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Abstract

Over the past decade, computer-automated barter
exchange has become one of the most success-
ful applications at the intersection of Al and eco-
nomics. Standard exchange models, such as house
allocation and kidney exchange cannot be applied
to an emerging industrial application, coined digi-
tal good exchange, where an agent still possesses
her initial endowment after exchanging with oth-
ers. However, her valuation toward her endowment
decreases as it is possessed by more agents.

We put forward game theoretical models tailored
for digital good exchange. In the first part of the pa-
per, we first consider a natural class of games where
agents can choose either a subset of other partici-
pants’ items or no participation at all. It turns out
that this class of games can be modeled as a variant
of congestion games. We prove that it is in gen-
eral NP-complete to determine whether there exists
a non-trivial pure Nash equilibrium where at least
some agent chooses a nonempty subset of items.
However, we show that in a subset of games for
single-minded agents with unit demand, there exist
non-trivial Pure Nash equilibria and put forward an
efficient algorithm to find such equilibria.

In the second part of the paper, we investigate dig-
ital good exchange from a mechanism design per-
spective. We ask if there is a truthful mechanism
in this setting that can achieve good social welfare
guarantee. To this end, we design a randomized
fixed-price-exchange mechanism that is individu-
ally rational and truthful, and for two-player case
yields a tight log-approximation with respect to any
individually rational allocation.

1 Introduction

Over the past decade, computer-automated barter exchanges
have become one of the most successful applications at the in-
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tersection of Al and economics. In the stylized model, agents
enter the exchange with some endowments and exchange
their endowments for better allocations without monetary
transfers. Standard examples include house allocation [Shap-
ley and Scarf, 1974; Abdulkadiroglu and Sénmez, 1998;
1999], kidney exchange [Roth et al., 2004; 2005; Abraham et
al., 2007; Unver, 2010] and such applications have been ex-
tended to the domain of lung exchanges [Luo and Tang, 2015]
and U.S. military contract [S6nmez and Switzer, 2013].

Standard models of barter exchanges have certain limi-
tations. For one, agents lose ownerships of their endow-
ments once the exchange takes place. This is not the case
with exchanges of digital goods [Goldberg et al., 2001;
Fiat et al., 2002; Goldberg and Hartline, 2003; Hartline and
McGrew, 2005; Alaei ef al., 2009], in which case agents still
possess one copy of their endowments even though the ex-
change has taken place. In addition, agents have negative
externality for other agents to own their items, namely, an
agent’s valuation towards her endowment decreases as more
agents possess her item.

A representative type of digital good is data. The owner
can produce as many copies of data as possible, however, it
is commonly believed that her value of data decreases as it is
owned by more agents, due to the fact that her market power
on possessing data decreases as it is shared with more agents.

Over the past few years, digital good exchange has be-
come a common industrial practice, as a part of the shar-
ing economy tsunami. As Bloomberg reports, “A market for
data swaps is rapidly emerging. Factual, a Los Angeles-based
startup, has put together a database that houses location data
and details on retailers and restaurants. Access to the database
costs companies money, but they can accrue discounts by
agreeing to contribute some of their own information.”!

Another successful example of data exchange is www.
datatang.com, which encourages individual data owners to
share their data in a centralized database and in return awards
them a discount, or limited-time free access for obtaining
other data sets in their wish lists. Similar data sharing sites
abound, including http://new.thedataexchange.com and http:
/Ixor.exchange as well-known examples.

To our best knowledge, there has been no theoretical model

"http://www.bloomberg.com/bw/articles/2012-11-15/data-
bartering-is-everywhere



tailored for this domain. In this paper, we put forward several
game-theoretical models for digital good exchange and in-
vestigate their properties. Our goal is to model and analyze
existing digital exchange mechanisms, as well as to provide
theoretical and practical guidelines for designing new mech-
anisms in this domain. We make the following contributions:

We first consider a natural class of games where agents can
either choose a subset of other participants’ endowments or
no participation at all. This class of games captures basic fea-
tures of several aforementioned data exchange websites. We
model this class of games as an extension of standard con-
gestion games, coined player-specific congestion game with
endowments, that allows player-specific preferences and en-
dowments.

