
Parallel Behavior Composition for Manufacturing

Paolo Felli

University of Nottingham, UK
paolo.felli@nottingham.ac.uk

Brian Logan

University of Nottingham, UK
bsl@cs.nott.ac.uk

Sebastian Sardina

RMIT University, Australia
sebastian.sardina@rmit.edu.au

Abstract

A key problem in the manufacture of highly-
customized products is the synthesis of controllers
able to manufacture any instance of a given prod-
uct type on a given production or assembly line. In
this paper, we extend classical AI behavior compo-
sition to manufacturing settings. We first introduce
a novel solution concept for manufacturing com-
position, target production processes, that are able
to manufacture multiple instances of a product si-
multaneously in a given production plant. We then
propose a technique for synthesizing the largest tar-
get production process, together with an associated
controller for the machines in the plant.

1 Introduction

Manufacturing companies are increasingly faced with de-
mands for variable volumes of high quality customised prod-
ucts, produced rapidly and at low cost [Foresight, 2013]. One
way of meeting such demands is through increased automa-
tion, and in particular allowing production control software
greater autonomy in determining how products will be man-
ufactured. The application of autonomous systems in man-
ufacturing has the potential to increase productivity, flexibil-
ity and reliability, add value, and compensate for an ageing
skilled workforce. However, the complexity of such “au-
tonomous manufacturing systems” has so far prevented their
widespread adoption. A key challenge in realising the po-
tential of autonomous manufacturing is moving from human-
authoring of the production control software that specifies
how a particular product should be made, to the automated

synthesis of controllers that are able to manufacture any in-

stance of a given product type on a particular production or

assembly line.
The problem of synthesising complex (virtual) systems

from simple existing modules has been addressed in AI,
where it is referred to as the behavior composition prob-

lem

[De Giacomo et al., 2013]. The composition task in-
volves synthesizing a controller to coordinate a set of avail-
able behavior modules (e.g., automatic lights or blinds, TVs,
microwaves, etc.) so as to implement a novel target behav-
ior module (e.g., a smart house system). Standard behavior

composition assumes a single sequential execution of the tar-
get behavior module. While adequate for domains such as
web-services [Calvanese et al., 2008], these approaches are
not applicable to the manufacturing domain.

In manufacturing, the target represents a process specified
by a production recipe, which lists the steps necessary to
manufacture items of a particular product type, and the or-
der in which those steps should be executed. The recipe en-
compasses all variations of the product type, e.g., variations
in size, color or material, and decisions about how a particu-
lar item should be manufactured are made at run-time, based
on order information associated with the item, e.g., whether
the item is to be blue or green. The steps in a recipe are en-
acted by production resources, e.g., welding machines, paint-
ing machines, etc. For example, in garment manufacture, a
production recipe may specify how to make shirts of vari-
ous colors and sizes, and the production resources may be
fabric cutting, sewing and pressing machines. In general, a
recipe consists of multiple steps, and (depending on avail-
able production resources) it is often possible to start work on
manufacturing another item before the items currently being
manufactured have been completed. The aim is to construct
a target production process that allows many instances of a
product type (ideally as many as possible) to be produced at
the same time on the available production resources. Criti-
cally, such a process must allow all variations of the product
type specified by the recipe for each instance produced, as
the specification of each item (e.g., whether it will be blue or
green) is only known at run-time.

In this paper, we extend behavior composition [De Gia-
como et al., 2013; Stroeder and Pagnucco, 2009; Lustig and
Vardi, 2009] to manufacturing settings. We formalise both
production recipes and production resources, and propose a
technique for synthesizing a target production process and
controller capable of orchestrating the behaviors of the pro-
duction resources to produce multiple instances of a product
type in accordance with the recipe. To the best of our knowl-
edge, our work is the first to consider the synthesis of con-
trollers for multiple concurrent instances of a target process.

2 Production Recipes and Cycles

We begin by presenting the notions used to specify how items
of a particular product type are manufactured. A production
recipe captures the basic finite process required to manufac-

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

271



A X
Y

Z

↵

�

�

R
A X

↵

�,�

LR
Figure 1: A simple product recipeR and its production cycle.

ture any instance (e.g., a blue shirt of size XL) of a particular
product type (e.g., shirts).

