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Abstract
Eliciting preferences of a set of agents over a set of
items is a problem of fundamental interest in arti-
ficial intelligence in general and social choice the-
ory in particular. Prior works on preference elic-
itation focus on unrestricted domain and the do-
main of single peaked preferences and show that
the preferences in single peaked domain can be
elicited by much less number of queries compared
to unrestricted domain. We extend this line of re-
search and study preference elicitation for single
peaked preferences on trees which is a strict super-
set of the domain of single peaked preferences. We
show that the query complexity crucially depends
on the number of leaves, the path cover number,
and the distance from path of the underlying single
peaked tree, whereas the other natural parameters
like maximum degree, diameter, pathwidth do not
play any direct role in determining query complex-
ity. We then investigate the query complexity for
finding a weak Condorcet winner for preferences
single peaked on a tree and show that this task has
much less query complexity than preference elici-
tation. Here again we observe that the number of
leaves in the underlying single peaked tree and the
path cover number of the tree influence the query
complexity of the problem.

1 Introduction
In multiagent systems, we often have scenarios where agents
have to arrive at a consensus when choosing between multi-
ple options. Typically, the agents have preferences over a set
of items, and the problem of aggregating these preferences
in a suitable manner is one of the most well-studied prob-
lems in social choice theory [Brandt et al., 2015b]. There are
many ways of expressing preferences over a set of alterna-
tives. One of the most comprehensive ways is to specify a
complete ranking over the set of alternatives. However, one
of the downsides of this model is the fact that it can be expen-
sive to solicit a preference when there are a large number of
alternatives, and many agents are involved.

Since asking agents to provide their complete rankings is
impractical, a popular notion is one of elicitation, where we

ask agents simple comparison queries, such as if they prefer
alternative X over Y . This naturally gives rise to the prob-
lem of preference elicitation, where we hope to recover the
complete ranking (or possibly the most relevant part of the
ranking) based on a small number of queries.

The paradigm of voting is a popular general methodology
for aggregating preferences, where one devises “voting rules”
for mapping a collection of preferences (which we refer to as
votes) to either a winning alternative or a consensus ranking.
Keeping in line with the terminology used in voting, we will
refer to alternatives as candidates, and a collection of votes
will be termed a preference profile. In the context of a fixed
voting rule, we may also want to query the voters up to the
point of determining the winner (or the aggregate ranking, as
the case may be). Yet another refinement in this setting is
when we have prior information about how agents are likely
to vote, and we may want to determine which voters to query
first, to be able to quickly rule out a large number of alterna-
tives, as explored by [Conitzer and Sandholm, 2002].

When our goal is to elicit preferences that have no prior
structure, one can demonstrate scenarios where it is imper-
ative to ask each agent (almost) as many queries as would
be required to determine an arbitrary ranking. However, in
recent times, there has been considerable interest in voting
profiles that are endowed with additional structure. The mo-
tivation for this is two-fold. The first is that in several applica-
tion scenarios commonly considered, it is rare that votes are
ad-hoc, demonstrating no patterns whatsoever. For example,
the notion of single-peaked preferences, which we will soon
discuss at length, forms the basis of several studies in the an-
alytical political sciences [Hinich and Munger, 1997]. In his
work on eliciting preferences that demonstrate the “single-
peaked” structure, [Conitzer, 2009] argues that the notion of
single-peakedness is also a reasonable restriction in applica-
tions outside of the domain of political elections.

The second motivation for studying restricted preferences
is somewhat more technical, but is just as compelling. To un-
derstand why structured preferences have received consider-
able attention from social choice theorists, we must first take
a brief detour into some of the foundational ideas that have
shaped the landscape of voting rules as we understand them
today. As it turns out, the axiomatic approach of social choice
involves defining certain “properties” that formally capture
the quality of a voting rule. For example, we would not want
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a voting rule to be, informally speaking, a dictatorship, which
would essentially mean that it discards all but one voter’s in-
put. Unfortunately, a series of cornerstone results establish
that it is impossible to devise voting rules which respect some
of the simplest desirable properties. Indeed, the classic works
of Arrow [Arrow, 1950] and Gibbard-Satterthwaite [Gibbard,
1973; Satterthwaite, 1975] show that there is no straight for-
ward way to simultaneously deal with properties like vot-
ing paradoxes, strategy-proofness, nondictatorship, unanim-
ity etc. We refer to [Moulin, 1991] for a more elaborate
discussion. Making the matter worse, many classical voting
rules turn out to be computationally intractable.

