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Abstract

The Coalitional Manipulation problem has been
studied extensively in the literature for many vot-
ing rules. However, most studies have focused on
the complete information setting, wherein the ma-
nipulators know the votes of the non-manipulators.
While this assumption is reasonable for purposes of
showing intractability, it is unrealistic for algorith-
mic considerations. In most real-world scenarios, it
is impractical for the manipulators to have accurate
knowledge of all the other votes. In this paper, we
investigate manipulation with incomplete informa-
tion. In our framework, the manipulators know a
partial order for each voter that is consistent with
the true preference of that voter. In this setting,
we formulate three natural computational notions
of manipulation, namely weak, opportunistic, and
strong manipulation. We consider several scenarios
for which the traditional manipulation problems are
easy (for instance, Borda with a single manipula-
tor). For many of them, the corresponding manipu-
lative questions that we propose turn out to be com-
putationally intractable. Our hardness results of-
ten hold even when very little information is miss-
ing, or in other words, even when the instances are
quite close to the complete information setting. Our
overall conclusion is that computational hardness
continues to be a valid obstruction to manipulation,
in the context of a more realistic model.

1 Introduction

In many real life and Al related applications, agents often
need to agree upon a common decision although they have
different preferences over the available alternatives. A nat-
ural tool used in these situations is voting. In a typical vot-
ing scenario, we have a set of candidates and a set of voters
reporting their rankings of the candidates called their pref-
erences or votes. A voting rule selects one candidate as the
winner once all voters provide their votes. A central issue
in voting is the possibility of manipulation. For many vot-
ing rules, it turns out that even a single vote, if cast differ-
ently, can alter the outcome. In particular, a voter manip-
ulates the voting rule if, by misrepresenting her preference,
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she obtains an outcome that she prefers over the “honest” out-
come. In a cornerstone impossibility result, [Gibbard, 1973;
Satterthwaite, 1975] show that every unanimous and non-
dictatorial voting rule with three candidates or more is ma-
nipulable. We refer to [Brandt et al., 2015] for an excellent
introduction to issues in computational social choice theory.

1.1 Background

Considering that voting rules are indeed susceptible to ma-
nipulation, it is natural to seek ways by which elections can
be protected from manipulations. The works of Bartholdi et
al. [Bartholdi et al., 1989; Bartholdi and Orlin, 1991] ap-
proach the problem from the perspective of computational
intractability. They exploit the possibility that voting rules,
despite being vulnerable to manipulation in theory, may be
hard to manipulate in practice. Indeed, a manipulator is faced
with the following decision problem: given a collection of
votes P and a distinguished candidate ¢, does there exist a
vote v that, when tallied with P, makes ¢ win for a (fixed)
voting rule »? The manipulation problem has subsequently
been generalized to the problem of COALITIONAL MANIPU-
LATION (CM) by Conitzer et al. [Conitzer er al., 2007], where
one or more manipulators collude together and try to make a
distinguished candidate win. The manipulation problem, for-
tunately, turns out to be NP-hard in several settings. This
established the success of the approach of demonstrating a
computational barrier to manipulation.

However, despite having set out to demonstrate the hard-
ness of manipulation, the initial results in [Bartholdi er al.,
1989] were to the contrary, indicating that many voting rules
are in fact easy to manipulate. Moreover, even with multi-
ple manipulators involved, popular voting rules like plural-
ity, veto, k-approval, Bucklin, and Fallback continue to be
easy to manipulate [Xia ef al., 2009]. While we know that
the computational intractability may not provide a strong bar-
rier [Procaccia and Rosenschein, 2007b; 2007a; Walsh, 2011;
Isaksson et al., 2012; Dey, 2015; Dey et al., 2016; 2015a;
Dey and Narahari, 2015, and references therein] even for
rules for which the coalitional manipulation problem turns
out to be NP-hard, in all other cases the possibility of manip-
ulation is a much more serious concern.