Next, we prove that for this class of games, (1) it is in gen-
eral NP-complete to determine whether there exists a non-
trivial pure Nash equilibrium; (2) there always exist non-
trivial Pure Nash equilibria for a subset of games for single-
minded players with unit demand and we put forward an effi-
cient algorithm to find such equilibria.

The complexity result in the previous model motivates us
to think about this problem from a mechanism design per-
spective. We ask if there is a dominant strategy truthful
mechanism in this setting that can achieve good social wel-
fare guarantee. To this end, we design a randomized fixed-
price-exchange mechanism that is individually rational, truth-
ful, and for two-player case yields a tight log-approximation
with respect to any individually rational allocation regardless
of truthfulness.

Additional Related Work

In the literature of traditional barter exchanges, [Shapley and
Scarf, 1974] introduce the house allocation problem and solve
it by an efficient and truthful mechanism, Gale’s Top Trading
Cycle mechanism. [Ashlagi and Roth, 2011; Dickerson et al.,
2013; Dickerson, 2014; Li et al., 2014; Liu et al., 2014; Fang
et al., 2015] focus on mechanism design and implementation
for different variants of kidney exchange.

Another related literature is the congestion games. In
a standard congestion game [Shoham and Leyton-Brown,
20081, there are a set of players and a set of resources. The
payoff of each player depends on the resources she chooses
and the number of players choosing the same resource. The
basic model is extended to the one with player-specific payoff
[Milchtaich, 1996]. Our model can be regarded as an exten-
sion of [Milchtaich, 1996] by adding endowments.

2 Model
Let A = {ai,...,a,} be a set of n agents, and D =
{dy,...,d,} be the corresponding set of digital goods (or

simply goods), where d; is initially owned by agent a,;. Note
that it is without loss of generality to assume that the number
of goods equals the number of agents, since it is WLOG to
add dummy goods (towards which every agent has zero valu-
ation) or dummy agents (who demand nothing).

Let x; = (x1j,...,Zn;) € {0,1}" be a deterministic allo-
cation of good d; over all agents and v;;(x;) be the valuation
of agent a; over allocation x;, in this way, we let agent a;’s
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valuation over good d; explicitly depend on the allocation of
d;. All agents have additive, quasi-linear utility functions,

U; = Z ’Uij(Xj), Vi € [n]
j€ln]
As described in the introduction, agents never lose owner-
ships of their endowments, so the following feasibility con-
straint (1) is imposed on each deterministic allocation.

Besides, an agent’s valuation toward a digital good de-

creases as it is owned by more agents. Let Supp(x;) =
{i|z;; = 1}. The valuation functions satisfy the following

vij(x;) =0, i & Supp(x;)

vij(xj) > vij(x}), i€ Supp(x;) C Supp(x))
Particularly, we let v;; denote the agent a;’s valuation of ex-
clusively owning good d;, i.e., v;; = v;;(e;), where e; con-
tains only zeros except a single “1” on its ¢-th coordinate.
This value is the upper bound of the agent a;’s valuation of
any allocation of good d;.

We further extend our definition to randomized allocation
AX;, which is a probability mixture over all deterministic allo-
cations. We assume that all the agents are risk neutral, that is,
the valuation of the randomized allocation is naturally defined
as the expected valuation, i.e.,

0ij (X)) = B, 035 (%),
where we overload notation v;; and use it for the valuation
function of randomized allocations as well.

3 Player-specific Congestion Game with
Endowments

One common feature of the data exchange websites men-
tioned in the introduction can be summarized as follows:
Agents share their own goods to exchange for the rights to
download others’ data. This interesting feature can be cap-
tured by a natural simple game as follows. In this game, an
agent’s action is either to choose a subset of other agents’ en-
dowments or no participation; the allocation of each agent is
then the subset of her selections whose owners choose to par-
ticipate the game. Formally, the game is defined as follows.