This brings us to the second reason for why structured pref-
erences are an important consideration. The notion of single-
peakedness that we mentioned earlier is an excellent illustra-
tion (we refer the reader to Section 2 for the formal defini-
tion). Introduced by [Black, 1948], it not only captures the
essence of structure in political elections, but also turns out to
be extremely conducive to many natural theoretical consid-
erations. To begin with, one can devise voting rules that are
“nice” with respect to several properties, when preferences
are single-peaked. Further, they are structurally elegant from
the view of winner determination, since they always admit a
weak Condorcet winner — a candidate which is not defeated
by any other candidate in pairwise election — thus working
around the Condorcet paradox which is otherwise a promi-
nent concern in the general scenario. In a landmark contribu-
tion, [Brandt et al., 2015a] show that several computational
problems that are intractable in the general setting become
polynomially solvable when we consider single-peaked pref-
erences.

A natural question at this point is if the problem of elic-
itation becomes any easier — that is, if we can get away
with fewer queries — by taking advantage of the structure
provided by single-peakedness. It turns out that the answer
to this is in the affirmative, as shown in a detailed study
by [Conitzer, 2009]. The definition of single-peakedness in-
volves an ordering over the candidates (called the harmonious

ordering by some authors). The work of [Conitzer, 2009]
shows that O(mn) queries suffice, assuming either that the
harmonious ordering is given, or one of the votes is known.
Dey and Misra [Dey and Misra, 2016b] show a query com-
plexity bound of O(mn) for the domain of single crossing
profiles and a large number of voters.

We now return to the theme of structural restrictions on
preferences. As it turns out, the single peaked preference do-
main has subsequently been generalized to single peakedness
on trees (roughly speaking, these are profiles that are single
peaked on every path) [Demange, 1982; Trick, 1989]. This
is a class that continues to exhibit many desirable properties
of single peaked domains. For example, there always exists a
weak Condorcet winner and further, many voting rules that
are intractable in unrestricted domain are polynomial time
computable if the underlying single peaked tree is “nice” [Yu
et al., 2013; Peters and Elkind, 2016]. We note the class of
profiles that are single peaked on trees are substantially more
general than the class of single peaked preferences. Note that
the latter is a special case since a path is, in particular, a tree.
Our work here addresses the issue of elicitation on profiles

that are single-peaked on trees, and can be seen as a signifi-
cant generalization of the results in [Conitzer, 2009]. We now
detail the specifics of our contributions.

Our Contributions. We study the query complexity for
preference elicitation when the preference profile is single
peaked on a tree. We provide tight connections between var-
ious parameters of the underlying tree and the query com-
plexity for preference elicitation. Our broad goal is to pro-
vide a suitable generalization of preference elicitation for
single peaked profiles to profiles that are single peaked on
trees. Therefore, we consider various ways of quantifying the
“closeness” of a tree to a path, and reflect on how these mea-
sures might factor into the query complexity of an algorithm
that is actively exploiting the underlying tree structure.

We summarize our results for preference elicitation in Ta-
ble 1, where the readers will note that most of the parameters
(except diameter) chosen are small constants (typically zero,
one or two) when the tree under consideration is a path. Ob-
serve that in some cases — such as the number of leaves, or
the path cover number — the dependence on the parameter is
transparent (and we recover the results of [Conitzer, 2009] as
a special case), while in other cases, it is clear that the per-
spective provides no additional mileage (the non-trivial re-
sults here are the matching lower bounds).

In terms of technique, our strategy is to “scoop out the
paths from the tree” and use known algorithms to efficiently
elicit the preference on the parts of the trees that are paths.
We then efficiently merge this information across the board,
and that aspect of the algorithm varies depending on the pa-
rameter considered. The lower bounds typically come from
trees that provide large “degrees of freedom” in reordering
candidates, typically these are trees that don’t have too many
long paths (such as stars). The arguments are often subtle but
intuitive.