1.2 Motivation and Problem Formulation

In our work, we propose to extend the argument of computa-
tional intractability to address the cases where the approach
appears to fail. We note that most incarnations of the manipu-
lation problem studied so far are in the complete information
setting, where the manipulators have complete knowledge of
the preferences of the truthful voters. While these assump-
tions are indeed the best possible for the computationally neg-
ative results, we note that they are not reflective of typical
real-world scenarios. Indeed, concerns regarding privacy of
information, and in other cases, the sheer volume of informa-
tion, would be significant hurdles for manipulators to obtain
complete information. Motivated by this, we consider the ma-
nipulation problem in a natural partial information setting. In
particular, we model the partial information of the manipu-
lators about the votes of the non-manipulators as partial or-
ders over the set of candidates. A partial order over the set
of candidates will be called a partial vote. Our results show
that several of the voting rules that are easy to manipulate in
the complete information setting become intractable when the
manipulators know only partial votes. Indeed, for many vot-
ing rules, we show that even if the ordering of a small number
of pairs of candidates is missing from the profile, manipula-
tion becomes an intractable problem. Our results therefore
strengthen the view that manipulation may not be practical if
we limit the information the manipulators have at their dis-
posal about the votes of other voters [Conitzer et al., 2011].

We introduce three new computational problems that, in a
natural way, extend the question of manipulation to the par-
tial information setting. In these problems, the input is a
set of partial votes P corresponding to the votes of the non-
manipulators, a non-empty set of manipulators M, and a pre-
ferred candidate c. The task in the WEAK MANIPULATION
(WM) problem is to determine if there is a way of casting the
manipulators’ votes such that ¢ wins the election for at least
one extension of the partial votes in P. On the other hand, in
the STRONG MANIPULATION (SM) problem, we would like
to know if there is a way of casting the manipulators’ votes
such that ¢ wins the election in every extension of the partial
votes in P.

We also introduce the problem of OPPORTUNISTIC MA-
NIPULATION (OM), which is an “intermediate” notion of ma-
nipulation. Let us call an extension of a partial profile viable
if it is possible for the manipulators to vote in such a way
that the manipulators’ desired candidate wins in that exten-
sion. In other words, a viable extension is a YES-instance
of the standard CM problem. We have an opportunistic ma-
nipulation when it is possible for the manipulators to cast a
vote which makes ¢ win the election in all viable extensions.
Note that any YES-instance of SM is also an YES-instance
of OM, but this may not be true in reverse. As a particularly
extreme example, consider a partial profile where there are no
viable extensions: this would be a NO-instance for SM, but a
(vacuous) YES-instance of OM. The OM problem allows us
to explore a more relaxed notion of manipulation: one where
the manipulators are obliged to be successful only in exten-
sions where it is possible to be successful. Note that the goal
with SM is to be successful in all extensions, and therefore
the only interesting instances are the ones where all exten-
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A-B>C

A= B
Extension 1 | Extension 2 | Extension 3
A-B~C|A=-B>~C | A=-B>~C
A-B~C|A~-C=B|C+~A>B

Table 1: An example of a partial profile. Consider the plural-
ity voting rule with one manipulator. If the favorite candidate
is A, then the manipulator simply has to place A on the top
his vote to make A win in any extension. If the favorite candi-
date is B, there is no vote that makes B win in any extension.
Finally, if the favorite candidate is C, then with a vote that
places C on top, the manipulator can make C win in the only
viable extension (Extension 2).

sions are viable.

It is easy to see that YES instance of SM is also a YES in-
stance of OM and WM. Beyond this, we remark that all the
three problems are questions with different goals, and nei-
ther of them render the other redundant. We refer the reader
to Section 1.2 for a simple example distinguishing these sce-
narios.

All the problems above generalize CM, and hence any
computational intractability result for CM immediately yields
a corresponding intractability result for WM, SM, and OM
under the same setting. For example, it is known that the CM
problem is intractable for the maximin voting rule when we
have at least two manipulators [Xia er al., 2009]. Hence, the
WM, SM, and OM problems are intractable for the maximin
voting rule when we have at least two manipulators.

1.3 Related Work and Our Contributions

A notion of manipulation under partial information has been
considered by [Conitzer et al., 2011]. However, they fo-
cus on whether or not there exists a dominating manipula-
tion and show that it is NP-hard for many common voting
rules. Given some partial votes, a dominating manipulation
is a non-truthful vote that the manipulator can cast which
makes the winner at least as preferable (and sometimes more
preferable) as the winner when the manipulator votes truth-
fully. The dominating manipulation problem and the WM,
OM, and SM problems do not seem to have any apparent
complexity-theoretic connection. For example, the dominat-
ing manipulation problem is NP-hard for all the common vot-
ing rules except plurality and veto, whereas, the SM problem
is easy for most of the cases (see Table 2). However, the
results in [Conitzer et al., 2011] establish the fact that it is
indeed possible to make manipulation intractable by restrict-
ing the amount of information the manipulators possess about
the votes of the other voters. Elkind and Erdélyi [Elkind and
Erdélyi, 2012] study manipulation under voting rule uncer-
tainty. However, in our work, the voting rule is fixed and
known to the manipulators.

