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Abstract
We consider several natural classes of com-
mittee scoring rules, namely, weakly separa-
ble, representation-focused, top-k-counting, OWA-
based, and decomposable rules. We study some
of their axiomatic properties, especially properties
of monotonicity, and concentrate on containment
relations between them. We characterize SNTV,
Bloc, and k-approval Chamberlin–Courant, as the
only rules in certain intersections of these classes.
We introduce decomposable rules, describe some
of their applications, and show that the class of
decomposable rules strictly contains the class of
OWA-based rules.

1 Introduction
We study axiomatic properties of classes of committee scor-
ing rules (some previously known, and one introduced in this
paper), and clarify the relations between these classes.

In our multiwinner voting setting, we are given a set of
candidates and a collection of voters, each with a prefer-
ence order ranking the candidates, and the goal, for a given
k, is to select a committee (a set) of exactly k candidates
that reflects the voters’ preferences in the best possible way.
Committee scoring rules, introduced by Elkind et al. [2014],
are multiwinner analogues of the classic single-winner scor-
ing rules. They form a remarkably rich class that includes
both very simple rules, such as SNTV, Bloc, or k-Borda, and
rather complicated ones, such as the rule of Chamberlin and
Courant [1983] or variants of the proportional approval voting
rule [Kilgour, 2010]. In effect, it is quite natural to focus on
various classes of committee scoring rules instead of studying
only general properties of the whole class.

So far, researchers have identified the following classes
of committee scoring rules (see Sections 2 and 3; here we
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give intuitions only). Weakly separable rules, introduced by
Elkind et al. [2014], are those rules where we compute a sep-
arate score for each candidate (using a single-winner scoring
rule) and then pick k candidates with top scores (for exam-
ple, using the plurality scoring leads to the single nontrans-
ferable vote rule, SNTV). Representation-focused rules, also
introduced by Elkind et al. [2014], model rules which are
similar to the Chamberlin–Courant rule, which ensures that
each voter ranks his or her most preferred committee mem-
ber (his or her representative) as high as possible. On the
other hand, top-k-counting rules, introduced by Faliszewski
et al. [2016], capture rules where each voter judges the qual-
ity of a committee by the number of its members that he or
she ranks among k top ones (notably, among committee scor-
ing rules, only members of this class can satisfy the fixed-
majority property of Debord [1993]; Bloc is a prime example
of a top-k-counting rule). Finally, the class of OWA-based
rules—introduced by Skowron et al. [2015], but also stud-
ied by Aziz et al. [2015a; 2015b]—includes all the previ-
ously mentioned classes, and is based on summing ordered
weighted averages (OWAs) of the (per vote) scores of the
candidates (see the original work of Yager [1988] for a gen-
eral discussion of OWAs, and, e.g., the works of Kacprzyk et
al. [2011] or Goldsmith et al. [2014] for their other applica-
tions in voting).

Our goal is to establish relationships between these classes
and to study their axiomatic properties. Our main results are:

1. Regarding classes of top-k-counting, representation-
focused, and weakly separable rules, for each two of
these we show that their intersection contains exactly
one nontrivial rule and we identify this rule (in each
case, it is a natural, previously-studied rule).

2. We introduce the class of decomposable committee scor-
ing rules that strictly contains all the OWA-based rules
and appears to be easier to work with axiomatically.
Since weakly separable rules, representation-focused
rules, and top-k-counting rules are all OWA-based, we
obtain a hierarchy of classes of committee scoring rules.

3. We characterize weakly separable rules as exactly those
committee scoring rules that satisfy the noncrossing
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monotonicity property of Elkind et al. [2014]. Then
we refine the notion of noncrossing monotonicity to
obtain a family of its variants, including one satisfied
by all representation-focused rules (top-member mono-
tonicity), and one satisfied by a natural class of decom-
posable rules (prefix monotonicity).

In addition, we show that there are decomposable rules that
are not OWA-based, but nonetheless interesting from a prac-
tical point of view. Due to limited space, we omit most of our
proofs (the proofs are available upon request).

2 Preliminaries
For each positive integer t, we write [t] to mean {1, . . . , t}.
Multiwinner Elections. An election is a pair E = (C, V ),
where C = {c

1

, . . . , cm} is a set of candidates and V =

(v
1

, . . . , vn) is a collection of voters. Each voter vi has a
preference order �i, expressing his or her ranking of the can-
didates, from the most desirable one to the least desirable one.
Given a voter v and a candidate c, by posv(c) we mean the
position of c in v’s preference order (the top-ranked candidate
has position 1, the next one has position 2, and so on).