We then study the query complexity for finding a weak
Condorcet winner of a preference profile which is single
peaked on a tree. Here, we are able to show that a weak Con-
dorcet winner can be found with far fewer queries than the
corresponding elicitation problem. In particular, we establish
that a weak Condorcet winner can be found using O(mn)
many queries for profiles that are single peaked on trees [The-
orem 7], and we also show that this bound is the best that we
can hope for [Theorem 10]. We also consider the problem for
the special case of single peaked profiles. While [Conitzer,
2009] showed that ⌦(mn) queries are necessary to determine
the aggregate ranking, we show that onlyO(n logm) queries
suffice if we are just interested in (one of the) weak Con-
dorcet winners. Moreover, we show this bound is tight under
the condition that the algorithm does not interleave queries to
different voters [Theorem 11] (our algorithm indeed satisfies
this condition).

Finally, expressing the query complexity for determining
a weak Condorcet winner in terms of a measure of close-
ness to a path, we show an algorithm with query complexityO(nk logm) where k is the path cover number of T [Theo-
rem 9] or the number of leaves in T [Corollary 6].

To summarize, we remark that our results non-trivially
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Parameter Upper Bound Lower Bound
Path width (w) O(mn logm) Observation 1 ⌦(mn logm) even for w = 1, logm Corollary 3

Maximum degree (�) O(mn logm) Observation 1 ⌦(mn logm) even for � = 3,m − 1 Corollary 4
Path cover number (k) O(mn log k) Theorem 2 ⌦(mn log k) Corollary 2
Number of leaves (`) O(mn log `) Corollary 1 ⌦(mn log `) Theorem 4

Distance from path (d) O(mn + nd log d) Theorem 3 ⌦(mn + nd log d) Theorem 6
Diameter (!) O(mn logm) Observation 1 ⌦(mn logm) even for ! = 2,m�2 Corollary 5

Table 1: Summary of query complexity bounds for PREFERENCE ELICITATION.

generalize earlier works on query complexity for preference
elicitation in [Conitzer, 2009]. We believe revisiting the pref-
erence elicitation problem in the context of profiles that are
single peaked on trees is timely, and that this work also pro-
vides fresh algorithmic and structural insights on the domain
of preferences that are single peaked on trees.

Related Work. We have already mentioned the work
of [Conitzer, 2009] addressing the question of eliciting pref-
erences in single-peaked profiles, which is the closest prede-
cessor to our work. Before this, Conitzer and Sandholm ad-
dressed the computational hardness for querying minimally
for winner determination [Conitzer and Sandholm, 2002].
They also prove that one would need to make ⌦(mn logm)
queries even to decide the winner for many commonly used
voting rules [Conitzer and Sandholm, 2005] which matches
with the trivial O(mn logm) upper bound for preference
elicitation in unrestricted domain based on sorting. Ding and
Lin study preference elicitation under partial information set-
ting and show interesting properties of what they call a de-
ciding set of queries [Ding and Lin, 2013]. Lu and Boutilier
provide empirical study of preference elicitation under prob-
abilistic preference model [Lu and Boutilier, 2011b] and de-
vise several novel heuristics which often work well in practice
[Lu and Boutilier, 2011a].

2 Preliminaries
For a positive integer n, we denote the set {1, . . . , n} by [n].
Suppose we have a set V = {vi ∶ i ∈ [n]} of n voters each of
which has a preference �i, i ∈ [n], alternatively called vote,
which is a complete order over a set C = {cj ∶ j ∈ [m]} of m
candidates. We denote the set of preferences over C by L(C).
The tuple (�i)i∈[n] of the preferences of all the voters is called
a profile. If not mentioned otherwise, we use m and n to
denote the number of candidates and the number of voters
respectively. Let �∈ L(C) be any complete order over C. For
a subset X ⊆ C of candidates, we denote the restriction of an
order � to the subset of candidates X by � (X ). We denote
the restriction of a profile P = (�i)i∈[n] to X by P(X ) = (�i(X ))i∈[n]. We say that a candidate x ∈ C is placed at the ith

position of a preference �∈ L(C) if x is preferred over all
but exactly (i − 1) candidates in �. Given an n voters profileP = (�i)i∈[n], a candidate x is called a Condorcet winner ofP if for every other candidate y, a strict majority of the voters
prefer x over y; that is �{i ∈ [n] ∶ x �i y}� > n�2 for every
y ∈ C�{x}. A candidate x is called a weak Condorcet winner

of an n voters profile P = (�i)i∈[n] if there does not exist any
other candidate y whom a strict majority of the voters prefer
over x; that is �{i ∈ [n] ∶ y �i x}� ≤ n�2 for every y ∈ C � {x}.
A preference �∈ L(C) over a set of candidates C is called
single peaked with respect to an order �′∈ L(C) if, for every
candidates x, y ∈ C, we have x � y whenever we have either
c �′ x �′ y or y �′ x �′ c, where c ∈ C is the candidate
at the first position of �. A profile P = (�i)i∈[n] is called
single peaked with respect to an order �′∈ L(C) if �i is single
peaked with respect to �′ for every i ∈ [n]. Given a pathQ = (x

