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Abstract
Eliciting the preferences of a set of agents over a
set of alternatives is a problem of fundamental im-
portance in social choice theory. Prior work on this
problem has studied the query complexity of pref-
erence elicitation for the unrestricted domain and
for the domain of single peaked preferences. In this
paper, we consider the domain of single crossing
preference profiles and study the query complex-
ity of preference elicitation under various settings.
We consider two distinct situations: when an order-
ing of the voters with respect to which the profile
is single crossing is known versus when it is un-
known. We also consider random and sequential
access models. The main contribution of our work
is to provide polynomial time algorithms with low
query complexity for preference elicitation in all
the above cases. Further, we show that the query
complexities of our algorithms are optimal up to
constant factors for all but one of the above cases.

1 Introduction
Agents in multiagent systems often have individual prefer-
ences which are complete orders over a set of candidates and
one would like to find an aggregate ranking or choose the
“best” candidate. Classic examples where such a scenario
appears are collaborative filtering [Pennock et al., 2000] etc.
In a typical such setting, we have a set of agents or voters;
each of them has a preference, called a vote, over a set of
candidates; and a voting rule (respectively an aggregation
function) which finds a candidate (respectively an aggregated
preference) called winner.

However, eliciting the preferences of the agents is a non-
trivial task since we often have a large number of candidates
(ranking restaurants for example) and it may often be infeasi-
ble for the agents to rank all of them. Hence it becomes im-
portant to elicit the preferences of the agents by asking them
(hopefully a small number of) comparison queries only - ask
an agent i to compare two candidates x and y.

Unfortunately, it turns out that one would need ask every
voter ⌦(m logm) queries to know her preference, and this
argument is based on the decision-tree based lower bound
on the number of comparisons for sorting an array. How-

ever, if the preferences are not completely arbitrary, but ad-
mit additional structure, then possibly we can do better. In-
deed, an affirmation of this thought comes from the work of
[Conitzer, 2009], who showed that we can elicit preferences
using only O(m) queries per voter for what are called sin-
gle peaked preferences (which is a well-studied restriction on
preferences, and we will define the notion formally later in
this section).

There are two reasons for restricting the domain of prefer-
ences. The first is that in several application scenarios com-
monly considered, it is rare that votes are ad-hoc, demonstrat-
ing no patterns whatsoever. For example, the notion of single-
peaked preferences forms the basis of several studies in the
analytical political sciences [Hinich and Munger, 1997].

The second motivation for studying restricted preferences
comes from the fact that they are very well-behaved from a
theoretical perspective as well. The axiomatic approach of
social choice involves defining certain “properties” that for-
mally capture the quality of a voting rule. For example, we
would not want a voting rule to be, informally speaking, a
dictatorship, which would essentially mean that it discards
all but one voter’s input. As it happens, a series of corner-
stone results establish that it is impossible to devise voting
rules which respect some of the simplest desirable proper-
ties. Celebrated results in social choice theory [Arrow, 1950;
Gibbard, 1973; Satterthwaite, 1975] show that it is impossible
to have an aggregation function or a voting rule that simulta-
neously satisfies a desirable set of properties, for example,
strategy-proofness, ontoness, non-dictatorship etc. We refer
the reader to [Moulin, 1991] for an excellent exposition of all
key issues that arise in this context. Adding to the difficul-
ties is the fact that many important voting rules such as Ke-
meny [Kemeny, 1959; Levenglick, 1975], Dodgson [Dodg-
son, 1876; Black et al., 1958], and Young [Young, 1977]
are computationally intractable [Bartholdi III et al., 1989;
Hemaspaandra et al., 2005; Procaccia et al., 2008].