A multiwinner voting rule is a function R that, given an
election E = (C, V ) and a committee size k, 1  k  |C|,
returns a family R(E, k) of size-k subsets of C, i.e., the set
of committees that tie as winners of the election (we use
the nonunique-winner model). We provide a few examples
of multiwinner rules a bit later. (We focus on rules based
on scoring functions, but there are other rules, e.g., those
based on the Condorcet principle [Barberà and Coelho, 2008;
Fishburn, 1981; Darmann, 2013], or those which take ap-
proval ballots as input [Kilgour, 2010]).
Single-Winner Scoring Functions. Most of the multiwin-
ner rules we study are based on single-winner scoring func-
tions. A single-winner scoring function for m candidates is
a nonincreasing function �, � : [m] ! R

+

, that assigns a
score value to each position in a preference order. Given a
preference order �i and a candidate c, by the �-score of c
(given by voter vi) we mean the value �(posvi

(c)). The two
most commonly used scoring functions are the Borda scoring
function, �m(i) = m�i, and the t-approval scoring function,
↵t, where ↵t(i) = 1 for i  t, and ↵t(i) = 0 otherwise.
Committee Scoring Rules. Let m and k be two positive
integers, k  m (intuitively, m is the number of candidates
and k is the committee size). We write [m]k to denote the
set of all length-k increasing sequences of numbers from [m].
Given two sequences, I = (i

1

, . . . , ik) and J = (j
1

, . . . , jk),
we say that I (weakly) dominates J , I ⌫ J , if for each t 2
[k], it holds that it  jt.

Let E = (C, V ) be an election with C = {c
1

, . . . , cm}
and V = (v

1

, . . . , vn), and let k be a positive integer. For a
committee S and voter vi, by posvi

(S) we mean the sequence
that we obtain by sorting the set {posvi

(c) | c 2 S} in the
increasing order. Naturally, posvi

(S) is in [m]k.

Definition 1 (Elkind et al. [2014]). A committee scoring func-
tion for m candidates and committee size k is a function
h : [m]k ! R

+

such that, for each two sequences I, J 2
[m]k, if I dominates J then h(I) � h(J).

Let f = (fm,k)km be a family of committee scoring
functions, where each fm,k is a function for m candidates and
committee size k. We define the score of a size-k commit-
tee S in an election E with m candidates to be scoreE(S) =P

vi2V fm,k(posvi
(S)). The committee scoring rule Rf out-

puts those committees that have the highest score under f .
Many well-known multiwinner rules are, indeed, commit-

tee scoring rules. Below, we provide some examples:
1. Under the single nontransferable vote rule (SNTV), we

output those k candidates that are ranked first by the
largest numbers of voters; i.e., SNTV uses functions
fSNTV

m,k (i
1

, . . . , ik) =
Pk

t=1

↵
1

(it) = ↵
1

(i
1

).
2. Bloc operates under the assumption that each voter ranks

the members of his or her ideal committee on top k po-
sitions, and outputs those k candidates that belong to the
highest number of ideal committees. That is, Bloc uses
functions fBloc

m,k (i
1

, . . . , ik) =
Pk

t=1

↵k(it).
3. k-Borda outputs k candidates whose sums of Borda

scores are highest. That is, k-Borda uses committee
scoring functions fk-Borda

m,k (i
1

, . . . , ik) =
Pk

t=1

�m(it).
4. Under the Chamberlin–Courant rule (the �-CC rule), the

score that a voter v assigns to committee S depends only
on how v ranks his or her favorite member of S (referred
to as v’s representative in S). The Chamberlin–Courant
rule seeks committees in which each voter ranks his or
her representative as high as possible. Formally, the rule
uses functions fCC

m,k(i1, . . . , ik) = �m(i
1

).
Naturally, there are many other committee scoring rules,

some of which we discuss throughout the paper. The trivial
committee scoring rule that for every election and committee
size k returns the set of all size-k subsets of candidates is
defined by a family of constant functions.