1

, x
2

, . . . , x`) from a vertex x
1

to another vertex x` in
a tree T , we define the order induced by the pathQ to be x

1

�
x
2

� � � x`. Given a tree T = (C,E) with the set of nodes as
the set of candidates C, a profile P is called single peaked on
the tree T if P is single peaked on the order induced by every
path of the tree T ; that is for every two candidates x, y ∈ C,
the profile P(X ) is single peaked with respect to the order �
of the candidates X induced by the unique path from x to y
in T . We call the tree T the underlying single peaked tree.
It is known (c.f. [Demange, 1982]) that there always exists
a weakly Condorcet winner for a profile P which is single
peaked on a tree T .

Trees. The following definitions pertaining to the structural
aspects of trees will be useful.

– The pathwidth of T is the minimum width of a path de-

composition of T [Heinrich, 1993].

– A set of disjoint paths Q = {Q
1

= (X
1

,E
1

), . . . ,Qk =(Xk,Ek)} is said to cover a tree T = (X ,E) if X =∪i∈[k]Xi,Ei ⊆ E ,Xi ∩ Xj = �,Ei ∩ Ej = � for every
i, j ∈ [k] with i ≠ j. The path cover number of T is the
cardinality of the smallest set Q of disjoint paths that
cover T .

– The distance of a tree T from a path is the smallest num-
ber of nodes whose removal makes the tree a path.

– The diameter of a tree T is the number of edges in the
longest path in T .

We also list some definitions of subclasses of trees (which
are special types of trees, see also Figure 1).

– A tree is a star if there is a center vertex and every other
vertex is a neighbor of this vertex.

– A tree is a subdivision of a star if it can be constructed
by replacing each edge of a star by a path.
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Figure 1: Depicting classes of trees: (a) a path, (b) a star, (c)
a (balanced) subdivision of a star, (d) a caterpillar.

– A subdivision of a star is called balanced if there exists
an integer ` such that the distance of every leaf node
from the center is `.

– A tree is a caterpillar if there is a central path and every
other vertex is at a distance of one it.

– A tree is a complete binary tree rooted at r if every non-
leaf node has exactly two children and there exists an
integer h, called the height of the tree, such that every
leaf node is at a distance of either h or h − 1 from the
root node r.

Problem Definitions and Known Results. Suppose we
have a profile P with n voters and m candidates. For any
pair of distinct candidates x and y, and a voter ` ∈ [n], we
introduce the boolean-valued function QUERY(x �` y). The
output of this function is TRUE if the voter ` prefers the can-
didate x over the candidate y and FALSE otherwise. We now
formally state the two problems that we consider in this paper.
Definition 1 PREFERENCE ELICITATION
Given a tree T = (C,E) and an oracle access to the function

QUERY(⋅) for a profile P which is single peaked on T , findP .

Definition 2 WEAK CONDORCET WINNER
Given a tree T = (C,E) and an oracle access to the function

QUERY(⋅) for a profile P which is single peaked on T , find a

weak Condorcet winner of P .

Suppose we have a set of candidates C = {c
1

, . . . , cm}. We
say that an algorithmA makes q queries if there are exactly q
distinct tuples (`, ci, cj) ∈ [n] × C × C with i < j such that A
calls QUERY(ci �` cj) or QUERY(cj �` ci). We call the num-
ber of queries made by an algorithm A its query complexity.

We state some known results that we will appeal to later.
The first observation employs a sorting algorithm like merge

sort to elicit every vote with O(m logm) queries, while
the second follows from the linear-time merge subroutine of
merge sort ([Cormen, 2009]).
Observation 1 There is a PREFERENCE ELICITATION algo-

rithm with query complexity O(mn logm).
Observation 2 Suppose C

1

,C
2

⊆ C form a partition of C and� is a ranking of the candidates in C. Then there is a polyno-

mial time algorithm that finds � given � (C
1

) and � (C
2

) with

query complexity O(�C�).
Theorem 1 [

Conitzer, 2009

]

There is a PREFERENCE ELIC-
ITATION algorithm with query complexity O(mn) for single

peaked profiles.

