

, and then use
an LP to find out Q,R such that A is feasible and attains
good competitiveness. As before, we formulate the LP with
bids restricted to be in [N ]. The LP is stated below; note that
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we impose a slightly stricter feasibility constraint, in which
only (1 � �) fraction, for some � > 0, of each item can be
allocated. The reason will be clear later.

max�

8t
1

, t

2

2 [N ], A(t

1

, t

2

) +A(t

2

, t

1

)  1� �;

8t
1

, t

2

2 [N ], SWA

(t

1

, t

2

) � (1 + |t
1

� t

2

|)�.
8t 2 [N ], Q(t), R(t) � 0.

It is easy to verify that the above program is a LP with vari-
ables Q(t), R(t) for t 2 [N ], plus variable �.

Lacking further insight on how a good choice of f

1

, f

2

should be, we try the natural candidate f

1

(t) := t, and hence
f

2

(t) := ln(2t)� t+ 1/2. Then we solve the above LP with
resolution N = 1000 and � = 2.92/2000. The optimal � is
larger than 0.835524. Let the optimal solution be Q⇤

, R

⇤. We
note that the maximum entry in Q

⇤ is less than 1.46. Now, we
are ready to describe the desired symmetric SP mechanism ˜

A.
˜

A takes t
1

, t

2

as bids. Let ˜t
i

be the value by rounding t

i

to its
nearest multiple of 1/N . ˜

A(t

1

, t

2

) equals
⇢
Q

⇤
(

˜

t

2

) · f
1

(t

1

) +R

⇤
(

˜

t

2

), t

1

2 [0, 1/2]

˜

A

�
1

2

, t

2

�
+Q

⇤
(1� ˜

t

2

) · f
2

(t

1

), t

1

2 (1/2, 1] .

The rounding is needed because the domains of Q⇤
, R

⇤ are
[N ]. It does not destroy strategyproofness; one can verify that
˜

A is SP using Theorem 3. 5

Since the maximum entry of Q⇤ is less than 1.46, and since
the derivatives of f

1

, f

2

are bounded by 1, @

˜

A

@b1
(b

1

, b

2

) < 1.46

always. Also, note that |t
i

� ˜

t

i

|  1

2000

. Due to the first
constraint of the LP above, ˜

A(

˜

t

1

,

˜

t

2

) +

˜

A(

˜

t

2

,

˜

t

1

)  1 � �.
Thus,

˜

A(t

1

, t

2

)+

˜

A(t

2

, t

1

) <

˜

A(

˜

t

1

,

˜

t

2

)+

1.46

2000

+

˜

A(

˜

t

2

,

˜

t

1

)+

1.46

2000

,

which is at most 1. This verifies the feasibility of ˜

A.
To bound the competitiveness of ˜

A, first note that by The-
orem 2, û ˜

A

(t

1

,

˜

t

2

) � û

˜

A

(

˜

t

1

,

˜

t

2

) � 1

2000

and û

˜

A

(t

2

,

˜

t

1

) �
û

˜

A

(

˜

t

2

,

˜

t

1

)� 1

2000

. From the LP, we have

û

˜

A

(

˜

t

1

,

˜

t

2

) + û

˜

A

(

˜

t

2

,

˜

t

1

)

1 + |˜t
1

� ˜

t

2

|
� 0.835524.

With the above two sets of inequalities, we proceed a simple
error analysis to show that

û

˜

A

(t

1

, t

2

) + û

˜

A

(t

2

, t

1

)

1 + |t
1

� t

2

| � 0.833689,

which is strictly larger than 5

6

+ ✏.
To program mechanism ˜

A, we need to store the values of
Q

⇤
, R

⇤ at 1001 discrete values, and to compute f

1

, f

2

at ar-
bitrary real values in their domain. While this may not look
compact to some people, ˜

A is a concrete SP partial mecha-
nism that breaks the 5

6

barrier.
5In general, if an allocation function for agent i, denoted by

A0
i(~ui, ~u�i), yields a SP mechanism, then any other allocation func-

tion A00
i (~ui, ~u�i) ⌘ A0

i(~ui, T (~u�i)), where T is an arbitrary func-
tion with range compatible with the domain of the second parameter
of A0

i, yields a SP mechanism too.

6 A Compact Upper Bound Proof
In this section, we provide some high-level intuitions for our
compact proof for the following theorem; we defer the com-
plete proof to the full version.
Theorem 5. For the case with two items, no SP mechanism
is better than 0.9523-competitive.