This brings us to the second important reason for con-
sidering structured preferences — they provide a very ele-
gant workaround to the difficulties that we outlined above.
The domains of single peaked and single crossing profiles
are arguably the most important and well-studied domains
among such restricted domains [Saporiti and Tohmé, 2006;
Ballester and Haeringer, 2011; Cornaz et al., 2013; Skowron
et al., 2013; Magiera and Faliszewski, 2014; Faliszewski et
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al., 2014; Brandt et al., 2015, and references therein]. A pro-
file is called single peaked if the candidates can be arranged in
a complete order � such that every preference �′ in the profile
respects the order � in the sense that, for every two candidates
x and y, we have x �′ y whenever we have either c � x � y
or y � x � c, where c is the most preferred candidate in �′
[Black, 1948]. On the other hand a profile is called single
crossing if the voters can be arranged in a complete order �
such that for every two candidates x and y, all the voters who
prefer x over y appear consecutively in � [Mirrlees, 1971;
Roberts, 1977].

Elicitation on Restricted Domains. Conitzer and Sand-
holm show that determining whether we have enough infor-
mation at any point of the elicitation process for finding a
winner under some common voting rules is computationally
intractable [Conitzer and Sandholm, 2002]. They also prove
in their classic paper [Conitzer and Sandholm, 2005] that one
would need to make ⌦(mn logm) queries even to decide the
winner for many commonly used voting rules which matches
with the trivial O(mn logm) upper bound (based on sort-
ing) for preference elicitation in unrestricted domain. Dey
and Misra proved tight query complexity bounds for prefer-
ences single peaked on trees with respect to various tree pa-
rameters [Dey and Misra, 2016a].

A natural question at this point is if these restricted do-
mains allow for better elicitation algorithms as well. The an-
swer to this is in the affirmative, and one can indeed elicit
the preferences of the voters using onlyO(mn)many queries
for the domain of single peaked preference profiles [Conitzer,
2009]. Our work belongs to this kind of research– we inves-
tigate the number of queries one has to ask for preference
elicitation in single crossing domains. When some partial in-
formation is available about the preferences, Ding and Lin
prove interesting properties of what they call a deciding set
of queries [Ding and Lin, 2013]. Lu and Boutilier empir-
ically show that several heuristics often work well [Lu and
Boutilier, 2011b; 2011a].

Contributions. In this paper we present novel algorithms
for preference elicitation for the domain of single crossing
profiles in various settings. We consider two distinct situa-
tions: when an ordering of the voters with respect to which
the profile is single crossing is known versus when it is un-
known. We also consider different access models: when the
votes can be accessed at random, as opposed to when they
are coming in a pre-defined sequence. In the sequential ac-
cess model, we distinguish two cases when the ordering is
known: the first is that sequence in which the votes appear is
also a single-crossing order, versus when it is not. We also
prove lower bounds on the query complexity of preference
elicitation for the domain of single crossing profiles; these
bounds match the upper bounds up to constant factors (for a
large number of voters) for all the six scenarios above except
the case when we know a single crossing ordering of the vot-
ers and we have a random access to the voters; in this case,
the upper and lower bounds match up to a factor of O(m).
We summarize our results in Table 1.

2 Preliminaries
For a positive integer `, we denote the set {1, . . . , `} by[`]. Let V = {v

i

∶ i ∈ [n]} be a set of n voters andC = {c
j

∶ j ∈ [m]} be a set of m candidates. If not men-
tioned otherwise, we denote the set of candidates, the set of
voters, the number of candidates, and the voters by C , V , m,
and n respectively. Every voter v

i

has a preference �
i

which
is a complete order over the set C of candidates. We say voter
v
i

prefers a candidate x ∈ C over another candidate y ∈ C if
x �

i

y. We denote the set of all preferences over C by L(C).
The n-tuple (�

i

)
i∈[n] ∈ L(C)n of the preferences of all the

voters is called a profile. We say a candidate x is placed at
the kth position of a preference � if x is preferred over all but
exactly (k−1) other candidates in � . Let S

n

denote the set of
all permutations over [n] and id

n

be the identity permutation
of [n]. Let an ordering � be x1 � x2 � � � x`

. Then by ←��
we denote the ordering x

`

� � � x2 � x1. All the logarithms
in this paper are base 2 unless specified otherwise.