3 Results for PREFERENCE ELICITATION
In this section, we present our results for PREFERENCE ELIC-
ITATION for profiles that are single peaked on trees. Recall
that we would like to generalize Theorem 1 in a way to pro-
files that are single peaked on trees. Since the usual single
peaked profiles can be viewed as profiles single peaked with
respect to a path, we propose the following measures of how
much a tree resembles a path.

– Leaves. Recall any tree has at least two leaves, and paths
are the trees that have exactly two leaves. We consider
the class of trees that have ` leaves, and show an algo-
rithm with a query complexity of O(mn log `).

– Path Cover. Consider the notion of a path cover number

of a tree, which is the smallest number of disjoint paths
that the tree can be partitioned into. Clearly, the path
cover number of a path is one; and for trees that can be
covered with k paths, we show an algorithm with query
complexity O(mn log k).

– Distance from Paths. Let d be the size of the smallest set
of vertices whose removal makes the tree a path. Again,
if the tree is a path, then the said set is simply the empty
set. For trees that are at a distance d from being a path
(in the sense of vertex deletion), we provide an algorithm
with query complexity O(mn log d).

– Pathwidth and Maximum Degree. Finally, we note that
paths are also trees that have pathwidth one, and maxi-
mum degree two. These perspectives turn out to be less
useful: in particular, there are trees where these param-
eters are constant, for which we show that elicitation is
as hard as it would be on an arbitrary profile, and there-
fore the easy algorithm from Observation 1 is actually
the best that we can hope for.

For the first three perspectives that we employ, that seem-
ingly capture an appropriate aspect of paths and carry it for-
ward to trees, the query complexities that we obtain are tight
— we have matching lower bounds in all cases. Also, while
considering structural parameters, it is natural to wonder if
there is a class of trees that are incomparable with paths but
effective for elicitation. Our attempt in this direction is to
consider trees of bounded diameter. However, again, we find
that this is not useful, as we have examples to show that there
exist trees of diameter two that are as hard to elicit as general
profiles.
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We remark at this point that all these parameters are poly-
nomially computable for trees, making the algorithmic re-
sults viable. Also, for the parameters of pathwidth, maxi-
mum degree and diameter, we show lower bounds on trees
where these parameters are large (such as trees with path-
width O(logm), maximum degree m−1, and diameter m�2),
which — roughly speaking — also rules out the possibility of
getting a good inverse dependence. As a concrete example,
motivated by the O(mn) algorithm for paths, which have di-
ameter m, one might wonder if there is an algorithm with
query complexity O(mn logm

log! ). This possibility, in partic-
ular, is ruled out. We are now ready to discuss the results
in Table 1.

3.1 Algorithmic Results
We now present our main algorithmic results. We begin with
generalizing the result of Theorem 1 to any single peaked pro-
files on trees whose path cover number is at most k. The idea
is to partition the tree into k disjoint paths, use the algorithm
from Theorem 1 on each paths to obtain an order of the can-
didates on each path of the partition, and finally merge these
suborders intelligently. We now formalize this idea as fol-
lows.
Theorem 2 There is a PREFERENCE ELICITATION algo-

rithm with query complexityO(mn log k) for profiles that are

single peaked on trees with path cover number at most k.

Proof: Since the path cover number is at most k, We
can partition the tree T = (C,E) into t disjoint pathsPi = (Ci,Ei), i ∈ [t], where t is at most k. We now show
that we can elicit any preference � which is single peaked
on the tree T by making O(m log t) queries which in turn
proves the statement. We first find the preference ordering
restricted to Ci using Theorem 1 by making O(�Ci�) queries
for every i ∈ [t]. This step needs ∑i∈[t]O(�Ci�) = O(m)
queries since Ci, i ∈ [t] forms a partition of C. We next merge
the t orders � (Ci), i ∈ [t], to obtain the complete preference� by using a standard divide and conquer approach for
t-way merging which makes O(m log t) queries [Hopcroft
et al., 1983]. Thus the query complexity of the algorithms isO(m +m log t) = O(m log k). �

Towards our results on leaves, we show that the path cover
of a tree with ` leaves is at least �`�2� and at most `. The lower
bound is easy since every path can account for at most two
leaves. The upper bound comes from a careful partitioning of
the nodes following maximal paths from leaves up to a root
and using a careful marking scheme. Using the fact that a
tree with ` leaves can be partitioned into at most ` paths, we
can use the algorithm from Theorem 2 to obtain the following
bound in terms of leaves.
Corollary 1 There is a PREFERENCE ELICITATION algo-

rithm with query complexityO(mn log `) for profiles that are

single peaked on trees with at most ` leaves.