3 Hierarchy of Committee Scoring Rules
In this section we describe the classes of committee scoring
rules that were studied to date, introduce our new class—the
class of decomposable rules—and argue how all these classes
relate to each other, forming a hierarchy.
(Weakly) Separable Rules. We say that a family of com-
mittee scoring functions f = (fm,k)km is weakly separable
if there exists a family of (single-winner) scoring functions
(�m,k)km with �m,k : [m] ! R

+

such that for every m 2 N
and every sequence I = (i

1

, . . . , ik) 2 [m]k we have:

fm,k(i1, . . . , ik) =
Pk

t=1

�m,k(it).

A committee scoring rule Rf is (weakly) separable if it is
defined through a family of (weakly) separable scoring func-
tions f . If for all m we have �m,1 = · · · = �m,m, then we
say that the function is separable, without the “weakly” qual-
ification (separable rules have some axiomatic properties that
other weakly separable rules lack [Elkind et al., 2014]).

The notion of (weakly) separable rules was introduced by
Elkind et al. [2014]; they pointed out that SNTV and k-Borda
are separable, whereas Bloc is only weakly separable.1

1In the AAMAS version of their paper, Elkind et al. [2014] used
the term “additively separable” instead of “separable.”
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Representation-Focused Rules. A family of committee
scoring functions f = (fm,k)km is representation-focused
if there exists a family of (single-winner) scoring functions
(�m,k)km such that for every m 2 N and every sequence
I = (i

1

, . . . , ik) 2 [m]k we have:

fm,k(i1, . . . , ik) = �m,k(i1).

A committee scoring rule Rf is representation-focused if it
is defined through a family of representation-focused scoring
functions f . The notion of representation-focused rules was
introduced by Elkind et al. [2014]; �-CC is the archetypal
example of a representation-focused committee scoring rule.

SNTV is both separable and representation-focused rule,
and it is the only nontrivial rule with this property.
Proposition 1. SNTV is the only nontrivial rule that is
(weakly) separable and representation-focused.

Top-k-Counting Rules. A committee scoring rule Rf , de-
fined by a family f = (fm,k)km, is top-k-counting if there
exists a sequence of nondecreasing functions (gk)k2N, with
gk : {0, . . . , k} ! R

+

, such that:

fm,k(i1, . . . , ik) = gk(|{it : it  k}|).

That is, the value fm,k(i1, . . . , ik) depends only on the num-
ber of committee members that the given voter ranks among
his or her top k positions. We refer to the functions gk as the
counting functions. Top-k-counting rules were introduced by
Faliszewski et al. [2016].

Faliszewski et al. mention three notable examples of top-
k-counting rules: the Bloc rule (with counting functions
gBloc

k (i) = i), the Perfectionist rule (with counting functions
gPerfk such that gPerfk (i) = 1 if i = k and gPerfk (i) = 0 oth-
erwise), and the ↵k-CC rule (with counting functions gCC

k

such that gCC

k (0) = 0 and gCC

k (i) = 1 for i � 1). ↵k-CC
is also representation focused and is one of many approval-
based variants of the Chamberlin–Courant rule.

Bloc is the only nontrivial rule that is both weakly separa-
ble and top-k-counting, and ↵k-CC is the only nontrivial rule
that is both representation-focused and top-k-counting.
Proposition 2 (Follows from the results of Faliszewski et
al. [2016]). Bloc is the only nontrivial rule that is weakly
separable and top-k-counting.
Proposition 3. ↵k-CC is the only nontrivial rule that is
representation-focused and top-k-counting.

OWA-Based Rules. Skowron et al. [2015] introduced a
class of multiwinner rules based on ordered weighted average
(OWA) operators (a variant of this class was studied by Aziz
et al. [2015a; 2015b]; Elkind and Ismaili [2015] use OWA op-
erators to define a different class of multiwinner rules). While
they did not directly consider elections based on preference
orders, their ideas also apply to committee scoring rules.

An OWA operator ⇤ of dimension k is a sequence ⇤ =

(�
1

, . . . ,�k) of nonnegative real numbers.
Definition 2. Let ⇤ = (⇤k)k2N be a sequence of OWA op-
erators such that ⇤k = (�k

1

, . . . ,�k
k) has dimension k. Let

� = (�m,k)km be a family of (single-winner) scoring func-
tions for elections with m candidates (�m,k : [m] ! N).