Two closely related problems that have been extensively
studied in the context of incomplete votes are POSSIBLE
WINNER (PW) and NECESSARY WINNER (NW) [Konczak
and Lang, 2005]. In the PW problem, we are given a set of
partial votes P and a candidate ¢, and the question is whether



WM, /=1 ‘ WM ‘ OM, /=1 ‘ OM ‘ SM, ¢ =1 ‘ SM
Pluralit
Y P P
Veto
k-Approval
P
k-Veto coNP-hard
NP-complete
Bucklin
Fallback P
Borda
P
maximin NP-complete coNP-hard NP-hard
Copeland® coNP-hard

Table 2: Summary of Results (¢ denotes the number of ma-
nipulators). The results in white follow immediately from the
literature (Observation 1 to 3)

there exists an extension of P where ¢ wins, while in the NW
problem, the question is whether c is a winner in every exten-
sion of P. Following the work of [Konczak and Lang, 2005],
a number of special cases and variants of the PW problem
have been studied in the literature [Gaspers et al., 2014, and
references therein]. The flavor of the WM problem is clearly
similar to PW. However, we emphasize that there are sub-
tle distinctions between the two problems. A more elaborate
comparison is made in the next section.

Our primary contribution in this paper is to propose and
study three natural and realistic generalizations of the compu-
tational problem of manipulation. Our results show that many
voting rules that are vulnerable to manipulation in the com-
plete information setting become resistant to manipulation in
the settings that we study. We summarize the complexity re-
sults in this paper in Table 2.

2 Preliminaries

In this section, we begin by providing the technical definitions
and notations that we will need in the subsequent sections.
We refer the reader to [Brandt er al., 2015] for a more com-
prehensive summary of voting rules — we only define, for
completeness, the ones that we use in the technical sections.
We then formulate the problems that capture our notions of
manipulation when the votes are given as partial orders, and
finally draw comparisons with related problems that are al-
ready studied in the literature of computational social choice
theory.

2.1 Notations and Definitions

Let V {v1,...,v,} be the set of all vorers and C
{c1,...,cm} the set of all candidates. If not specified ex-
plicitly, n and m denote the total number of voters and the
total number of candidates respectively. Each voter v;’s vote
is a preference >; over the candidates which is a linear order
over C. We denote the set of all linear orders over C by L(C).
Hence, £(C)" denotes the set of all n-voters’ preference pro-
file (=1,..., ). Amapr : U, icjen+ £(C)" — 2°\{0} is
called a voting rule. For some preference profile = € L(C)",

231

if r(>) = {w}, then we say w wins uniquely and we write
r(>) = w. From here on, whenever we say some candidate
w wins, we mean that the candidate w wins uniquely. For
simplicity, we restrict ourselves to the unique winner case in
this paper. All our proofs can be easily extended for the co-
winner case. A more general setting is an election where the
votes are only partial orders over candidates. A partial order
is a relation that is reflexive, antisymmetric, and transitive. A
partial vote can be extended to possibly more than one linear
vote depending on how we fix the order of the unspecified
pairs of candidates. For example, in an election with the set
of candidates C = {a, b, ¢}, a valid partial vote can be a > b.
This partial vote can be extended to three linear votes namely,
a>b>c,a>c>b,c>a b Inthis paper, we often de-
fine a partial vote like > \ 4, where > € £(C) and A C C xC,
by which we mean the partial vote obtained by removing the
order among the pair of candidates in A from >. Also, when-
ever we do not specify the order among a set of candidates
while describing a complete vote, the statement/proof is cor-
rect in whichever way we fix the order among them. We now
give examples of some common voting rules.

k-Approval. The k-approval score of a candidate z is the
number of votes where x is placed within the top k positions
and the winners are the candidates with maximum k-approval
score.