Definition 1. A production recipe is a tuple R =(L, l0,A,�R, F ) where (i) L is finite set of states and l0 ∈ L
is the initial state; (ii) A is a finite set of actions; (iii) �R ∶
L × A → L is an acyclic transition function with all final
states being sink states; (iii) F ⊆ L is the set of final states. �

A production recipe may be arbitrarily large and include
options for which action to perform in a state that encode the
different ways in which a product can be manufactured (e.g.,
due to variations within a product type). For example, once
the fabric of a shirt has been cut, it may be dyed green, red,
or blue: which color should be used for a particular product
item is decided at run-time and is outside the model (e.g., by
a human operator, or determined by information carried by
the item itself, e.g., in the form of a radio-frequency identifi-
cation (RFID) tag specifying the color). If a recipe is action-
deterministic, i.e., only one action is available in each state ofR, this indicates that there is only one possible way of man-
ufacturing the product type.

We assume that recipes are acyclic and “terminating”: the
manufacture of every product item requires a bounded num-
ber of steps.1 For example, producing an item of the product
type specified by the recipe R depicted in Figure 1 requires
performing operation ↵ (e.g., cut fabric) followed by either
action � (e.g., dye blue) or � (e.g., dye green), after which
the item is deemed manufactured (states Y and Z are final).
Hence R specifies two different manufacturing alternatives
or product variations. As explained above, whether � or �

will be performed for a particular item is decided at run-time,
externally to the recipe.

While recipes specify how one item of a product type is
to be manufactured to completion, a production plant aims
to manufacture many instances of a product simultaneously,
over and over, in principle forever. This continuous process
is captured through the notion of production cycle.

Definition 2. Given a product recipe R = (L, l0,A,�R, F ),
the production cycle induced by R is a tuple LR = (L �
F, l0,A,�) such that �(l) = �R(l) for all l ∈ L � F , and
�(l) = l0 for each l ∈ F . �

Intuitively, a production cycle represents the repeated exe-
cution of a recipe. To represent the completion of one item
and the beginning of the next item of the product type, we
add a transition from the final states to the initial state of the
recipe. When an item “returns” to the initial state (through a

1It is straightforward to add constructs specifying the bounded
repetition of a subprocess, e.g., to model the re-trying of a process
(clean subprocess) until success (product sensed clean), and exiting
after some number of repetitions (discard product).

sequence of transitions within its production cycle), it is con-
sidered as “completed,” and the cycle can be “restarted” rep-
resenting a new item of the product type entering the produc-
tion line. For instance, the production cycle LR in Figure 1
is induced by the recipeR.

When L is a production cycle, we denote by L− the ex-
tended cycle obtained from L by adding extra self-loops with
the special action − �∈ A in every state. The − (“no-op”) tran-
sition is used to represent a “pause” step.

We will use the notion of traces in the usual way to repre-
sent legal runs of recipes and cycles. For example, a trace of
a production cycleR is a finite sequence ⇡ = l0a1

l

1a2�a`
l

`

(or just ⇡ = l0 a1�→l1 a2�→� a`�→l`), such that �lj−1,aj
, l

j� ∈ � for
all 1 ≤ j ≤ `. When ⇡ is a trace as above, last(⇡) denotes its
last state t

`. Finally, unless stated otherwise, we assume that
traces start from the initial state (in this case, l0 = l0).

3 Production Plants

Production recipes are enacted by a production plant, consist-
ing of production resources and their associated capabilities
(e.g., cutting, sewing, knitting, and pressing machines in a
clothing factory). Following [De Giacomo et al., 2013], we
model those capabilities as available behaviors of the formB = (B, b0,A,R) where B is finite set of states, b0 ∈ B is the
initial state, A is the set of actions (we assume − �∈ A), and
R ⊆ B ×A ×B is B’s transition relation. Behaviors may be
nondeterministic, and so are only partially controllable, i.e.,
once a behavior is instructed to execute an action, its evolu-
tion cannot be controlled. For example, a painting machine
can non-deterministically evolve to a state signaling out-of-
paint after painting an item.