Single Crossing Domain A profile P = (�1, . . . ,�n) of
n voters over a set C of candidates is called a single cross-
ing profile if there exists a permutation � ∈ S

n

of [n] such
that, for every two distinct candidates x, y ∈ C, whenever we
have x �

�(i) y and x �
�(j) y for two integers i and j with

1 � i < j � n, we have x �
�(k) y for every i � k � j. The fol-

lowing observation is immediate from the definition of single
crossing profiles.
Observation 1 Suppose a profile P is single crossing with
respect to an ordering � ∈ S

n

of votes. Then P is single
crossing with respect to the ordering←�� too.

Problem Formulation Suppose we have a profile P
with n voters and m candidates. Let us define a function
QUERY(x �

`

y) for a voter ` and two different candidates x
and y to be TRUE if the voter ` prefers the candidate x over
the candidate y and FALSE otherwise. We now formally de-
fine the problem.
Definition 1 PREFERENCE ELICITATION
Given an oracle access to QUERY(⋅) for a single crossing pro-
file P , find P .

For two distinct candidates x, y ∈ C and a voter ` , we say
a PREFERENCE ELICITATION algorithm A compares can-
didates x and y for voter ` , if A makes a call to either
QUERY(x �

`

y) or QUERY(y �
`

x). We define the number of
queries made by the algorithmA , called the query complexity
of A , to be the number of distinct tuples (`, x, y) ∈ V × C × C
with x ≠ y such that the algorithmA compares the candidates
x and y for voter ` . Notice that, even if the algorithm A
makes multiple calls to QUERY(⋅) with same tuple (`, x, y),
we count it only once in the query complexity of A . This
is without loss of generality since we can always implement
a wrapper around the oracle which memorizes all the calls
made to the oracle so far and whenever it receives a duplicate
call, it replies from its memory without “actually” making a
call to the oracle. We say two query complexities q(m,n)
and q′(m,n) are tight up to a factor of ` for a large number
of voters if 1�` � lim

n→∞ q(m,n)�q′(m,n) � `.
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Ordering Access model Query Complexity
Upper Bound Lower Bound

Known
Random O(m2

logn) Lemma 1 ⌦(m logm +m logn) Theorem 1
Sequential single crossing order O(mn +m2) Theorem 2

⌦(m logm +mn) Theorem 3Sequential any order O(mn +m2
logn) Theorem 4

Unknown Sequential any order O(mn +m3
logm) Theorem 5

Random O(mn +m3
logm) Corollary 1 ⌦(m logm +mn) Theorem 6

Table 1: Summary of Results for preference elicitation for single crossing profiles.

Note that by using a standard sorting routine like merge
sort, we can fully elicit an unknown preference usingO(m logm) queries. We state this explicitly below, as it will
be useful in our subsequent discussions.

Observation 2 There is a PREFERENCE ELICITATION algo-
rithm for eliciting a single preference with query complexityO(m logm).
Model of Input We study two models of input for PREF-
ERENCE ELICITATION for single crossing profiles.

– Random access to voters: In this model, we have a set
of voters and we are allowed to ask any voter to com-
pare any two candidates at any point of time. Moreover,
we are also allowed to interleave the queries to different
voters. Random access to voters is the model of input
for elections within an organization where every voter
belongs to the organization and can be queried any time.

– Sequential access to voters: In this model, voters are
arriving in a sequential manner one after another to the
system. Once a voter ` arrives, we can query voter ` as
many times as we like and then we “release” the voter
` from the system to grab the next voter in the queue.
Once voter ` is released, it can never be queried again.
Sequential access to voters is indeed the model of input
in many practical elections scenarios such as political
elections, restaurant ranking etc.

3 Results
In this section, we present our technical results. In the inter-
est of space, we defer the proofs of a few results to the full
version of the paper [Dey and Misra, 2016b]. We first con-
sider the (simpler) situation when the single crossing order is
known, and then turn to the case when the order is unknown.
In both cases, we explore all the relevant access models.

3.1 Results: Known Single Crossing Order
We begin with a simple PREFERENCE ELICITATION algo-
rithm when we are given a random access to the voters and a
single crossing ordering is known.

Lemma 1 Suppose a profile P is single crossing with respect
to a known permutation of the voters. Given a random access
to voters, there is a PREFERENCE ELICITATION algorithm
with query complexity O(m2

logn).
Proof: By renaming, we assume that the profile is single
crossing with respect to the identity permutation of the votes.