Bucklin and simplified Bucklin. Let ¢ be the minimum
integer such that at least one candidate gets majority within
top £ positions of the votes. The winners under the simplified
Bucklin voting rule are the candidates having more than 7/2
votes within top ¢ positions. The winners under the Bucklin
voting rule are the candidates appearing within top ¢ positions
of the votes highest number of times.

2.2 Problem Definitions

We now formally define the three problems that we consider
in this work, namely WEAK MANIPULATION, OPPORTUNIS-
TIC MANIPULATION, and STRONG MANIPULATION. Let
r be a fixed voting rule. We first introduce the problem of
WEAK MANIPULATION.

Definition 1. »-WEAK MANIPULATION (WM)

Given a set of partial votes P over a set of candidates C, a
positive integer £ (> 0) denoting the number of manipulators,
and a candidate ¢, do there exist votes =1,...,=¢€ L(C)

such that there exists an extension > € E(C)m of P with
(= =1, ..., -e) = ¢?

To define OPPORTUNISTIC MANIPULATION, we first in-
troduce the notion of an (r, ¢)-Opportunistic Voting Profile,
where 7 is a voting rule and c is any particular candidate.
Definition 2. (r, c¢)-Opportunistic Voting Profile
Let ¢ be the number of manipulators and P a set of partial
votes. An (-voter profile (=;);cjq € L(C)* is called (r,c)-
opportunistic if for each extension P of P for which there
exists an (-vote profile (=})iciy € L(C)* with r(P U (-}
)iclg) = ¢ we have r(P U (=i)iclg) = ¢

In other words, an ¢-vote profile is (r, ¢)-opportunistic with
respect to a partial profile if, when put together with the truth-
ful votes of any extension, ¢ wins if the extension is viable to



begin with. We are now ready to define OPPORTUNISTIC
MANIPULATION.

Definition 3. 7-OPPORTUNISTIC MANIPULATION (OM)
Given a set of partial votes P over a set of candidates C, a
positive integer ¢ (> 0) denoting the number of manipulators,
and a candidate ¢, does there exist an (r, ¢)-opportunistic (-
vote profile?

We finally define the STRONG MANIPULATION problem.

Definition 4. »-STRONG MANIPULATION (SM)

Given a set of partial votes P over a set of candidates C, a
positive integer ¢ (> 0) denoting the number of manipulators,
and a candidate c, do there exist votes (;)ice € L(C) such

that for every extension > € E(C)lp‘ of P, we have r(>~, (>;
Jielg) = ¢?
We use (P, £, ¢) to denote instances of WM, OM, and SM,

where P denotes the profile of partial votes, ¢ denotes the
number of manipulators, and ¢ denotes the desired winner.

2.3 Comparison with PW and CM.

For any fixed voting rule, the WM problem with £ manipula-

tors reduces to the PW problem. This is achieved by simply
using the same set as truthful votes and introducing ¢ empty
votes. We summarize this in the observation below.

Observation 1. The WM problem many-to-one reduces to
the PW problem for every voting rule.

However, whether the PW problem reduces to the WM
problem or not is not clear since in any WM problem in-
stance, there must exist at least one manipulator and a PW
instance may have no empty vote. From a technical point of
view, the difference between the WM and PW problems may
look marginal; however we believe that the WM problem is
a very natural generalization of the CM problem in the par-
tial information setting and thus worth studying. Similarly,
it is easy to show, that the CM problem with ¢ manipulators
reduces to WM, OM, and SM problems with ¢ manipulators,
since the former is a special case of the latter ones.

Observation 2. The CM problem with { manipulators many-
to-one reduces to WM, OM, and SM problems with { manip-
ulators for all voting rules and for all positive integers (.

Finally, we note that the CM problem with ¢ manipulators
can be reduced to the WM problem with just one manipulator,
by introducing ¢ — 1 empty votes. These votes can be used
to witness a good extension in the forward direction. In the
reverse direction, given an extension where the manipulator is
successful, the extension can used as the manipulator’s votes.
This argument leads to the following.

Observation 3. The CM problem with ¢ manipulators many-
to-one reduces to the WM problem with one manipulator for
every voting rule and for every positive integer (.