A production plant is composed of m ≥ 1 available be-
haviors, and is formally captured as the synchronous product
of those behaviors. (We assume that the production plant is
fixed, as it represents the capabilities of the available produc-
tion resources.) From now on, we denote by indx the set of
vectors k ∈ ({1, . . . ,m})m in which the components ki are
pairwise distinct. As is customary, when X is a set, n ≥ 1,
X

k = X × � × X denotes the k cross-product of X; and
when t is a tuple of size k, we use ti to denote its i-th com-
ponent, for each 1 ≤ i ≤ k. When A is a set of actions, we use
A

k− = (A ∪ {−})k � ({−})k to denote the set of vectors of k
actions extended to include the distinguished no-op − action.

Definition 3. Given a set of m ≥ 1 behaviors {B1, . . . ,Bm},
with Bi = (Bi, b0i,A,Ri) for each 1 ≤ i ≤m, the production

plant system is a tuple S = (S, s0,Am− ,⇢) where:

• S = B1 ×�×Bm is the set of states;

• s0 = �b01, . . . , b0m� is S’s initial state;

• ⇢ ⊆ S ×Am− × indx×S is S’s transition relation such that�b1, . . . , bm� a k��→�b′1, . . . , b′m� in ⇢ iff for each 1 ≤ i ≤m,
if ai = −, then b

′
i = bi; otherwise b

′
ki
∈ Rk(bk,aki). �

Intuitively, a transition �b1, . . . , bm� a k��→�b′1, . . . , b′m� in S
captures the delegation of each action aj (including possibly
no-op actions) to the available behavior Bkj , which evolves

272



0 1
↵

��

B1

0 1
↵

↵�

B2

01 00 10

11

�↵,−�
��,−�

��,−���,↵��−,↵�
�−,��

�−,↵�

�↵,↵� ��,��

�−,↵�,��,↵��↵,−�, �↵,↵�
��,−�, ��,↵� �−,��, ��,��

��,−�, �−,↵�, ��,↵�

��,↵��↵,��

S

Figure 2: A plant S = �B1,B2�. For compactness, �↵,�� in S
stands for both �↵,���1,2� and ��,↵��2,1�.
from current state b

′
kj

to successor state b

′
kj

. As an exam-
ple, Figure 2 shows two available behaviors and the resulting
production plant system S .

As for production cycles, traces of production plant sys-
tems are sequences of the form s

0 a1�→� a`�→s`, which we refer
to as histories. We useH to denote the set of histories of S .

3.1 Plant Controllers

Intuitively, a production plant is operated as follows. At any
point in time, the “user” or “operator” of the plant—which
may be human, software, or a hybrid of the two—requests the
execution of up to m domain actions, where m is the number
of available behaviors in the plant. A controller then dele-
gates each domain action to an available behavior in the plant
that is capable of handling the action in the current situation.
The designated behaviors then execute their assigned actions
and evolve as specified by their transition relation, yielding
the new state of the plant, from where a new request is is-
sued and so on. The objective is to build a controller that
always fulfills the user’s requests by appropriate delegation
of domain actions.
Definition 4. Given a production plant system S with m ≥
1 available behaviors, a plant controller (or controller) is a
function

P ∶H ×Am− → indx

which delegates a set of actions a ∈ Am− to available behaviors
in S: if P (h,a) = k, then P delegates action ai to available
behavior Bki , for i ∈ {1, . . . ,m}. �

Note that our notion of controller extends that of De Gi-
acomo et al. (2013) to multiple actions, as we assume a
production plant can perform more than one operation at a
time, due to the concurrent operation of production resources.
However, since each resource can carry out one operation at
a time, in a plant with m resources, one can execute up to m

actions simultaneously.

4 Target Production Processes

With the notions of production recipe and production plant
system in hand, we are now ready to present one of the main
contributions of the paper, namely target production pro-

cesses, as a solution concept for manufacturing composition.
Since production plants aim to manufacture not one, but sev-
eral items of a given product type simultaneously, the natural

AA

XA AX

XX

�↵
,−�

�−,↵�

�−,↵�

�↵,
−�

�� ,
−��

�
,
−� ��

,−���
,−�

�−,���−
,��
�−,���−,��

�↵,↵�
��,����,����,����,��

�↵,���↵,��
��,↵���,↵�

Figure 3: The 2-pcycles L2 (solid edges only) and L2− (solid
and dotted edges) for production cycle LR from Figure 1.

question that arises is: what is the actual “target” process

that a production plant needs to support?