Then, � and ⇤ define a family f = (fm,k)km of commit-
tee scoring functions such that for each (i

1

, . . . , ik) 2 [m]k

we have:

fm,k(i1, . . . , ik) =
Pk

t=1

�k
t �m,k(it).

We refer to committee scoring rules Rf defined through f in
this way as OWA-based.

It is known that weakly separable, representation-focused,
and top-k-counting rules are OWA-based (one uses OWA
operators (1, . . . , 1) for weakly separable rules, and OWA
operators (1, 0, . . . , 0) for representation-focused rules; the
argument for top-k-counting rules is due to Faliszewski et
al [2016] and is a bit more involved). As a corollary to the
preceding propositions, we get the following observation.
Corollary 4. Each of the classes of separable, top-k-
counting, and representation-focused rules is strictly con-
tained in the class of OWA-based rules.

Naturally, there are also OWA-based rules that do not be-
long to any of the above-mentioned classes. For example,
by t-PAV (t-approval based variant of proportional approval
voting; see the work of Kilgour [2010]) we mean the OWA-
based rule that uses ↵t as the single-winner scoring functions
and OWA operators of the form ⇤k = (1, 1

2

, 1

3

, . . . , 1

k ).
Proposition 5. For some constant t, t-PAV is neither weakly
separable, representation-focused, nor top-k-counting.

For other examples of OWA-based rules, see the works of
Skowron et al. [2015] and Aziz et al. [2015a; 2015b].
Decomposable Rules. We introduce the following class
that naturally generalizes the class of OWA-based rules.

Definition 3. Let �(t)
m,k : [m] ! N, t 2 [k], be a family of

(single-winner) scoring functions for elections with m can-
didates (t  k  m). These functions define a family of
committee scoring functions f = (fm,k)km such that for
each (i

1

, . . . , ik) 2 [m]k we have:

fm,k(i1, . . . , ik) =
Pk

t=1

�(t)
m,k(it).

We refer to committee scoring rules Rf defined through f in
this way as decomposable.

At first glance, decomposable rules seem very similar to
the weakly separable ones. The difference is that for fixed
m and k and two different values t and t0, for decomposable
rules the functions �(t)

m,k and �(t0)
m,k can be completely differ-

ent. This implies that OWA-based rules are decomposable. In
fact, the containment is strict.
Proposition 6. The class of OWA-based rules is strictly con-
tained in the class of decomposable rules.

While the containment is immediate to see, proving that it
is strict requires more care. We first give an intuition for a
practical decomposable rule that is not OWA-based and then
show that indeed such rules are not OWA-based.
Example 1. Consider a clothing store that specializes in
shirts. Let C be the set of m shirts that the store can or-
der from its suppliers. However, the store can put on display
only k different shirts, and it wants to pick them in a way that
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would maximize its revenue (i.e., the number of shirts sold).
We assume that every customer ranks all the possible shirts
from the best one to the worst one.2 Let us say that a cus-
tomer considers a shirt to be “good enough” if, from his or
her point of view, it is among the top 20% of all shirts and
to be “very good” if it is among top 5%. A customer buys
two “very good” shirts, or one “at least good enough” shirt
(if there are no two “very good” shirts). Naturally, the cus-
tomer picks the best shirt(s) he can find (respecting the above
constraints). If i

1

, . . . , ik are the positions (in the customer’s
preference order) of the shirts that the store puts on display,
then the number of shirts he or she buys is given by function:

fm,k(i1, . . . , ik) = ↵
0.20m(i

1

) + ↵
0.05m(i

2

).

Thus, to maximize its revenue, the store should find a winning
committee for the election where the shirts are the candidates,
the voters are the customers, and where we use committee
scoring rule Rf based on f = (fm,k)km.

We refer to decomposable rules defined through committee
scoring functions of the form

fm,k(i1, . . . , ik) = �k
1

↵tm,k,1(i1) + · · ·+ �k
k↵tm,k,k(ik),

where ⇤k = (�k
1

, . . . ,�k
k) are OWA operators and

tm,k,1, . . . , tm,k,k are sequences of integers from [k], as mul-
tithreshold rules (we put no constraints on tm,k,1, . . . , tm,k,k;
both increasing and decreasing sequences are natural).
Proposition 7. The committee scoring rule defined through
the multithreshold function fm,k(i1, . . . , ik) = ↵p1(i1) +
↵p2(i2), for p

1

, p
2

2 {2, . . . ,m � k � 2}, p
1

> p
2

+ 1,
is not OWA-based.