We make the following qualitative observation. Suppose
~u

i

= (t

i

, 1 � t

i

). For some t

1

, t

2

, if agent 1 earns a too
high utility from the mechanism, then the utility earned by
agent 2 has to be very low, forcing a low competitive ratio;
conversely, if agent 1 earns too low a utility, this forces a
low competitive ratio too. Thus, to attain a high competi-
tive ratio h, there is a restricted range of utility values that
each agent can earn. Geometrically, the utilities earned by
the agents must lie in the intersection of AUR(t

1

, t

2

) and the
set {(r

1

, r

2

) | r
1

+ r

2

� h · SWOPT(t1, t2)}.
Briefly, our proof strategy is: for some h, t

1

, t

2

, since the
utilities earned by both agents are restricted to certain range,
the allocations are restricted too. Due to Theorem 2, the sub-
gradients of ûA at certain points are also restricted. We then
show that if h is too high, the above restrictions add up to
forbid the existence of ûA.

7 A 0.67776-Competitive Mechanism for Any
Number of Items

Cole et al. [2013a] introduced a family of SP mechanisms
called Partial Allocation (PA) mechanisms, which work for
multiple agents and multiple items. We describe the two-
agent version PA

c

below.6 In [2013b], they showed that a
variant of a PA mechanism, which we denote by PA

max

, is
SP and it is 2

3

-competitive for two agents and multiple items.
We will show that by taking a suitable weighted average of
two PA mechanisms and PA

max

, we break the 2

3

barrier.

PA
c

(~u

1

, ~u

2

) for 0 < c < 1:
1. Compute the feasible allocation (~a

1

,~a

2

)

that maximizes u
1

(~a

1

) · u
2

(~a

2

)

c.
Let W (u

1

, u

2

) denote the maximal value.
2. Allocate u

2

(~a

2

)

c fraction of ~a
1

to agent 1;
allocate u

1

(~a

1

)

1/c fraction of ~a
2

to agent 2.
(See footnote 6).

PA
max

(~u

1

, ~u

2

):
1. Compute the allocation of PA

1

(~u

1

, ~u

2

).
2. Compute the allocation in which each

item is split evenly among the two agents.
3. Output the allocation that yields higher social welfare.
To build up an intuition on why this might work, we look

at an almost worst case scenario for PA
max

, where there are
two items, ~u

1

= (0.99, 0.01) and ~u

2

= (0.5, 0.5). In PA
1

,
~a

1

= (1, 0) and ~a

2

= (0, 1), u
1

(~a

1

) = 0.99 and u

2

(~a

2

) =

0.5. The eventual allocation to agent 1 is 1

2

~a

1

, i.e., reducing

6Since the utility functions are normalized, 0 <
u2(~a2)

c, u1(~a1)
1/c  1. So Step 2 of PAc is legitimate.

Also, we note that the eventual utility attained by agent 1 is
u1(~a1) · u2(~a2)

c = W (u1, u2), and the eventual utility attained by
agent 2 is u1(~a1)

1/c · u2(~a2) = W (u1, u2)
1/c.
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~a

1

by half. This reduction harms the eventual social welfare
hugely.

If we consider PA
c

for some c less than 1, say c = 0.5,
the eventual allocation to agent 1 is much better, which is
0.5

0.5

~a

1

⇡ 0.707~a

1

. The eventual allocation to agent 2 in
PA

0.5

is 0.99

2

~a

2

, which is slightly worse than 0.99~a

2

, the
eventual allocation to agent 2 in PA

1

. But overall, the social
welfare in PA

0.5

is much better.
However, there are bad scenarios for PA

0.5

, e.g., when
the utility functions of the two agents in the last paragraph
are swapped. To attain an overall good competitiveness, we
consider some weighted average of

�
1

2

·PA
c

+

1

2

·PA
1/c

�

and PA
max

. For each choice of c and the weights, by using
the tool of AUR, we can compute the competitive ratio with
math software. We find that for a suitable choice of c and the
weights, a competitive ratio of 0.67776 is attained. The proof
of the theorem below is deferred to the full version.
Theorem 6. The mechanism

✓
1029

4000

·PA
c

+

1029

4000

·PA
1/c

+

971

2000

· PA
max

◆
,

where c = 0.421, is SP and is at least 0.67776-competitive.

8 Dynamic-Increasing-Price Mechanisms
In this section, we propose a sub-class of SP mechanisms for
any number of agents and items. For simplicity, we describe
the general form of DIP mechanisms for the case with two
agents. It is easy to see how to generalize to the cases with
any number of agents.