Definition 1 (Digital Exchange Game). Suppose that each
agent a; € A has endowment d;. The game G = (A, S, u) is
defined as follows,

o The set of actions S; of agent a; is to either choose
a subset (must include a;) of all the goods (agents),
or exit this game (denoted by 1 ). For strategy profile
S =(51,...,5,), the set of goods allocated to a; is,

o [ i), Si=1
v {dj|aj ESi7Sj #J_}, S; # L

The utility function u; of agent a; is as follows, where x
is the deterministic allocation induced by the game play.

(x) = 0 S;=1
U;(X) = ZdjeTi ’U”(X]) — Vi 57 # 1L
Note that the utility function of agent a; is normalized by
subtracting v;;, so that the utility of choosing L is 0.



If the agent chooses “exit”, it will not share its good nor
get anything from others. If the agent a; chooses a subset
S; € A a; € 5, then it will get goods in T;, and share its
own good d; to anyone who has chosen it. We say “agent a;
chooses good d; (agent a;)”, if a; € S;.

Notice that there is no monetary transfer in this game,
hence the utility functions are uniquely described by the val-
uation functions v;;. We only specify the definition of pure
strategies and utility functions of deterministic outcomes.
The definition extends to randomizations by standard means.

The above game has an interesting congestion-game inter-
pretation [Shoham and Leyton-Brown, 2008]: The resources
are the set of agents’ endowments; the agents can choose a
subset of resources; the payoff of each agent is the additive
valuation of the resources she chooses and her payoff de-
creases as more agents choose the same resource. The major
difference lies in the fact that each agent enter the game with
endowment in digital good game while resources are initially
publicly-owned in the basic congestion game. Besides, the
option to exit ensures individual rationality to play the digital
good game but this is not the case with the basic congestion
game. Therefore, we need to extend the definition of con-
gestion games to handle these features. We coin this game
as“player-specific congestion game with endowments”.

3.1 The Pure Nash Equilibria

The digital exchange game defined above is related to
the player-specific congestion game defined in [Milchtaich,
19961, which is shown to have a PNE that can be found in
polynomial time for some special cases.

A natural question is whether this game always has a
PNE? First of all, it is straightforward to observe that non-
participation for all agents forms a PNE.

Claim 1. The game always has a trivial PNE, where each
agent chooses S; = 1. Meanwhile, choosing S; = A al-
ways weakly dominates choosing any other subsets (except
for choosing ).

However, determining whether there is a non-trivial PNE,
where at least one agent participates, is hard.

Theorem 1. Given an instance of the digital exchange game,
determining if there is a non-trivial PNE is NP-complete.

Proof. This problem is in NP, because to decide if a given
strategy profile S is a non-trivial PNE can be done by check-
ing whether each agent’s strategy is no worse than 1 and A
(by Claim 1).

To prove the NP-hardness, we first introduce a four-agent
gadget such that there could be a non-trivial PNE if and only
if one special agent, a,, participates (see Lemma 1). Then
we reduce the 3-SAT problem to whether the special agent
ag participates in a carefully constructed game (see Lemma
2). O

For ease of presentation, we use the following valuation
functions for agents except a, and ag, where v (%, j) = v;;
(defined at the end of Section 2) and v;;(x;) only depends
on v(4,) and the support size of x;. Therefore the utility
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functions u can be defined within polynomial size.
)

|Supp(x;)|
Lemma 1. There is a gadget containing four agents

(ag, @, ag, ag), such that there could be a non-trivial PNE,
if and only if ay participates.

Vij (Xj)

Proof. Consider the construction of valuation functions for
the agents as follows.

e 1(0,0) =0, for any i # 0, v(0,7) > 0. Hence ao must
participate in all non-trivial PNEs, if any.

® a, has valuation 1 for dy, valuation 3 for dy, and valua-
tion O for all other goods. If its own good is shared with
ag, its utility will decrease by 2.

e ag has valuation 2 for d, and valuation O for all other
goods. If its own good is shared with ag, its utility will
decrease by 1.

Then if ay4 participates, both a,, and ag are willing to par-
ticipate and form a non-trivial PNE; otherwise only trivial
PNE exists (see Figure 1).