Unlike in AI behavior composition (e.g., [De Giacomo et

al., 2013]), the desired manufacturing process to be “imple-
mented” in the production plant is neither arbitrary nor given
as part of the input. Intuitively, the desired process involves
the production of multiple items of a given product type, all
conforming to the production cycle induced by the production
recipe specifying how to manufacture items of the product
type. We shall call such a process the target production pro-

cess (TPP), or just the target. However it is not clear exactly
what this process ought to be, let alone how to compute it, so
we first spell out the requirements. The first requirements is:
R1. A TPP should allow the manufacture of multiple product

items simultaneously. When a TPP allows the manufac-
ture of exactly n items in the plant at a given time, we
say it is an n-TPP.

For example, while a shirt is being dyed by one produc-
tion resource, the fabric of another shirt—another product
instance—is being cut by another resource. One way of meet-
ing R1 would be to define the production process to be the
synchronous execution of multiple copies of the product pro-
duction cycle, formally captured as the synchronous execu-
tion of n production cycles L or L− (see Figure 3):
Definition 5. Given a production cycle L = (L, l0,A,�) and
n ≥ 1, the n-pcycle of L is a tuple Ln = (T, t0,An

, �) where:
• T = Ln is the set of states of Ln. When t = �l1,�, ln� ∈
T , we use sti(t) = li to denote the i-th component of t;

• t0 = �l0,�, l0� is the initial state of Ln; and
• � ∶ T × An → T is such that t′ = �(t,a) (or t a�→t′) iff
sti(t′) = �(sti(t),ai) for each i ∈ {1, . . . , n}. �

However, taking Ln (or Ln−) as the production process is too

demanding: they embed all possible ways in which n prod-
uct items may be manufactured (including no-op transitions),
whereas the production plant may only be able to produce
n items concurrently in a particular way. To address this,
one could consider extracting the maximal realizable target

of Ln− [Yadav and Sardina, 2012; Yadav et al., 2013] to obtain
the aspects of Ln− that can be realized in the plant. However
the maximal realizable target may restrict some of the pro-
duction cycles, as the resulting fragments may not account
for the complete production cycle. This leads to our second
requirement for TPPs:

273



AA XX

�↵,↵�
��,�� ��,��

T1
AA XX AX�↵,↵� ��,−�, ��,−�

�↵,−�

T2
AA XX AX2 XA2

AX XA

�↵,↵�
��,�� ��,��

��,−� �↵,��
�↵,−� ��,↵�

��,−�

�↵,��
��,↵�

�↵,−�

�−,↵� �−,��

�−
, �� �−,��
�−,↵�T3

Figure 4: T1 and T2 are not 2-targets for L as in Figure 1,
while T3 is. Dashed edges represent transitions in �UN.

R2. For each product item in a TPP, the complete product
recipe should be available, no matter how the other prod-
uct items are processed.

That is, when manufacturing each item, it should be possi-
ble to produce any variant of the product type (e.g., color of
a shirt). In general, which variant a particular item corre-
sponds to is not known at the outset (e.g., whether action �

or � will be performed is known until we reach state X inR; Figure 1). As a result, T1 in Figure 4 is not a 2-TPP for
the recipe R, as it is unable to manufacture two “� items”
only (or similarly two � items): there is no transition ��,��
from state XX. Note that a naive projection from T1 on either
item instance would indeed yield the production cycle of the
product—more is needed to capture this requirement.

To ensure that TPPs are both general and flexible, we stip-
ulate the following additional requirements:
R3. The possible evolutions of the TPP may depend on

how (nondeterministic) behaviors in the plant happen to
evolve, as long as R2 is met.

This means that unlike in AI behavior composition, we
shall accept target production processes that are “non-
deterministic.”
R4. A TPP may pause certain items and account for different

ways in which all of them can be concurrently produced
(the decision how exactly left to the user at run-time).

That is, a TPP may include several (though not all) alterna-
tive ways of manufacturing n items concurrently, including
“pausing” certain items at some point, where this is necessary
due to limitations in plant resources. However we restrict the
ways that − (“pause”) actions may be used:

R5. A TPP should never allow the starvation of any item:
every item must eventually be completed.