This observation can be used to derive the hardness of WM
for even one manipulator whenever the hardness for CM is
known for any fixed number of manipulators (for instance,
this is the case for the voting rules such as Borda, maximin
and Copeland). However, determining the complexity of WM
with one manipulator requires further work for voting rules
where CM is polynomially solvable for any number of ma-
nipulators (such as k-approval, Plurality, and so on).
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3 Hardness Results

In this section, we provide an overview of our hardness re-
sults. While some of our reductions are from the POSSI-
BLE WINNER problem, the other reductions in this section
are from the EXACT COVER BY 3-SETS problem, also re-
ferred to as X3C. This is a well-known NP-complete [Garey
and Johnson, 1979] problem, and is defined as follows.

Definition 5 (Exact Cover by 3-Sets (X3C)). Given a set U
and a collection S = {51, 52, ...,S:} of t subsets of U with
|Si| =3Vi=1,...,t, does there existaT C S with |T| =
Y Such that UxerT X =U?

3

We use X3C to refer to the complement of X3C, which is to
say that an instance of X3C is a YES instance if and only if it
is a No instance of X3C. Due to constraints of space, we defer
the details of all the proofs to full version of the paper [Dey et
al., ]. We provide the details of one of our reductions, whose
style is representative of our general approach in the other
cases as well. The rest of this section is organized according
to the problems being addressed.

Weak Manipulation. To begin with, recall that the CM
problem is NP-complete for the Borda [Davies er al., 2011;
Betzler et al., 2011], maximin [Xia et al., 2009], and
Copeland® [Faliszewski et al., 2008; 2009; 2010] voting rules
for rational o € [0,1] \ {0.5}, when we have two manip-
ulators. Therefore, it follows from Observation 3 that the
WM problem is NP-complete for the Borda, maximin, and
Copeland® voting rules for rational o € [0,1] \ {0.5}, even
with one manipulator.

For the k-approval and k-veto voting rules, we reduce from
the corresponding PW problems. While it is natural to start
from the same voting profile, the main challenge is in un-
doing the advantage that the favorite candidate receives from
the manipulator’s vote, in the reverse direction. We also prove
that the WEAK MANIPULATION problem for the Bucklin and
simplified Bucklin rules is NP-complete, by a reduction from
X3C. Our reduction is along the lines of the reduction given in
[Xia and Conitzer, 2011] (which was for the simplified Buck-
lin voting rule).

Strong Manipulation. We know that the CM problem is
NP-complete for the Borda, maximin, and Copeland® voting
rules for rational « € [0,1] \ {0.5}, when we have two ma-
nipulators. Thus, it follows from Observation 2 that SM is
NP-hard for Borda, maximin, and Copeland® voting rules for
rational « € [0, 1] \ {0.5} for at least two manipulators.

For the case of one manipulator, SM turns out to be
polynomial-time solvable for most other voting rules. For
Copeland®, however, we show that the problem is co-NP-
hard for o € [0, 1] for a single manipulator, even when the
number of undetermined pairs in each vote is bounded by a
constant. This is achieved by a careful reduction from X3C.

Opportunistic Manipulation. All our reductions for the
co-NP-hardness for OM start from X3C. We note that all



our hardness results hold even when there is only one ma-
nipulator. Our overall approach is the following. We engi-
neer a set of partial votes in such a way that the manipulator
is forced to vote in a limited number of ways to have any
hope of making her favorite candidate win. For each such
vote, we demonstrate a viable extension where the vote fails
to make the candidate a winner, leading to a NO instance of
OM. These extensions rely on the existence of an exact cover.
On the other hand, we show that if there is no set cover, then
there is no viable extension, thereby leading to an instance
that is vacuously a YES instance of OM.

We provide one of the reductions below to convey a flavor
of the techniques involved. The constructions for the other
voting rules are in a similar spirit, but we remark that the
details are typically more involved.

Theorem 1. The OM problem is co-NP-hard for the k-
approval voting rule for constant k > 3 even when the num-
ber of manipulators is one and the number of undetermined
pairs in each vote is no more than 15.

Proof: We reduce X3C to OM for k-approval rule. Let
U = {u,...,um}, S = {51,52,...,5;}) is an X3C in-
stance. We construct a corresponding OM instance for k-
approval voting rule as follows. We begin by introducing a
candidate for every element of the universe, along with £ — 3
dummy candidates (denoted by V), and special candidates

{¢, z1, 22, d, x, y}. Formally, we have:
Candidate set C = U U {c, 21, 22,d, 2,5y} UW.