{ao} - {ao, ac}
G, COMes
ag leaves 1 1 ag comes
a leaves
{a()aaﬁ} <~ {a07aavaﬁ}

Figure 1: No non-trivial PNE, if a, does not participate.
Agents in the set are those who participate. Neither of these
four cases is a PNE, because at least one agent will deviate,
hence transfer to the next case along the arrows.

O

Lemma 2. Given any instance of 3-SAT, ¢, we can efficiently
construct an instance of our game, G, where agent a is will-
ing to participate the game if and only if ¢ is satisfiable.

Proof. We start the proof with a high level sketch of the re-
duction idea to help readers to understand the construction
details. Consider an instance of 3-SAT with n variables,

m
¢ = /\ Cky Ck = lp1 Viga Vigs, 1 € {Il,fl, - ,l‘n,fn}.
k=1

For each clause cj, we construct one agent a., such that it is
willing to participate, if and only if ¢ is satisfied. For each
variable x, we construct one variable agent a, and two literal
agents, @y, ;. That a,. participates and that a,, partici-
pates stand for x = False and © = True respectively. a, is
used to ensure that exactly one of a,, and a., participates.
Hence the evaluation of variable x is valid.

Finally, we make sure that: (1) a4 participates, if and only
if all of m clause agents participate; (2) each clause agent a.,
participates, if and only if at least one of the 3 corresponding
literal agents participates; (3) all variable agents participate.

If all these properties are satisfied, then we finish the re-
duction. The rest of the proof is to carefully assign values to



m clause
a, chooses all . acm agents
the other agents:
ao . a.  Each literal
x"T : .
. agentis chosen
3 dummy * by atmostm

agents © clause agents

Figure 2: Illustration of construction for Lemma 2.

v(7,4)’s and add some auxiliary agents to ensure the above
properties being satisfied.

Step 1: Let any v/(i, j) not specified be 0.

Step 2: ag (introduced in Lemma 1) always participates in
all non-trivial PNEs, if any.

Step 3: For each variable z, v(x,z) = 0 and v(z,0) > 0;
v(zp,2p) = Lv(zp,x) = 3, for b € {F,T}. Creating 3
dummy agents always choosing a,, and a,., then the loss for
xp, to participate is at least 4/5 (by sharing d,;, with ao, itself,
and three dummy agents), while the gain for x; is 1 by sharing
d, with ag, a,, and itself, or 3/4 (less than 4/5) by addition-
ally sharing d,; with a,.. Hence for any non-trivial PNE, a,
always participates, and exactly one of a,,, a,, participates.

Step 4: For each clause, say ¢, = V2’ Va'. v(c, c) =
1, vick,z1) = v(ck, zf) = v(cg,24) = m + 6. Hence
agent a., is willing to participate, if and only if at least one
of az,, Al Azl participates. (Note that there are at most m
clauses, 3 dummy agents, ag, the literal agent itself sharing
the literal agent’s good. Then the gain for a., in this case is
atleast (m+6)/(m +5) > 1.)

Step 5: Finally, for the formula ¢, we let v(¢, ) = m,
and v(¢, c,,) = 3 for each clause ¢;. By creating m dummy
agents always choosing ay, the loss for ay4 to participate is
greater than m — 1 and less than m. Meanwhile, the gain
from choosing each participating clause agent is 3/3 = 1 (by
sharing the clause agent’s good with a, the clause agent, and
ag). Therefore a4 participates, if and only if all of these m
clause agents simultaneously participate. O

The following corollary states that the problem is still hard,
even if we restrict the size of action set |.S;|, or the valuation
functions to be positive.

Corollary 1. If (1) each agent is limited to choosing at most
two goods, (2) or has strictly positive valuation over goods,
determining if there is a non-trivial PNE is NP-hard.

3.2 A Case for Efficiently Computable PNEs

Despite of the hardness of finding a non-trivial PNE for gen-
eral cases, we derive positive results for a natural special case:
single-minded agents with unit demand. In this section, we
need the following technical assumption, so that the input of
the problem can be compactly represented.