Now, for every �m2 � pair of candidates {x, y} ⊂ C, we per-
form a binary search over the votes to find the index i({x, y})
where the ordering of x and y changes. We now know how
any voter j orders any two candidates x and y from i({x, y})
and thus we have found P . �
Interestingly, the simple algorithm in Lemma 1 turns out to
be optimal up to a multiplicative factor of O(m) as we prove
next. The idea is to “pair up” the candidates and design an
oracle which “hides” the vote where the ordering of the two
candidates in any pair (x, y) changes unless it receives at least(logm−1) queries involving only these two candidates x and
y. We formalize this idea below.

Theorem 1 Suppose a profile P is single crossing with re-
spect to the identity permutation of votes. Given random
access to voters, any PREFERENCE ELICITATION algorithm
has query complexity ⌦(m logm +m logn).
Proof: The ⌦(m logm) bound follows from the query com-
plexity lower bound of sorting and the fact that any profile
consisting of only one preference �∈ L(C) is single cross-
ing. Let C = {c1, . . . , cm} be the set of m candidates where
m is an even integer. Consider the ordering Q = c1 � c2 �� � c

m

∈ L(C) and the following pairing of the candi-
dates: {c1, c2},{c3, c4}, . . . ,{cm−1, cm}. Our oracle answers
QUERY(⋅) as follows. The oracle fixes the preferences of the
voters one and n to be Q and

←�
Q respectively. For every

odd integer i ∈ [m], the oracle maintains ✓
i

(respectively �
i

)
which corresponds to the largest (respectively smallest) in-
dex of the voter for whom (c

i

, c
i+1) has already been queried

and the oracle answered that the voter prefers c
i

over c
i+1

(c
i+1 over c

i

respectively). The oracle initially sets ✓
i

= 1 and
�
i

= n for every odd integer i ∈ [m]. Suppose oracle receives
a query to compare candidates c

i

and c
j

for i, j ∈ [m] with
i < j for a voter `. If i is an even integer or j − i � 2 (that
is, c

i

and c
j

belong to different pairs), then the oracle an-
swers that the voter ` prefers c

i

over c
j

. Otherwise we have
j = i + 1 and i is an odd integer. The oracle answers the
query to be c

i

� c
i+1 and updates ✓

i

to ` keeping �
i

fixed if�` − ✓
i

� � �` − �
i

� and otherwise answers c
i+1 � ci and updates

�
i

to ` keeping ✓
i

fixed (that is, the oracle answers according
to the vote which is closer to the voter ` between ✓

i

and �
i

and
updates ✓

i

or �
i

accordingly). If the pair (c
i

, c
i+1) is queried

less than (logn − 2) times, then we have �
i

− ✓
i

� 2 at the
end of the algorithm since every query for the pair (c

i

, c
i+1)

decreases �
i

− ✓
i

by at most a factor of two and we started
with �

i

− ✓
i

= n − 1. Consider a voter  with ✓
i

<  < �
i

.
If the elicitation algorithm outputs that the voter  prefers c

i

over c
i+1 (respectively c

i+1 over c
i

), then the oracle sets all
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the voters ′ with ✓
i

< ′ < �
i

to prefer c
i+1 over c

i

(respec-
tively c

i

over c
i+1). Clearly, the algorithm does not elicit the

preference of the voter  correctly. Also, the profile is single
crossing with respect to the identity permutation of the vot-
ers and consistent with the answers of all the queries made
by the algorithm. Hence, for every odd integer i ∈ [m], the
algorithm must make at least (logn − 1) queries for the pair(c

i

, c
i+1) thereby making ⌦(m logn) queries in total. �

We now present our PREFERENCE ELICITATION algorithm
when we have a sequential access to the voters according to
a single crossing order. We elicit the preference of the first
voter using Observation 2. From second vote onwards, we
simply use the idea of insertion sort relative to the previ-
ously elicited vote [Cormen, 2009]. Since we are using inser-
tion sort, any particular voter may be queried O(m2) times.
However, we are able to bound the query complexity of our
algorithm due to two fundamental reasons: (i) consecutive
preferences will often be almost similar in a single crossing
ordering, (ii) our algorithm takes only O(m) queries to elicit
the preference of the current voter if its preference is indeed
the same as the preference of the voter preceding it. In other
words, every time we have to “pay” for shifting a candidate
further back in the current vote, the relative ordering of that
candidate with all the candidates that it jumped over is now
fixed, because for these pairs, the one permitted crossing is
now used up. We begin with presenting an important sub-
routine called Elicit(⋅) which finds the preference of a voter
` given another preferenceR by performing an insertion sort
usingR as the order of insertion.