For example, T2 in Figure 4 is also not a 2-TPP forR, because
the second item instance is commenced but never completely
manufactured.

With the five requirements above, we are now ready to in-
troduce the technical machinery to capture TPPs. We start
by defining a notion of fragments of an n-pcycle which is
extended to incorporate memory and which differentiates be-
tween controllable and uncontrollable transitions.

Definition 6. Tuple T = (G,g0,A
n− , �′, �′UN) is an n-product

of a production cycle L if (recall Ln− = (T, t0,An− , �)):
• G = T ×M is the set of T ’s states, for some arbitrary

finite set M , and g0 = �t0,m� with m ∈ M is T ’s ini-
tial state. The set M will be used to encode additional
memory;

• �

′ ⊆ G ×An− ×G is an arbitrary transition relation such
that if �t, c� a�→�t′, c′� in �

′, then t

a�→t′ in �; and

• �

′
UN ⊆ �

′ is arbitrary subset of transitions deemed
“uncontrollable” and with the only requirement that if�t, c� a�→�t′, c′� ∈ �′UN, then there exists another transition�t, c� a�→�t′, c′′� ∈ �′UN such that c′ ≠ c′′. �

An n-product can therefore account for only some transitions
of the corresponding n-pcycle (which means not every in-
terleaving of the underlying production cycles are allowed),
while extending it with additional memory (the set M ) and
distinguishing a subset of transitions as “uncontrollable”.

n-products constrained to adhere to requirements R1-R5

form then the basis of our definition of TPPs. In particular, we
need to make sure that by pausing a product item we do not
violate either R2 or R5. Intuitively, this amounts to checking
whether, whenever an item instance i is paused at a state g

of TPP T , all actions available for i in g will be eventually
available, i.e., manufacture of the item can be fully resumed.
We do so in two steps. First, for any action a and instance i,
we define all possible acyclic traces of T in which we either
(i) resume the item (after a − sequence) by performing exactly
a first; or (ii) not resume the item at all. This step is captured
by the definition of a closure tree. Second, we check whether
we are able to enforce one of the traces for (i), irrespective of
the uncontrollability represented by transitions in �UN. This
step is captured by the definition of controllable subsets.

Given a n-product T as above and a state g ∈ G, the clo-

sure tree in T for a component i ∈ {1, . . . , n} and an ac-
tion a ∈ A, denoted outT (g, i, a), is the set of all traces
⇡ = g0a1

g

1a2�a`
g

` of T , with t

0 = t, such that:

1. aj
i = − for all 1 ≤ j < `, and either a`

i = − or a`
i = a;

2. no transition is taken more than once, i.e., for each g

j

and g

q , if gj = gq then aj+1 ≠ aq+1 for 1 ≤ j, q < `;
3. for each 1 ≤ j < `, if there exists a transition �gj ,a, g′� ∈

� for some g

′ and a with ai = a, then aj+1
i = a.

Informally, the closure tree outT (g, i, a) contains all possible
finite traces of T , starting from g, such that (i) either it is
never possible to execute a on the i-th component or only no-
op actions are allowed until a is executed; (ii) they are acyclic;
and (iii) whenever a is executable on the i-th item instance at
some step j of ⇡, then the next action vector aj+1 has a on
the i-th component.

Definition 7. Given a set of traces ⇧ of an n-product T , the
set of controllable subsets of ⇧ is the set contr(⇧) of subsets
⇧′ ⊆ ⇧ where, for each trace ⇡ = g

0a1�a`
g

` in ⇧′, if for
some 1 ≤ j ≤ ` we have �gj−1,aj

, g

j� ∈ �UN, then there is
in ⇧′ also a trace ⇡

′ = g0a1�aj
g

′j� for every g

′j ≠ gj with�gj−1,aj
, g

′j� ∈ �UN (at least one exists by definition of �UN).�
274



Informally, a set of traces ⇧′ ∈ contr(⇧) is “closed” under
uncontrollability of transitions: there is no trace with an un-
controllable transition at some step, unless all possible evolu-
tions also appear in some trace.

Putting it all together, we use controllable subsets of the
closure tree to verify that items paused in an n-product T can
always be resumed, so satisfying R2 and R5. For any i, g
and a, given the (unique) set of traces outT (g, i, a), then an
element of contr(outT (g, i, a)) is a subset of outT (g, i, a)
such that, by controlling only controllable transitions, we can
force the resulting path to be in the subset, irrespective of the
nondeterminism of �UN.