Proof. Let us fix the number of candidates m to be suffi-
ciently large (as will become clear throughout the proof) and
the committee size k to be sufficiently small (e.g., k = 2

would suffice). For the sake of contradiction, let us as-
sume that Rf is OWA-based, i.e., in particular, that there
exists f 0 such that Rf = Rf 0 (for elections with m candi-
dates and committee size k) and such that f 0

(i
1

, . . . , ik) =

�
1

�(i
1

)+�
2

�(i
2

)+· · ·+�k�(ik), where � is a single-winner
scoring function and the coefficients �i are all nonnegative.

Let E = (C, V ) be an election with candidate set C =

{c
1

, . . . , cm} and voter collection V = (v
1

, . . . , vm!

), with
one voter for each possible preference order. By symmetry,
each size-k subset W of C is a winning committee of E un-
der Rf . Let v be an arbitrary fixed voter and let b be the
candidate that v ranks on top, c

1

be the candidate that v ranks
on position (p

1

+ 1), and c
2

be the candidate that v ranks on
position (p

2

+ 1). Note that v prefers b to c
2

to c
1

. Let Dk�1

and Dk�2

be, respectively, the sets of candidates that v ranks
on bottom k � 1 and k � 2 positions. We define three com-
mittees: C

1

= Dk�1

[ {c
1

}, C
1,2 = Dk�2

[ {c
1

, c
2

}, and
Cb,2 = Dk�2

[ {b, c
2

}.
Let E

1

be an election obtained from E by shifting c
1

one
position forward in v. According to fm,k, in E

1

the score
of committee C

1

increases by one point (as compared to E),

2We use this order to define natural concepts, such as a “good
enough” shirt. A customer certainly knows if a shirt is good enough.

committee scoring rules
max-threshold rules

decomposable
multithreshold rules

OWA-based
t-PAV

representation-focused
�-CC

weakly separable
k-Borda

top-k-counting

Perfectionist
Bloc

↵k-CCSNTV
Trivial

Figure 1: The hierarchy of committee scoring rules.

and the score of C
1,2 does not change. Since every other

committee gains at most one point, we get that C
1

is a winner
in E

1

and that C
1,2 is not. However, this means that also

under f 0 the score increase of C
1

must have been greater than
the score increase of C

1,2 and, so, we get �
1

(�(p
1

)� �(p
1

+

1)) > �
2

(�(p
1

)��(p
1

+1)). It must be that �(p
1

)��(p
1

+

1) > 0 (otherwise the above inequality would not hold) and
we conclude that �

1

> �
2

.
Next, let E

2

be an election obtained from E by shifting c
2

one position forward in v: In E
2

the committee Cb,2 gains
one point and by the same reasoning as above we infer that
Cb,2 is a winner in E

2

. Similarly, C
1,2 does not gain the

additional point and, so, it is not a winner in E00. Under f 0

the score increase of Cb,2 must be greater than that of C
1,2,

so �
2

(�(p
2

) � �(p
2

+ 1)) > �
1

(�(p
2

) � �(p
2

+ 1)). This
implies that �

2

> �
1

, which gives a contradiction.

Example 2. We continue the shirt store example. Now the
store does not want to maximize its direct revenue (i.e., the
number of shirts sold), but the number of happy customers
(in hope of increased future revenue). Let us say that a cus-
tomer is happy if he finds at least two very good shirts or at
least one excellent shirt (one among top 1% of the shirts).
Then the store should use the committee scoring function
fm,k(i1, . . . , ik) = max(↵

0.01m(i
1

),↵
0.05m(i

2

)).

We refer to multithreshold rules with summation replaced
by the max operator as max-threshold rules.
Proposition 8. There is a max-threshold rule that is not de-
composable.

We show the relations between the classes discussed in this
section, with examples of notable rules, in Figure 1.

4 Axiomatic Properties
We now focus on axiomatic properties of committee scoring
rules. The choice of properties we study was led by the desire
to understand (and separate) our classes of rules.
Nonimposition Property. Nonimposition is among the
most basic properties of voting rules. A single-winner rule R
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is said to satisfy the nonimposition property if for each can-
didate there is an election where this candidate is the unique
winner. We generalize this definition to the case of multiwin-
ner rules in the natural way.
Definition 4. Let R be a multiwinner rule. We say that R has
the nonimposition property if for each candidate set C and
each subset W of C, there is a collection of voters V over C,
such that for election E = (C, V ) we have R(E, |W |) = W .