Algorithm 1 Elicit(C ,R , ` )
Input: A set of candidates C = {c

i

∶ i ∈ [m]}, an orderingR = c1 � � � cm of C , a voter `
Output: Preference ordering �

`

of voter ` on C
1: Q← c1 ▷ Q will be the preference of the voter `
2: for i← 2 to m do ▷ c

i

is inserted in the ith iteration
3: ScanQ linearly from index i−1 to 1 to find the index

j where c
i

should be inserted according to the preference
of voter ` and insert c

i

in Q at j
4: end for
5: return Q

For the sake of the analysis of our algorithm, let us to in-
troduce a few terminologies. Given two preferences �1 and�2, we call a pair of candidates (x, y) ∈ C × C, x ≠ y, good
if both �1 and �2 order them in a same way; a pair of candi-
dates is called bad if it is not good. We divide the number of
queries made by our algorithm into two parts: goodCost(⋅)
and badCost(⋅) which are the number of queries made be-
tween good and respectively bad pair of candidates. In what
follows, we show that goodCost(⋅) for Elicit(⋅) is small and
the total badCost(⋅) across all the runs of Elicit(⋅) is small.

Lemma 2 The goodCost(Elicit(C,R, `)) of Elicit(C,R, `) isO(m) (good is with respect to the preferencesR and �
`

).

Proof: Follows immediately from the observation that in any
iteration of the for loop at line 2 in Algorithm 1, only one
good pair of candidates are compared. �

We now use Algorithm 1 iteratively to find the profile. We
present the pseudocode in Algorithm 2 which works for the
more general setting where a single crossing ordering is
known but the voters are arriving in any arbitrary order ⇡.
We next compute the query complexity of Algorithm 2 when
voters are arriving in a single crossing order.

Algorithm 2 PreferenceElicit(⇡)
Input: ⇡ ∈ S

n

Output: Profile of all the voters
1: Q[⇡(1)]← Elicit �

⇡(1) using Observation 2 ▷ Q stores
the profile

2: X ← {⇡(1)} ▷ Set of voters’ whose preferences have
already been elicited

3: for i← 2 to n do▷ Elicit the preference of voter ⇡(i) in
iteration i

4: k ←min

j∈X �j − i� ▷ Find the closest known
preference

5: R←Q[k],X ← X ∪ {⇡(i)}
6: Q[⇡(i)]← Elicit(C,R,⇡(i))
7: end for
8: return Q

Theorem 2 Assume that the voters are arriving sequentially
according to an order with respect to which a profile P is
single crossing. Then there is a PREFERENCE ELICITATION
algorithm with query complexity O(mn +m2).
Proof: By renaming, let us assume, without loss of general-
ity, that the voters are arriving according to the identity per-
mutation id

n

of the voters and the profile P is single crossing
with respect to id

n

. Let the profile P be (P1, P2, . . . , Pn

) ∈L(C)n. For two candidates x, y ∈ C and a voter i ∈ {2, . . . , n},
let us define a variable b(x, y, i) to be one if x and y are com-
pared for the voter i by Elicit(C ,P

i−1, i) and (x, y) is a bad
pair of candidates with respect to the preferences of voter i
and i − 1; otherwise b(x, y, i) is defined to be zero. Then we
have the following.