Finally, we say that a vector b ∈ An− is subsumed by an
action vector a ∈ An iff bi = ai or bi = −, for each 1 ≤ i ≤ n.

We now have all the elements necessary to define a target
production process, i.e., the process we would like to deploy
in the production plant.
Definition 8. An n-product T = (G,g0,A

n− , �′, �′UN) is an n

target production process (n-TPP) for a production cycle L
(of a given product recipeR) if: (here Ln = (T, t0,An

, �))
• T is an n-product of L; and
• T is complete and fair wrt Ln, that is, for any state�t,m� ∈ G and each transition t

a�→t′ in Ln:
1. �t,m� b�→�t′′,m′� exists with b subsumed by a;
2. for each i ∈ {1, . . . , n}, if bi = − then there ex-

ists ⇧ ∈ contr(outT (�t′′,m′�, i,ai)) such that,
for any g

0 = �t′′,m′� as above and for any trace
⇡ = g0c1g1c2�c`g` in ⇧ we have c`i = ai: when-
ever an action ai is not replicated (− is executed
instead), then it is still possible to enforce a trace inT in which ai can be finally executed. �

Hence, an n-TPP is a system whose behavior is a subset of
the behaviors of Ln− , but with possibly additional (bounded)
memory. Note we do not require an n-TPP to be the “largest”
such system (see later), only that it satisfies R1-R5.

As an example, consider T3 in Figure 4. It is easy to ver-
ify that it is indeed a 2-TPP of L, since for each trace ⇡ ∈ Ln

there exists a trace performing the same actions on both prod-
uct instances, and which can be extended to account for each
possible future evolution of ⇡. For instance, we can perform
� (resp. �) actions on both instances, by pausing one at a
time. Of course, other 2-TPPs for L exist.

4.1 Compositions and Production Controllers

Clearly, not any TPP is satisfactory for a given production
plant. For instance, TPPs that cannot be “realized” (i.e., im-
plemented) in the plant or that never take advantage of par-
allelism implicit in the plant’s production resources, are not
desired. Moreover, the TPP is not a problem input.

From now on, we will restrict ourselves to m-TPPs, where
m is the number of behaviors (i.e., available machines) in S ,
as TPPs with more than m concurrent items will obviously
never be implementable in a plant with m machines.

Following [De Giacomo and Sardina, 2007; De Giacomo
et al., 2013] we first formally define what it means for a
plant controller P to realize a given trace ⇡ of an m-TPP

T in a production plant system S: P is able to delegate
each action in the vector (including “−” actions), at each
step, to a suitable machine in the plant. For example, con-
sider the trace ⇡ = AA �↵,↵����→XX �−,�����→XA of the TPP T3 from
Figure 4 and plant S from Figure 2. Then ⇡ is realized
in S by any controller P such that P (00, �↵,↵�) = �1,2�
and P (00 �↵,↵����→11 �−,�����→) = �2,1�, corresponding to one of
the two traces 00 �↵,↵��1,1������→11 �−,���2,1������→01 and 00 �↵,↵��1,1������→
11 �−,���2,1������→11 in S . Note, however, that while these traces
can be extended in T3 with the action vector ��,↵�, this ac-
tion vector can be replicated in S only from 11 and not from
01, so any trace of the form ⇡

��,↵����→� is not realizable.
Then, again as in classical behavior composition, we say

that P is a plant composition of a TPP T in S iff P realizes
all the traces of T in S . When a composition for a TPP T
exists on a plant S , we say that T is realizable in S .

Finally, because, unlike in behavior composition, the target
production process is not an input to our parallel composition
problem, we define the solution concept as a pair �T , P �, such
that T is an m-TTP for L and P a composition for T in S .
We refer to these pairs as production controllers for L in S .