Now, for every set .S; in the universe, we define the following
total order on the candidate set, which we denote by P;:

We=Si=ys=z=z=x=U\S;) =c>d
Using P}, we define the partial vote P; as follows:

P = Pz/\({{ya T, 21, ZQ} XSi}U{(Zh 22)7 (.13, Zl)v (l‘, ZQ)})

We denote the set of partial votes {P; : ¢ € [t]} by P
and {P] : i € [t]} by P’. We remark that the number of
undetermined pairs in each partial vote P; is 15.

We now invoke Lemma 1 from [Dey et al., 2015b], which
allows to achieve any pre-defined scores on the candidates
using only polynomially many additional votes. Using this,
we add a set Q of complete votes with |Q| = poly(m,t) to
ensure the following scores, where we denote the k-approval
score of a candidate from a set of votes V by sy (+): sg(z1) =
so(z2) = sa(y) = sa(c) — ™/3;50(d), sg(w) < so(c) —
2t Yw € Wisg(x) = sglc) — Lispruo(uy) = solc) +
1Vj € [m].

Our reduced instance is (P U Q, 1, ¢). We first argue that
if we had a YES instance of X3C (in other words, there is no
exact cover), then we have a YES instance of OM. It turns
out that this will follow from the fact that there are no viable
extensions, because, as we will show next, a viable extension
implies the existence of an exact set cover.

To this end, first observe that the partial votes are con-
structed in such a way that c gets no additional score from any
extension. Assuming that the manipulator approves ¢ (with-
out loss of generality), the final score of ¢ in any extension is
going to be sg(c) + 1. Now, in any viable extension, every
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candidate u; has to be “pushed out” of the top k positions at
least once. Observe that whenever this happens, y is forced
into the top k positions. Since y is behind the score of ¢ by
only m /3 votes, S;’s can be pushed out of place in only m /3
votes. For every u; to lose one point, these votes must corre-
spond to an exact cover. Therefore, if there is no exact cover,
then there is no viable extension, showing one direction of the
reduction. L

On the other hand, suppose we have a NO instance of X3C
— that is, there is an exact cover. We will now use the exact
cover to come up with two viable extensions, both of which
require the manipulator to vote in different ways to make ¢
win. Therefore, there is no single manipulative vote that ac-
counts for both extensions, leading us to a NO instance of
OM.

First, consider this completion of the partial votes:

i=1Wry-z>=21>=20=S; = U\S;) =c>d

2<i<m3Wy=z1 =202 >S5 = (U\S;)=c>d
ma+1<i<tW=-S;=y>=z1=20=x>U\S;)-c>d
Notice that in this completion, once accounted for along
with the votes in Q, the score of c is tied with the scores of
all u;’s, z1,x and y, while the score of z; is one less than
the score of c. Therefore, the only k candidates that the
manipulator can afford to approve are WV, the candidates c, d
and z>. However, consider the extension that is identical to
the above except with the first vote changed to:

Weys-ax=200=21=Si=U\S) =c>d

Here, on the other hand, the only way for c to be an unique
winner is if the manipulator approves W, ¢, d and z;. There-
fore, it is clear that there is no way for the manipulator to
provide a consolidated vote for both these profiles. There-
fore, we have a NO instance of OM. O

4 Polynomial Time Algorithms

We now turn to the polynomial time cases depicted in Table 2.
As in the previous section, we will provide one of our proofs
in detail, which is nonetheless representative of the overall
flavor of the arguments for the other cases. This section is
organized in three parts, one for each problem considered.

Weak Manipulation. Since the PW problem is in P for the
plurality and the veto voting rules [Betzler and Dorn, 2010],
it follows from Observation 1 that the WM problem is in P
for the plurality and veto voting rules for any number of ma-
nipulators.

Strong Manipulation. We now discuss the SM problem.
The common flavor in all our algorithms is the following: we
try to devise an extension that is as adversarial as possible for
the favorite candidate ¢, and if we can make ¢ win in such
an extension, then roughly speaking, such a strategy should
work for other extensions as well (where the situation only
improves for ¢). However, it is challenging to come up with
an extension that is globally dominant over all the others in
the sense that we just described. So what we do instead is we



consider every potential nemesis w who might win instead of
¢, and we build profiles that are “as good as possible” for w
and “as bad as possible” for c¢. Each such profile leads us to
constraints on how much the manipulators can afford to fa-
vor w (in terms of which positions among the manipulative
votes are safe for w). We then typically show that we can de-
termine whether there exists a set of votes that respects these
constraints, either by using a greedy strategy or by an appro-
priate reduction to a flow problem. We note that the over-
all spirit here is similar to the approaches commonly used
for solving NW problems, but as we will see, there are non-
trivial differences in the details. We provide an exposition of
our ideas for the case of the simplified Bucklin voting rule.
We also note that the proof is quite similar for the Bucklin,
Fallback, and simplified Fallback voting rules.