CostPreferenceElicit(id
n

)
= O(m logm) + n�

i=2
(goodCost(QUERY(C, P

i−1, i)) +
badCost(QUERY(C, P

i−1, i)))
� O(m logm +mn) + n�

i=2
badCost(QUERY(C, P

i−1, i))
= O(m logm +mn) + �

(x,y)∈C×C
� n�
i=2

b(x, y, i)�
� O(m logm +mn) + �(x,y)∈C×C

1

= O(mn +m2)
The first inequality follows from Lemma 2, the second equal-
ity follows from the definition of b(x, y, i), and the second
inequality follows from the fact that ∑n

i=2 b(x, y, i) � 1 for
every pair of candidates (x, y) ∈ C since the profile P is sin-
gle crossing. �
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We show next that, when the voters are arriving in a single
crossing order, the query complexity upper bound in Theo-
rem 3 is tight for a large number of voters up to constant fac-
tors. The idea is to pair up the candidates in a certain way
and argue that the algorithm must compare the candidates in
every pair for every voter thereby proving a ⌦(mn) lower
bound on query complexity.

Theorem 3 Assume that the voters are arriving sequentially
according to an order with respect to which a profile P is
single crossing. Then any PREFERENCE ELICITATION algo-
rithm has query complexity ⌦(m logm +mn).
Proof: The ⌦(m logm) bound follows from the fact that any
profile consisting of only one preference P ∈ L(C) is single
crossing. By renaming, let us assume without loss of gener-
ality that the profile P is single crossing with respect to the
identity permutation of the voters. Suppose we have an even
number of candidates and C = {c1, . . . , cm}. Consider the or-
der Q = c1 � c2 � � � cm and the pairing of the candidates{c1, c2},{c3, c4}, . . . ,{cm−1, cm}. The oracle answers all the
query requests consistently according to the order Q till the
first voter  for which there exists at least one odd integer i ∈[m] such that the pair (c

i

, c
i+1) is not queried. If there does

not exist any such , then the algorithm makes at least mn�2
queries thereby proving the statement. Otherwise, let  be the
first vote such that the algorithm does not compare c

i

and c
i+1

for some odd integer i ∈ [m]. The oracle answers the queries
for the rest of the voters {+1, . . . , n} according to the order
Q′ = c1 � c2 � � � ci−1 � ci+1 � ci � ci+2 � � � cm. If the
algorithm orders c

i

�


c
i+1 in the preference of the voter ,

then the oracle sets the preference of the voter  to beQ′. On
the other hand, if the algorithm orders c

i+1 � c
i

in the pref-
erence of voter , then the oracle sets the preference of voter
 to beQ . Clearly, the elicitation algorithm fails to correctly
elicit the preference of the voter . However, the profiles for
both the cases are single crossing with respect to the identity
permutation of the voters and are consistent with the answers
given to all the queries made by the algorithm. Hence, the
algorithm must make at least mn�2 queries. �
We next move on to the case when we know a single crossing
order of the voters; however, the voters arrive in an arbitrary
order ⇡ ∈ S

n

. The idea is to call the function Elicit(C,R, i)
where the current voter is the voter i and R is the preference
of the voter which is closest to i according to a single cross-
ing ordering and whose preference has already been elicited
by the algorithm.

Theorem 4 Assume that a profile P is known to be single
crossing with respect to a known ordering of voters � ∈ S

n

.
However, the voters are arriving sequentially according to an
arbitrary order ⇡ ∈ S

n

which may be different from �. Then
there is a PREFERENCE ELICITATION algorithm with query
complexity O(mn +m2

logn).
Proof: By renaming, let us assume, without loss of gen-
erality, that the profile P is single peaked with respect to
the identity permutation of the voters. Let the profile P
be (P1, P2, . . . , Pn

) ∈ L(C)n. Let f ∶ [n] �→ [n] be the
function such that f(i) is the k corresponding to the i at line
4 in Algorithm 2. For candidates x, y ∈ C and voter `, we

define b(x, y, `) analogously as in the proof of Theorem 2.
We claim that B(x, y) = ∑n

i=2 b(x, y, i) � logn. To see this,
we consider any arbitrary pair (x, y) ∈ C × C. Let the set of
indices of the voters that have arrived immediately after the
first time (x, y) contributes to B(x, y) be {i1, i2, . . . , it}.
Without loss of generality, let us assume i1 < i2 < � < i

t

.
Again, without loss of generality, let us assume that voters
i1, i2, . . . , ij prefer x over y and voters i

j+1, . . . , it prefer y
over x. Let us define � to be the difference between smallest
index of the voter who prefers y over x and the largest index
of the voter who prefers x over y. Hence, we currently
have � = i

j+1 − ij . A crucial observation is that if a new
voter ` contributes to B(x, y) then we must necessarily have
i
j