We show that all nontrivial committee scoring rules have
the nonimposition property, through a somewhat intricate
proof. For single-winner scoring rules, it suffices to consider
an election where a fixed candidate is on top in all preference
orders and all the other candidates are ranked in all possi-
ble ways. We use a similar approach, but the proof is more
complicated because we need to take care of committees that
share some members with the committee that we want to win.
Theorem 9. Let Rf be a committee scoring rule defined by
a family of committee scoring functions f = (fm,k)km. The
rule Rf satisfies the nonimposition property if and only if
every committee scoring function in f is nontrivial.

So far we do not know if for every committee scoring rule
there is an election where exactly two (a’priori given) com-
mittees tie as winners. This is unfortunate since if we had
such a result, we would have a fairly general mechanism for
showing that two committee scoring functions (for given m
and k) define the same rule (for these m and k) only if they
are linearly related. This would give a semiautomatic mean
of proving results such as Proposition 7.
Variants of Noncrossing Monotonicity. Elkind et al. [2014]
introduced two monotonicity notions for multiwinner rules:
candidate monotonicity and noncrossing monotonicity. In the
former one, we require that if we shift forward a candidate
from a winning committee in some vote, then this candidate
still belongs to some winning committee after the shift (possi-
bly a different winning committee). Elkind et al. [2014] show
that all committee scoring rules have this property.

For noncrossing monotonicity, we require that if we shift
forward a member of a winning committee W (without him
or her passing another member of W ) then W is still winning.
Definition 5 (Elkind et al. [2014]). A multiwinner rule R
is noncrossing monotone if for each election E = (C, V )

and each k 2 [|C|] the following holds: if c 2 W for some
W 2 R(E, k), then for each E0 obtained from E by shifting c
forward by one position in some vote without passing another
member of W , we have that W 2 R(E0, k).

Elkind et al. [2014] have shown that weakly separable rules
are noncrossing monotone, and we will now show that these
are the only such committee scoring rules.
Theorem 10. Let Rf be a committee scoring rule defined
through a family f = (fm,k)km of scoring functions
fm,k : [m]k ! N. Rf is noncrossing monotone if and only if
Rf is weakly separable.

Proof. Due to the results of Elkind et al. [2014], it suffices
to show that if Rf is noncrossing monotone then it is weakly
separable. So let us assume that Rf is noncrossing monotone.

Consider an arbitrary number of candidates m and com-
mittee size k 2 [m]. For each t 2 {2, . . . ,m}, let Pm,k(t) be
the set of sequences from [m]k that include position t and do
not include position t�1. (For example, if m = 5 and k = 2,
then P

5,2(4) = {(1, 4), (2, 4), (4, 5)}.) Intuitively, Pm,k(t)
is a collection of positions a committee of size k may take,
in which it is possible to shift the committee member from
position t to position t� 1 without passing another member.

Let E = (C, V ) be an election with candidate set C =

{c
1

, . . . , cm}, and voter collection V = (v
1

, . . . , vm!

), with
one voter for each possible preference order. By symmetry,
any size-k subset W of C is a winning committee under Rf .

Consider an arbitrary integer t 2 {2, . . . ,m}, two arbi-
trary (but distinct) sequences I = (i

1

, . . . , ik) and J =

(j
1

, . . . , jk) from Pm,k(t), and an arbitrary vote v from the
election. Let C(I) be the set of candidates that v ranks at po-
sitions i

1

, . . . , ik, and let C(J) be defined analogously for J .
Let E0 be the election obtained by shifting in v the candidate
currently in position t one position up. Finally, let I 0 and J 0

be sequences from [m]k, obtained from I and J by replacing
the number t with t�1 (recall that I and J are from Pm,k(t)).