Assumption 1 (Symmetric Negative Externality). The valu-
ation function v;; decreases as the number of agents sharing
the good d; increases, regardless of which agents share the
good, i.e.,

Vi € SUpp(Xj), ’L)q;j(Xj) =S 17”(|Supp(x])\),

267

and ;5 is decreasing.

Single-minded Agents with Unit Demand

We consider the case where each agent has positive valuation
towards exactly one item besides its own endowment, i.e.,

Vai, E'j 7£ i, s.t. Vij > O, V]/ 7é i,j, Vijr = 0.

In this section, we consider efficient PNEs. We use 6(i) = j
for agent a; desires good d;. Then efficient means that in the

PNE, S = (S1,. .., 80),
Ya; € A,(S(’L) =7, S; € {{ai,aj}, {CLZ‘},L},

and at least one exchange is performed.

Theorem 2. For single-minded agents with unit demand
case, there is a dynamic program based algorithm to find or
prove non-existence of efficient PNEs in polynomial time.>

We illustrate agents’ preferences by a directed graph. Each
vertex ¢ denotes the agent a; and each edge (i, 0 (Z)) denotes
that agent a; desires good ds;y, so each vertex has exactly
one out degree.

Consequently, the preference graph must consist of one or
more disconnected components, where each component is a
tree with an extra edge, (see Figure 3). Without loss of gener-
ality, we can assume that there is only one component; other-
wise we can treat each component as a sub-problem and the
original problem has an efficient PNE if and only if at least
one of the sub-problems has an efficient PNE.

Figure 3: Disconnected components, each of them contains
exactly one cycle.

We make the following assumption, which restricts us to a
subset of efficient PNEs for a clean presentation of the algo-
rithm and is not necessary for finding efficient PNEs.

Assumption 2. If 6(i) = j, then a; participates, only if a;
participates.

Note that in the light of Assumption 2, if there is an effi-
cient PNE, all agents on the cycle must participate.

Finding Efficient PNEs via Dynamic Programming

For each vertex 7, we calculate a subset K by DP. K is a
subset of K; = {i’|6(¢') = i} (the set of agents who desires
good d;) that contains the agents who would participate if a;
participates, i.e.,

a; participates = agents in K participate.

The Top-Trading-Cycle (TTC) algorithm does not work in this
case, since each agent can get at most one good from others, but
might share its good with any number of agents. (For TTC, the
number of incoming goods equals the number of outgoing goods.)



The state update formulas ((2) and (3)) for the DP are given,
where an auxiliary variable k; is used.

Kz* C K;, s.t. Vi’ € K;,
ifi' € K/, ky > |K]|; otherwise, k;y < |Kf|+1; (2)

k; = max {k Dis(iy (k) + 04 (| K7]) > @ii(l)}- 3)

K satisfying (2) can be calculated by Algorithm 1 effi-
ciently. Note that k; is the maximum number of agents shar-
ing good dj;y such that the best response for agent a; is still
to participate (assuming as;) participates).

Algorithm 1: Calculate K satisfying (2).

input : K;, k; forall i/ € K;
output: K
K} < 0;sorti’ € K; in descending order of k;;
for sorted i’ € K; do
if & > | K| then
| Kp e KPu{ih:
else
| return K;

There might be more than one possible K satisfying (2)
and (3), but all of them must be of the same size.

There is one “trouble” of the DP process: if vertex ¢ is on
the cycle, calculating K} recursively depends on k;, but k;
is calculated based on K. One way to avoid the self depen-
dence is to assume that for each vertex ¢ on the cycle, k; = oco.
By Assumption 2, if there is an efficient PNE, all agents on
the cycle must participate. Therefore after calculating K
for all 4, the remaining work is to check whether the implied
strategy profile S = (S1,...,S,) is an efficient PNE.

The implied strategy profile S is defined as follows, where
K is the set of agents who participate. (K initially includes
vertexes on the cycle, and recursively merges K for all 7 €
K.)

aiEK:>S¢:{a,;,a5(i)}, ai¢K:>S,;:J_

Remark 1. As mentioned, Assumption 2 is not necessary for
finding the efficient PNE. We omit the proof of correctness
and the algorithm for general cases due to limited space.