< ` < i
j+1. Another crucial observation is that whenever a

new voter contributes to B(x, y), the value of � gets reduced
at least by a factor of two by the choice of k at line 4 in
Algorithm 2. Hence, the pair (x, y) can contribute at most(1 + log�) = O(logn) to B(x, y) since we have � � n to
begin with. The rest of the proof is along the same line of the
proof of Theorem 2. �
3.2 Results: Unknown Single Crossing Order
We now turn our attention to PREFERENCE ELICITATION for
single crossing profiles when no single crossing ordering is
known. Before we present our PREFERENCE ELICITATION
algorithm for this setting, let us first prove a few structural
results about single crossing profiles which we will use cru-
cially later. We begin with showing an upper bound on the
number of distinct preferences in any single crossing profile.

Lemma 3 Let P be a profile on a set C of candidates which
is single crossing. Then the number of distinct preferences inP is at most �m2 � + 1.

Proof: By renaming, let us assume, without loss of gen-
erality, that the profile P is single crossing with respect to
the identity permutation of the voters. We now observe that
whenever the ith vote is different from the (i + 1)th vote
for some i ∈ [n − 1], there must exist a pair of candidates(x, y) ∈ C × C whom the ith vote and the (i + 1)th vote order
differently. Now the statement follows from the fact that, for
every pair of candidates (a, b) ∈ C ×C, there can exist at most
one i ∈ [n − 1] such that the ith vote and the (i + 1)th vote
order a and b differently. �

We show next that in every single crossing profile P where
all the preferences are distinct, there exists a pair of candi-
dates (x, y) ∈ C × C such that nearly half of the voters in P
prefer x over y and the other voters prefer y over x.

Lemma 4 Let P be a profile of n voters such that all the
preferences are distinct. Then there exists a pair of candi-
dates (x, y) ∈ C such that x is preferred over y in at least�n�2� preferences and y is preferred over x in at least �n�2�
preferences in P .

Proof: Without loss of generality, by renaming, let us
assume that the profile P is single crossing with respect
to the identity permutation of the voters. Since all the
preferences in P are distinct, there exists a pair of candidates
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(x, y) ∈ C × C such that the voter �n�2� and the voter �n�2� + 1
order x and y differently. Let us assume, without loss of
generality, that the voter �n�2� prefers x over y. Now, since
the profile P is single crossing, every voter in [�n�2�] prefer x
over y and every voter in {�n�2�+1, . . . , n} prefer y over x. �

Using Lemma 3 and 4 we now design a PREFERENCE
ELICITATION algorithm when no single crossing ordering of
the voters is known. The overview of the algorithm is as fol-
lows. At any point of time in the elicitation process, we have
the set Q of all the distinct preferences that we have already
elicited completely and we have to elicit the preference of
a voter `. We first search the set of votes Q for a prefer-
ence which is possibly same as the preference �

`

of the voter
`. It turns out that we can find a possible match �∈ Q usingO(log �Q�) queries due to Lemma 4 which isO(logm) due to
Lemma 3. We then check whether the preference of the voter
` is indeed the same as � or not using O(m) queries. If � is
the same as �

`

, then we have elicited �
`

usingO(m) queries.
Otherwise, we elicit �

`

using O(m logm) queries using Ob-
servation 2. Fortunately, Lemma 3 tells us that we would use
the algorithm in Observation 2 at most O(m2) times. We
present the pseudocode of our PREFERENCE ELICITATION
algorithm in this setting in Algorithm 4.