Since, by assumption, Rf is noncrossing monotone, it
must be the case that C(I) and C(J) are winning committees
under Rf also in election E0. The difference of the scores of
committee C(I) in elections E0 and E is fm,k(I 0)�fm,k(I),
and the difference of the scores of committee C(J) in E0

and E is fm,k(J 0
) � fm,k(J). Clearly, it must be the case

that: fm,k(I 0) � fm,k(I) = fm,k(J 0
) � fm,k(J). How-

ever, since the choice of t, and the choice of I and J within
Pm,k(t), were completely arbitrary, it must be the case that
there is a function hm,k such that for each t 2 {2, . . . ,m},
each sequence U 2 Pm,k(t), and each sequence U 0 ob-
tained from U by replacing position t with t � 1, we have
hm,k(t� 1) = fm,k(U 0

)� fm,k(U).
We define a single-winner scoring function �m,k as fol-

lows. For each t 2 {2, . . . ,m}, we set �m,k(t � 1) �
�m,k(t) = hm,k(t � 1). We choose �m,k(m) so that
�m,k(m) + �m,k(m � 1) + . . . + �m,k(m � (k � 1)) =

fm,k(m � (k � 1), . . . ,m � 1,m) (so that �m,k indeed cor-
rectly describes the score of the committee ranked at the k
bottom positions as a sum of the scores of the candidates).

We fix some arbitrary sequence (`
1

, . . . , `k) from [m]k;
our goal is to show that fm,k(`1, . . . , `k) = �m,k(`1) +

�m,k(`2) + · · · + �m,k(`k). We know that, due to the choice
of �m,k(m), for R = (r

1

, . . . , rk) = (m � k + 1, . . . ,m) it
does hold that fm,k(r1, . . . , rk) = �m,k(r1)+· · ·+�m,k(rk).
Now we can see that this property also holds for R0

= (r
1

�
1, r

2

, . . . , rk). The reason is that �m,k(m�k)��m,k(m�k+
1) = hm,k(m� k) = fm,k(R0

)� fm,k(R). Thus, for R0, we
have fm,k(R0

) = �m,k(r1� 1)+ �m,k(r2)+ · · ·+ �m,k(rk).
Clearly, we can proceed in this way, shifting the top member
of the committee up by sufficiently many positions, to obtain
R00

= (`
1

, r
2

, . . . , rk) and (by the same argument as above)
have fm,k(R00

) = �m,k(`1) + �m,k(r2) + · · · + �m,k(rk).
Then we can do the same to position r

2

, and keep decreas-
ing it until we get `

2

. Then the same for the third posi-
tion, and so on, until the k-th position. Finally, we get
fm,k(`1, . . . , `k) = �m,k(`1) + · · · + �m,k(`k). We con-
clude by noting that � is a nonincreasing function, because
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it defines a noncrossing monotone rule.

Based on the idea of noncrossing monotonicity, we can
define many other similar notions. Consider a multiwinner
rule R, committee size k, and let M = {m

1

, . . . ,mt} be a
subset of [k], where t  k and m

1

< m
2

< · · · < mt.
Consider a vote v (over a candidate set C, |C| � k) and a
committee W = {w

1

, . . . , wk} (we assume that v ranks w
1

ahead of w
2

, ranks w
2

ahead of w
3

, and so on). By an M -
shift of W in v, we mean shifting by one position forward
wm1 , then wm2 , and so on, until wmt . We say that a given
M -shift is legal in v with respect to W if executing it is pos-
sible (i.e., wm1 is not ranked first) and the shifted members
of W do not overtake other members of W .

Definition 6. Let M = (Mk)k�1

be a sequence of sets,
where each Mk is a family of subsets of [k]. We say that
a multiwinner rule R is M-monotone if for each election
E = (C, V ) and each k 2 [|C|], the following holds: For
each W 2 R(E, k), each M 2 Mk, and each E0 obtained
from E by applying in some vote a legal M -shift (with respect
to W ), we have that W 2 R(E0, k).

We can use M-monotonicity to define the standard non-
crossing monotonicity and several other interesting notions:

1. Consider a sequence Mnc

= (Mnc

k )k�1

, where each
Mnc

k consists of all the singleton subsets of [k]. Then
Mnc-monotonicity is simply noncrossing monotonicity.

2. Consider a sequence Mpre

= (Mpre

k )k�1

, where each
Mpre

k is of the form {{1}, {1, 2}, . . . , {1, . . . , k}}. We
refer to Mpre-monotonicity as prefix monotonicity.