4 Mechanism Design

By our analysis, it is NP-complete to determine whether there
is a non-trivial PNE for general digital exchange game. The
negative result further motivates us to investigate this problem
from a mechanism design perspective. In this section, we
design an incentive compatible (IC) and individually rational
(IR) mechanism to allocate digital goods to the agents with
good social welfare guarantee.

By the revelation principle, it is without loss of generality
to restrict attention to the direct mechanisms. Meanwhile, for
our purpose, the mechanisms should be without money.

Definition 2 (Direct Mechanism without Money). A direct

mechanism without money is an allocation function that maps
the reported valuation functions, {vi;}}' ;_, to the allocation

matrix, X € [0, 1]"*".
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In order to employ randomized allocations, we need to de-
fine compact representations for them, because a randomized
allocation is a probability mixture over an exponentially large
number of (2914 deterministic allocations.

Therefore throughout this section, we restrict attention to
a special type of valuation functions, for which we can de-
fine compact representation z; = (21;, . . ., Zn;) such that for
each randomized allocation X},

“)
(4) then implies that valuation function v;; maps two (prob-
ably) different randomized allocations, Xj, X;, to the same
value, if the corresponding compact representations, z;, z;-,
equal at the i-th coordinate, i.e., z;; = z;j

We further require the compact representations to satisfy

the following conditions, as if z;; is the randomized alloca-
tion of irreplicable good j to agent 4, i.e.,

Zij > 07 VZa]? Z?:l Zij = 17 V]7 o
zij = zij = Ex,ox,wij — iy 20, Vi, 0 g
Consequently, the feasibility constraint for the compact
representations in our context is

i (X)) = vij - zij-

(&)

(6)

Definition 3 (Compact Representation). Valuation functions
{v”}? j=1 are compactly representable, if for each j there
exists a mapping that maps each randomized allocation X
to z;, satisfying (4) and (5).

A compact representation z; in fact represents a family of
randomized allocations for good d;. In the rest of this section,
we use “allocation” interchangeably with “compact represen-
tation”. As an instance, the following valuation function is
compactly representable.’

l/ijmij
o Lgra
Zz/ g inj
Zn L
ir=1T1j
4.1 Randomized FPE Mechanism

The mechanism we put forward, coined “Randomized FPE
Mechanism” (RFPE), is the expectation of parametric fixed-
price-exchange (FPE) mechanisms with parameters drawn
from some pre-specified distribution.

We start from introducing the FPE mechanism, which is a
simplified version of fixed-price-trading [Barbera and Jack-
son, 1995]. In our case, each agent only has one type of
endownment, and the exchange is conducted according to
one single fixed exchange rate (fixed-price). The exchange
amount is determined in an incentive compatible (utility max-
imizing) way. Formally, the fixed-price in FPE for n agents is

amatrix IT = {m;; }7',_; € R"*", satisfying
7Tn'n§ 0, m; >0, Vi#j
Zi=1 Tig = 0, Vj
3We claim that the particular compactly representable valuation

functions have fast reverse mapping to randomized allocations, but
omit the proof details.

v (x5) = 0

zij = Bx; o,



The FPE mechanism with fixed-price IT, FPE", is defined as
FPEY ({vij}ij1) = {20} im0 = 1 + I,

where the exchange amount p € R, is the maximum real
number subject to the feasibility (8) and IR (9) constraints,

®)

n
i,j=1

I+ pIl € [0,1]"%", zj; > 2, Vi, J;

n n
ZVij CZij > Uy = PZVWU]‘ >0,Vi. (9

j=1 j=1

Mechanism 1 (Randomized FPE Mechanism). Given distri-
bution F of fixed-price (F specified prior to the mechanism)
the randomized FPE mechanism is defined as follows,

RFPE” ({vij}721) = BnwrFPE" ({v3;}7,1).-

Theorem 3. Any RFPE mechanism is IC and IR.*

Farticularly, for two-agent case, there is a tight bound of
the social welfare approximation ratio against the optimal IR
allocation (see Lemma 3).