Finally, if we are given a subset of vertices whose removal
makes the given tree a path, then we have an elicitation algo-
rithm that makes O(mn + nd log d). As before, we can de-
termine the ordering among the candidates on the path with

O(m − d) queries, and we determine the ordering among the
rest in O(d log d) queries using Observation 1, and finally
merge using Observation 2. This leads us to the following.
(We defer the proofs of the results which are marked star to
full version of the paper [Dey and Misra, 2016a].)
Theorem 3 There is a PREFERENCE ELICITATION algo-

rithm with query complexity O(mn + nd log d) for profiles

that are single peaked on trees with distance d from path.

3.2 Lower Bounds
We now turn to the lower bounds. Our first result is based on
a counting argument, showing that the query complexity in
terms of the number of leaves, given by Corollary 1, is tight
up to constant factors. Indeed, let us consider a subdivision
of a star with ` leaves and let t denote the distance from the
center, so that we have a total of t` + 1 vertices. One can
show that if the candidates are written out in level order, the
candidates that are distance i from the star can be ordered ar-
bitrarily within this ordering. This tells us that the number of
possible preferences � that are single peaked on the tree T is
at least (`!)t. We obtain the lower bound by using a decision
tree argument, wherein we are able to show that it is always
possible for an oracle answering the comparison queries to
answer in such a way that the total space of possibilities de-
creases by at most a factor of half. Since the tree must en-
tertain at least (`!)t leaves to account for all possibilities, we
obtain the claimed lower bound.
Theorem 4 [�] Let T = (C,E) be a balanced subdivision of

a star with ` leaves. Then any PREFERENCE ELICITATION
algorithm for single peaked profiles on T has query complex-

ity ⌦(mn log `).
Since the path cover number of a subdivided star on `

leaves is at least `�2, we also have the following.
Corollary 2 There exists a tree T with path cover number k
such that any PREFERENCE ELICITATION algorithm for sin-

gle peaked profiles on T has query complexity ⌦(mn log k).
Mimicking the level order argument above on a generic

tree with ` leaves, and using the connection between path
cover and leaves, we obtain lower bounds that are functions
of (n, `) and (n, k), as given below. This will be useful for
our subsequent results.
Theorem 5 [�] Let T = (C,E) be any arbitrary tree with

` leaves and path cover number k. Then any PREFERENCE
ELICITATION algorithm for single peaked profiles on T has

query complexity ⌦(n` log `) and ⌦(nk log k).
The following results can be obtained simply by apply-

ing Theorem 5 on particular graphs. For instance, we use
the fact that stars have (m − 1) leaves and have pathwidth
one to obtain the first part of Corollary 3, while appealing to
complete binary trees that have O(m) leaves and pathwidth
O(logm) for the second part. These examples also work in
the context of maximum degree, while for diameter we use
stars and caterpillars with a central path of length m�2.
Corollary 3 There exist two trees T and T ′ with path-

widths one and logm respectively such that any PREFER-
ENCE ELICITATION algorithm for single peaked profiles onT and T ′ respectively has query complexity ⌦(mn logm).
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Corollary 4 There exist two trees T and T ′ with maximum

degree � = 3 and m − 1 respectively such that any PREFER-
ENCE ELICITATION algorithm for single peaked profiles onT and T ′ respectively has query complexity ⌦(mn logm).
Corollary 5 There exists two trees T and T ′ with diame-

ters ! = 2 and ! = m�2 respectively such that any PREF-
ERENCE ELICITATION algorithm for profiles which are sin-

gle peaked on T and T ′ respectively has query complexity

⌦(mn logm).
Our final result, which again follows from Theorem 5 ap-

plied of caterpillar graphs with a central path of length m−d,
shows that the bound in Theorem 3 is tight.
Theorem 6 [�] For any integers m and d with 1 ≤ d ≤ m�4,
there exists a tree T with distance d from path such that any