3. Consider a sequence Mtop

= (Mtop

k )k�1

, where
each Mtop

k is equal to {{1}}. We refer to Mtop-
monotonicity as top-member monotonicity.

Intuitively, if a rule satisfies the prefix monotonicity cri-
terion, then shifting forward some top members of a winning
committee, within a given vote, never prevents this committee
from winning. Top-member monotonicity is a refinement of
prefix monotonicity, where we are restricted to shifting only
the top-ranked member of a winning committee.

Naturally, all noncrossing monotone rules (i.e., all weakly
separable rules) satisfy all types of M-monotonicity.

Corollary 11. If a multiwinner rule is noncrossing monotone
then it is M-monotone for every choice of M.

Thus it is impossible to use M-monotonicity notions to
characterize classes of rules that do not contain weakly sepa-
rable ones. Yet, it is possible to show that some such classes
do satisfy specific types of M-monotonicity.

Proposition 12. Every representation-focused rule is top-
member monotone.

On the other hand, only decomposable rules can be prefix-
monotone (and mostly, though not only, those based on con-
vex functions; see also the explanations below Theorem 14).

Theorem 13. Let Rf be a committee scoring rule. If Rf is
prefix-monotone then it must be decomposable.

Theorem 14. Let Rf be a decomposable committee scor-
ing rule defined through a family of scoring functions
fm,k(i1, . . . , ik) = �(1)

m,k(i1) + �(2)

m,k(i2) + · · · + �(k)
m,k(ik),

where � = (�(t)
m,k)tkm is a family of single-winner scoring

functions. A sufficient condition for Rf to be prefix-monotone
is that for each m and each k 2 [m] we have that:

(i) for each i 2 [k] and each p, p0 2 [m�1], p < p0, it holds
that �(i)

(p)� �(i)
(p+1) � �(i)

(p0)� �(i)
(p0 +1), and

(ii) for each i, j 2 [k], j > i, and each p 2 [m], j 
p < m � (k � i), it holds that �(i)

(p) � �(i)
(p + 1) �

�(j)
(p)� �(j)

(p+ 1).
Intuitively, condition (i) says that functions in the � family

are convex, and condition (ii) says that, for each m and k, if
i < j then �(i)

m,k decreases at least as rapidly as �(j)
m,k.

Example 3. ↵k-CC is a decomposable rule that is not prefix-
monotone. Consider k = 2 and an election that includes the
vote v : a � b � c � d. Let us say that in the whole election
the winning committees are W = {b, c} and W 0

= {c, d}.
If ↵k-CC were prefix-monotone, then shifting b and c by one
position forward in v (to obtain b � c � a � d) should keep
W winning. However, doing so does not change the score of
W and increases the score of W 0, so W no longer wins.

5 Computational Remarks
Many committee scoring rules are NP-hard to compute. Pro-
caccia et al. [2008], Lu and Boutilier [2011], and Betzler et
al. [2013] show hardness of winner determination for various
representation-focused rules, Skowron et al. [2015] and Aziz
et al. [2015b] show strong hardness results for large fami-
lies of OWA-based rules, and Faliszewski et al. [2016] do
the same for many top-k-counting rules. (On the other hand,
weakly separable rules are polynomial-time computable.)

Fortunately, many of the above-cited papers also provide
means to go around their hardness results. We add the fol-
lowing result to this literature.
Theorem 15. Let Rf be a decomposable committee scor-
ing rule defined through a family of scoring functions
fm,k(i1, . . . , ik) = �(1)

m,k(i1) + �(2)

m,k(i2) + · · · + �(k)
m,k(ik),

where � = (�(t)
m,k)tkm is a family of polynomial-time com-

putable single-winner scoring functions. If for each m, each
k 2 [m], each i 2 [k � 1] and each p 2 [m], it holds
that �i�1

(p) � �i(p), then there is a polynomial-time al-
gorithm that, given an election E = (C, V ) and a commit-
tee size k, outputs a committee W such that scoreE(W ) �
(1� 1

e )maxS✓C,|W |=k scoreE(S).

6 Summary
We have provided an axiomatic study of committee scoring
rules, focusing mostly on the hierarchy formed by its sub-
classes (including that of decomposable rules, introduced in
this paper) and on properties of monotonicity. There is a num-
ber of follow-up directions for this research. For example,
whole-committee monotonicity (where all the members of the
committee are shifted forward) is an interesting property.
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