Theorem 2. The SM problem is in P for the simplified Buck-
lin voting rules, for any number of manipulators.

Proof: Let (C,P, M, c) be an instance of SM for simplified
Bucklin, and let m denote the total number of candidates in
this instance. Recall that the manipulators have to cast their
votes so as to ensure that the candidate ¢ wins in every pos-
sible extension of P. We use Q to denote the set of manip-
ulating votes that we will construct. To begin with, without
loss of generality, the manipulators place c in the top position
of all their votes. We now have to organize the positioning of
the remaining candidates across the votes of the manipulators
to ensure that c is a necessary winner of the profile (P, Q).

To this end, we would like to develop a system of con-
straints indicating the overall number of times that we are
free to place a candidate w € C \ {c} among the top ¢ posi-
tions in the profile Q. In particular, let us fix w € C \ {¢} and
2 < ¢ < m. Let 1, ¢ be the maximum number of votes of Q
in which w can appear in the top £ positions. Our first step is
to compute necessary conditions for 7, ¢.

We use ﬁw, ¢ to denote a set of complete votes that we will
construct based on the given partial votes. Intuitively, these
votes will represent the “worst” possible extensions from the
point of view of ¢ when pitted against w. These votes are
engineered to ensure that the manipulators can make ¢ win
the elections P, ¢ forallw € C\ {c}and ¢ € {2, ... ,m}, if,
and only if, they can strongly manipulate in favor of c¢. More
formally, there exists a voting profile Q of the manipulators
so that ¢ wins the election P, , U Q, forall w € C \ {c} and
¢ e {2,...,m} if and only if ¢ wins in every extension of the
profile P U Q. o

We now describe the profile P, . The construction is
based on the following case analysis, where our goal is to en-
sure that, to the extent possible, we position ¢ out of the top
¢ — 1 positions, and incorporate w among the top ¢ positions.

— Let v € P be such that either ¢ and w are incomparable
orw > c. We add the complete vote v’ to P,, ¢, where v’
is obtained from v by placing w at the highest possible posi-
tion and c at the lowest possible position, and extending the
remaining vote arbitrarily.

— Let v € P be such that ¢ > w, but there are at least £
candidates that are preferred over w in v. We add the com-
plete vote v to P, s, where v’ is obtained from v by placing
c at the lowest possible position, and extending the remaining
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vote arbitrarily.

— Let v € P be such that c is forced to be within the top £ —1
positions, then we add the complete vote v’ to Pw,e, where v’
is obtained from v by first placing w at the highest possible
position followed by placing c at the lowest possible position,
and extending the remaining vote arbitrarily.

— In the remaining votes, notice that whenever w is in the top
£ positions, c is also in the top £—1 positions. Let P , denote
this set of votes, and let ¢ be the number of votes in P ,.

The rest of the proof goes via case analysis on the number
of times c is placed in the top £ — 1 positions in the profile
Puw,e U Q, and the number of times w is placed in the top ¢

positions in the profile P, ;. We defer the detailed proof to a
full version of this paper. (|

Opportunistic Manipulation. For plurality, Fallback, and
simplified Fallback voting rules, it turns out that the vot-
ing profile where all manipulators approve only c is a c-
opportunistic voting profile, and therefore it is easy to de-
vise a manipulative vote. For Veto, however, a more intricate
argument is involved, that requires building a system of con-
straints and a reduction to a suitable instance of maxflow. We
defer the details to a full version of this paper.

5 Conclusion

We present a fresh perspective on the use of computational
complexity as a barrier to manipulation, particularly in cases
that were thought to be dead-ends (because the traditional ma-
nipulation problem was polynomially solvable). Our work is
likely to be the starting point for further explorations: other
kinds election control in partial information setting, average
case analysis of manipulation with partial information etc.
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