Proof of IR and IC. Since RFPE is ex ante probability mix-
ture of FPEs, we finish the proof by proving that any FPE is
IR and IC. For any FPE, IR is guaranteed by (9), and IC co-
incides with IR because manipulating valuations only affect
whether p = 0 or p > 0.5 O

To study the approximation ratio, we first normalize the
agents’ utilities to forbid scaling, such that every agent has
exclusive value v;; = 1 over its own data. In addition, we
choose “the optimal IR allocation” (OPT™) as the efficiency
benchmark rather than simply “the optimal allocation”. Be-
cause any allocation satisfying IR has the same worst case
bound against the optimal allocation.

For two-agent case, let § = v15 and 7 = v5;. Note that
the fixed-price can be fully described by a single parameter
a € [0, 00) under normalization 17 = —1, i.e.,

o}

a-[3 o]

Lemma 3. The tight approximation ratio of the two-agent
randomized FPE mechanisms is ©(In M), where M is the
given upper bound of 0 and n, i.e., 6,71 € [0, M].

1

Proof of Lemma 3. Lower bound.

Ifd > 1 > n, the following distribution F of a on
[1/M,e™/M] admits a desired approximation ratio, where
m is a parameter to be determined.

Fla)=(Ina+1InM)/m (10)

In this case, both agents are willing to accept the exchange
rate «, if and only if & € [1/6,n]. Hence the exchange
amount p = 1, and the utilities of the agents are,

uy =0 -a, us =n+1-a.

*We also conjecture that in fact the RFPEs include almost all the
IR and IC mechanisms.

5(8) is independent of valuations, and (9) is equivalent to
P iy vijmi; > 0, Vi.
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The conditional expected social welfare for instance (6, n) is
E[W|a € [1/60,1]]

/n (a(0 1) 4+ 1)d]—'(a) +2.Prla ¢ [1/0,1]]

1
6

1
w0 E(Gn_ 1+1/6+n(lnon — 1) —1n9n) +2,

while OPT'® = 6 + 1.

Then it can be shown that EW = Q(1/m) - OPT'R, when
the exchange is performed, i.e., § > M /e™.

When 6 < M /e™, no exchange happens (p = 0), and the
approximation ratio is

w 2 S 2
OPTR  On+1~ M/em+1
Hence when 6 > 1 > n, the overall approximation ratio is
. 1 €™\ mem=m 1
i { m’ M } m’
where 1/m =e™/M <= m+Inm=InM.

For the general case, where 6,7 € [0, M], the randomized
FPE mechanism guarantees the desired approximation ratio,
Q(1/m) = Q(1/1In M), when « is chosen as

Prja ~ F] =Pr[l/a ~ F] =Prla = 1] = 1/3.
Upper bound.

For the upper bound, we use Yao’s minmax principle [Yao,
1977]. All we need to do is to show that any deterministic
mechanism is “bad” for a constructed distribution over the in-
stance (6,7), while n = /0 (u is such that g In g = In M°®).

G(0) =Iné/(In M — In )
Then for any deterministic fixed-price o € [1/M, 1/ 1],
w/o

Bw < [
1/«

= Q(e™/M).

(6n+ 1)dG(0) +2- Pr [0 ¢ [1/a, /)] =

Ew  (n—1)G[\+2  lmplecinlja, gy g
opPTR — On+1 N w1
_lnp 0 q +2 _
By A e O(1/1n M)
pw+1 p+1

Hence the tight bound ©(1/1n M), where the ~sign hides
some factors of polynomial in terms of InIn M. O

5 Conclusion

Standard models of barter exchanges cannot deal with the
digital good exchange, where the goods are freely replica-
ble but incurring negative externality. We modeled this type
of exchange and proved that it is NP-complete to determine
the existence of a non-trivial PNE in general. However, such
equilibria can be efficiently found for a special case. On the
other side, we took a mechanism design perspective for this
domain and put forward a randomized fixed-price-exchange
mechanism, which admits a tight log-approximation for two-
player instances.

Further research would involve the generalization of the
mechanism to more agents, and the problem with monetary
transfers, such as markets.

4 >1InM/Inln M.
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