Algorithm 3 Same(R , ` )
Input: R = c1 � c2 � � � cm ∈ L(C), ` ∈ [n]
Output: TRUE if the preference of the `

th voter is R ; FALSE oth-
erwise

1: for i← 1 to m − 1 do
2: if QUERY(ci �` ci+1) = FALSE then
3: return FALSE ▷We have found a mismatch.
4: end if
5: end for
6: return TRUE

Theorem 5 Assume that a profile P is known to be single
crossing. However, no ordering of the voters with respect to
which P is single crossing is known. The voters are arriving
sequentially according to an arbitrary order ⇡ ∈ S

n

. Then
there is a PREFERENCE ELICITATION algorithm with query
complexity O(mn +m3

logm).
Proof: We present the pesudocode in Algorithm 4. We main-
tain two arrays in the algorithm. The array R is of length n
and the jth entry stores the preference of voter j. The other
array Q stores all the votes seen so far after removing dupli-
cate votes; more specifically, if some specific preference � has
been seen ` many times for any ` > 0,Q stores only one copy
of �. Upon arrival of voter i, we first check whether there is a
preference inQ which is “potentially” same as the preference
of voter i. At the beginning of the search, our search spaceQ′ = Q for a potential match in Q is of size �Q�. We next it-
eratively keep halving the search space as follows. We find a
pair of candidates (x, y) ∈ C×C such that at least ��Q′��2� pref-
erences in Q′ prefer x over y and at least ��Q′��2� preferences
prefer y over x. The existence of such a pair of candidates is
guaranteed by Lemma 4 and can be found in O(m2) time by
simply going over all possible pairs of candidates. By query-
ing how voter i orders x and y, we reduce the search spaceQ′

Algorithm 4 PreferenceElicitUnknownSCOrdering(⇡)
Input: ⇡ ∈ Sn

Output: Profile of all the voters
1: R,Q← � ▷Q stores all the votes seen so far without

duplicate. R stores the profile.
2: for i← 1 to n do ▷ Elicit preference of the i

th voter in i

th

iteration of this for loop.
3: Q′ ← Q
4: while �Q′� > 1 do ▷ SearchQ to find a vote potentially

same as the preference of ⇡(i)
5: Let x, y ∈ C be two candidates such that at least ��Q′ ��2�

votes inQ′ prefer x over y and at least ��Q′ ��2� votes inQ′ prefer
y over x.

6: if QUERY(x �⇡(i) y) = TRUE then
7: Q′ ← {v ∈ Q′ ∶ v prefers x over y}
8: else
9: Q′ ← {v ∈ Q′ ∶ v prefers y oer x}

10: end if
11: end while
12: Let w be the only vote inQ′ ▷ w is potentially same as the

preference of ⇡(i)
13: if Same(w,⇡(i)) = TRUE then ▷ Check whether the vote

⇡(i) is potentially same as w
14: R[⇡(i)]← w

15: else
16: R[⇡(i)]← Elicit using Observation 2
17: Q← Q ∪ {R[⇡(i)]}
18: end if
19: end for
20: returnR

for a potential match in Q to a set of size at most ��Q′��2� + 1.
Hence, inO(logm) queries, the search space reduces to only
one preference since we have �Q� � m2 by Lemma 3. Once
we find a potential match w in Q (line 12 in Algorithm 4),
we check whether the preference of voter i is the same as w
or not using O(m) queries. If the preference of voter i is in-
deed same as w, then we output w as the preference of voter
i. Otherwise, we use Observation 2 to elicit the preference of
voter i using O(m logm) queries and put the preference of
voter i in Q . Since the number of times we need to use the
algorithm in Observation 2 is at most the number of distinct
votes in P which is known to be at most m2 by Lemma 3, we
get the statement. �
Theorem 5 immediately gives us the following corollary in
the random access to voters model when no single crossing
ordering is known.

Corollary 1 Assume that a profile P is known to be single
crossing. However, no ordering of the voters with respect to
which P is single crossing is known. Given a random access
to voters, there is an PREFERENCE ELICITATION algorithm
with query complexity O(mn +m3

logm).
We now show that the query complexity upper bound of

Corollary 1 is tight up to constant factors for large number of
voters.

Theorem 6 Given a random access to voters, any PREFER-
ENCE ELICITATION algorithm which do not know any order-
ing of the voters with respect to which the input profile is sin-
gle crossing has query complexity ⌦(m logm +mn).
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