Recall that the number of items is m. For each agent i, she
has one unit of virtual money. For each item j, agent i will
be given a price function P

u3�i

j

: [0, 1] ! R+ [ {0,+1},
which is an increasing function that depends on the utility
function of the agent 3� i. We will write P�i

j

as a shorthand
for P

u3�i

j

. The value P

�i

j

(y) describes the marginal price
when agent i has already purchased y units of item j. In
other words, if agent i purchases x

j

units of item j, she needs
to pay T

�i

j

(x

j

) :=

R
xj

0

P

�i

j

(y) dy unit of her virtual money.
Agent i will purchase an allocation ~x = (x

1

, x

2

, · · · , x
m

)

which is in

argmax

8j, 0xj1Pm
j=1 T

�i
j (xj)1

mX

j=1

u

ij

x

j

.

A DIP mechanism is obviously SP, since each agent is ac-
cepting prices which she herself cannot influence, and uses
them to decide an optimal purchase. Yet, feasibility is a deli-
cate issue, particularly when m is large.

While DIP and IP mechanisms are apparently similar, we
note that there is no process of dictator-swapping in DIP, and
DIP is not swap-dictatorial and not full in general. Another
difference between DIP and IP is that in DIP the price func-
tions are price versus quantity of item already purchased,
while in IP they are price versus virtual money already spent.

DIP is well motivated. In the first-best allocation, if u
1j

>

u

2j

, then agent 1 gets all of item j. When u

1j

is high but
u

2j

is low, ideally we want to construct the price function

P

�1

j

, P

�2

j

such that P�2

j

is lower to encourage agent 1 to
purchase more item j, but P�1

j

is higher to discourage agent
2 from purchasing more item j. Adjusting the prices dynami-
cally in this manner might help pushing the allocation in DIP
towards the first best allocation, and therefore might be hope-
ful to attain better competitiveness.

The way that DIP works is similar to price taking in Fisher
market: suppose an agent enters a Fisher market where items
are sold, the prices she takes surely depend on other agents’
preferences, while she herself can also have influence on the
prices — as a mechanism, DIP deliberately removes such
influence by herself. In a non-rigorous sense, we may say
that DIP is a rescue for Fisher markets from being non-
strategyproof.

We note that [Cole et al., 2013b, Theorem 1] proved that
when there are two agents and multiple items, Fisher mar-
ket equilibrium allocation (which is also the proportional fair
allocation) is highly competitive against the first-best alloca-
tion.
Proposition 7. The 5

6

-competitive mechanism given in Sec-
tion 4 is a DIP mechanism.

We give the price functions for agent 1 on item 1 below;
other price functions are defined symmetrically. Recall that
~u

2

= (t

2

, 1 � t

2

), and also the definition of f in (6). Let
⌧ =

1

2

� f(t

2

). Then

P

�1

1

(y) :=

8
>>><

>>>:

0, y 2 [0, ⌧ ]

C, y 2
�
⌧, f(

1

2

) + ⌧

⇤

C

g(y)

� C, y 2
�
f(

1

2

) + ⌧,

1

2

+ ⌧

⇤

+1, y 2
�
1

2

+ ⌧, 1

⇤
,

where g(y) denotes the unique value of z 2
⇥
1

5

,

1

2

⇤
such that

f(1�z)�f(t

2

)+

1

2

= y, and C is the positive constant such
that

R
1�f(t2)

0

P

�1

1

(y) dy = 1.

9 Discussion and Open Problems
The most important problem for future research is to seek
optimal competitive mechanisms. As we have already seen,
even for the case with two items, where the setting is es-
sentially single-parameter, the use of analytical tools seems
unavoidable — for instance, it looks unlikely to have a nat-
ural interpretation of the 5

6

-competitive mechanism, which
we believe to be an optimal full mechanism. In the study of
revenue-optimal mechanisms with prior, more advanced ana-
lytical tools, including duality theory and variational calculus,
have played key roles. See, e.g., [Papadimitriou and Pier-
rakos, 2011] and Giannakopoulos and Koutsoupias [2014;
2015]. We believe that such tools will be useful for our prob-
lem too; for instance, duality theory is likely to be useful for
showing that the upper bound for full mechanism is exactly
5

6

.
In Section 6, we use Rochet’s characterization to prove a

non-trivial upper bound. The proof only considers the re-
strictions to two cross sections of ûA, so clearly it has not yet
fully exploited the power of the characterization. An interest-
ing research agenda is to seek a more sophisticated use of the
characterization for proving better upper bounds, for either
the case with two items, or for those with more items.
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