PREFERENCE ELICITATION algorithm for profiles which are

single peaked on T has query complexity ⌦(mn + nd log d).
4 WEAK CONDORCET WINNER
We now show that we can find a weak Condorcet winner of
profiles that are single peaked on trees using fewer queries
than the number of queries needed to find the profile itself.
First, note that if a Condorcet winner is guaranteed to ex-
ist, then it can be found using O(mn) queries — we pit an
arbitrary pair of candidates x, y and use O(n) queries to de-
termine if x defeats y. We push the winning candidate for-
ward and repeat the procedure, clearly requiring at most m
rounds. Now, if a profile is single peaked with respect to a
tree, and there are an odd number of voters, then we have a
Condorcet winner and the procedure that we just described
would work. Otherwise, we simply find a Condorcet winner
among the first (n − 1) voters. It can be shown that such a
winner is one of the weak Condorcet winners for the overall
profile, and we therefore have the following upper bound.
Theorem 7 [�] There is a WEAK CONDORCET WINNER al-

gorithm with query complexityO(mn) for single peaked pro-

files on trees.

For the special case of single peaked profiles, we can do
even better. Here we take advantage of the fact that a “me-
dian candidate” [Mas-Colell et al., 1995] is guaranteed to be
a weak Condorcet winner. We make O(logm) queries per
vote to find the candidates placed at the first position of all
the votes using the algorithm in [Conitzer, 2009] and find a
median candidate to show the following.
Theorem 8 [�] There is a WEAK CONDORCET WINNER al-

gorithm with query complexity O(n logm) for single peaked

profiles (on a path).

The next result uses Theorem 8 on paths in a path cover
eliminating the case of even number of voters by the idea of
setting aside one voter that was used in Theorem 7.
Theorem 9 [�] Let T be a tree with path cover number at

most k. Then there is an algorithm for WEAK CONDORCET
WINNER for profiles which are single peaked on T with query

complexity O(nk logm).
Recalling that the number of leaves bounds the path cover

number, we have the following consequence.

Corollary 6 Let T be a tree with ` leaves. Then there is

an algorithm for WEAK CONDORCET WINNER for pro-

files which are single peaked on T with query complexityO(n` logm).
We now state the lower bounds pertaining to WEAK CON-

DORCET WINNER. First, we show that any algorithm for sin-
gle peaked profiles on stars has query complexity ⌦(mn),
showing that the bound of Theorem 7 is tight.

Theorem 10 Any WEAK CONDORCET WINNER algorithm

for single peaked profiles on stars must have query complexity

⌦(mn).
Proof: Let T be a star with center vertex c. We now design an
oracle that will “force” any WEAK CONDORCET WINNER
algorithm A for single peaked profiles on T to make ⌦(mn)
queries. For every voter v, the oracle maintains a set of
“marked” candidates which can not be placed at the first
position of the preference of v. Suppose the oracle receives
a query to compare two candidates x and y for a voter `. If
the order between x and y for the voter ` follows from the
answers the oracle has already provided to all the queries for
the voter `, then the oracle answers accordingly. Otherwise
it answers x �` y if y is unmarked and marks y; otherwise
the oracle answers y �` x and marks x. Notice that the
oracle marks at most one unmarked candidate every time it
is queried. We now claim that there must be at least n�10
votes which have been queried at least m�4 times. If not, then
there exists n − n�10 = 9n�10 votes each of which has at least
m − m�4 = 3m�4 candidates unmarked. In such a scenario,
there exists a constant N

0

such that for every m,n > N
0

, we
have at least two candidates x and y who are unmarked in
at least (�n�2� + 1) votes each. Now if the algorithm outputs
x, then we put y at the first position in at least (�n�2� + 1)
votes and at the second position in the rest of the votes and
this makes y the (unique) Condorcet winner. If the algorithm
does not output x, then we put x at the first position in
at least (�n�2� + 1) votes and at the second position in the
rest of the votes and this makes x the (unique) Condorcet
winner. Hence the algorithm fails to output correctly in
both the cases contradicting the correctness of the algorithm.
Also the resulting profile is single peaked on T with center
at y in the first case and at x in the second case. There-
fore the algorithmAmust have query complexity ⌦(mn). �

Our concluding result uses an intricate adversary argument,
and shows that the query complexity for WEAK CONDORCET
WINNER for single peaked profiles in Theorem 8 is essen-
tially optimal, provided that the queries to different voters are
not interleaved, as is the case with our algorithm.

Theorem 11 Any WEAK CONDORCET WINNER algorithm

for single peaked profiles which does not interleave the

queries to different voters has query complexity ⌦(n logm).
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