5 Largest Target Production Process

Production controllers may be evaluated against various met-
rics (such as average throughput, machine utilisation, load
balancing, etc.) to isolate the most efficient ones. As met-
rics are highly dependent on the application and production
plant, in this section we focus on computing production con-
trollers �T , P � where T is the largest realizable production

process, that is, which embody (i.e., can “mimic”) all realiz-
able production processes. It turns out such controllers can
be defined in terms of the standard notion of simulation be-
tween transition systems [Milner, 1971], and in particular its
nondeterministic variant [De Giacomo et al., 2013]: a tar-
get production process T simulates another target production
process T ′, denoted T � T ′, iff T can “replicate” every ac-
tion of T ′, step by step. The largest realizable production
process for a given production cycle L and a production plant
system S is threfore the m-TPP T for L that (i) is realizable
in S; and (ii) can simulate any other realizable m-TPP T ′.

To capture property (i), we shall define our own notion
of simulation between the production plant S and the m-
pcycle Lm, which expresses what it means for S to be able
to “mimic” exactly m copies of the production cycle. More-
over, in order to synthesize the largest realizable m-TTP, we
will also need to compute, as required by Definition 6, the set
M encoding arbitrary memory and the set of uncontrollable
transitions �UN. Crucially, both of these can be extracted from
the so-called enacted system, capturing the joint execution ofLm− with the system S .

Given a production cycle L, we define the enacted sys-

tem S∗L as the synchronous product of Lm− and the production
plant system S , so that a state of S∗L is a pair �t, s�, where
t a state of Lm− and s is a state of S . If ⇢∗ is the transition
relation of S∗L, then we use ⇢

∗
ND to denote the set of nonde-

terministic transitions of ⇢: s∗ a,k��→s∗′ is in ⇢

∗
ND iff s

∗ a,k��→s∗′
and s

∗ a,k��→s∗′′ are in ⇢

∗, for some s

∗′ ≠ s

∗′′. We also de-

275



fine the notion of closure tree outS∗L(s∗, i, a) for S∗L as for
n-product (see Section 4), and contr(outS∗L(s∗, i, a)) is as in
Definition 7, but this time with respect to transitions in ⇢

∗
ND.

A subset in contr(outS∗L(s∗, i, a)) is thus a set of traces of
the enacted system S∗L which can be enforced irrespective of
the nondeterminism of the production plant system.
Definition 9. Given an m-pcycle Lm = (T, t0,Am

, �) for
some production cycle L, a lazy simulation relation of Lm

by S = (S, s0,Am− ,⇢) is a relation �+ ⊆ S × T such that�s, t� ∈ �+ implies that for each a, if t a�→t′ is in Lm then b,k
exist such that:
(1) there exists a transition s

b k�→s′ ∈ ⇢ and b is subsumed by
a — each ai is either replicated in bi or replaced by − ;

(2) for each such s

′ we have �s′, t′′� ∈ �+ with t

b�→t′′ in Lm−
— any possible new system state s′ is in the relation with
the state t

′′, which is unique; and
(3) given t

′′, s

′ and b as above, for each index 1 ≤ i ≤
n, if bi = − then there exists a set of traces ⇧ ∈
contr(outS∗L(s∗, i,ai)), for s∗ = �t′′, s′�, such that for
every trace s∗ c1k1��→�t1, s1�� c`k`��→�t`, s`� of S∗L in ⇧, we
have (i) c`i = ai and (ii) �sj , tj� ∈ �+ for j ≤ ` — the
action ai can always eventually be performed in at least
one controllable subset of traces in the enacted system,
by visiting only states preserving �

+. �
We say that a state s of S lazily simulates a state t of Lm,

denoted s� t, iff there exists a lazy simulation relation �+ ofLm by S with �s, t� ∈ �+. We say that S lazily simulates Lm,
denoted S � Lm, iff s0 � t0. Then S � Lm captures the fact
that S can always replicate all actions vectors of Lm, but not
in a step-by-step fashion, as some product instances may be
paused. However, it guarantees the requirements discussed in
Section 4.

Once the lazy simulation relation � is computed, if S �Lm, we can then build a finite state program, called the max-

imal controller generator (CG), that returns, at each step, the
set of all possible action vectors that can be delegated to be-
haviors.
Definition 10. Given S , Lm and Lm− as before, if S �Lm then the maximal CG for Lm and S is the tuple C =(W,w0,A

m− ,�,!) such that
• W = {�t, s� ∈ T × S � s� t} and w0 = �t0, s0�;
• � ⊆W ×Am × indx×W is such that �t, s� a k�→�t′, s′� ∈ �

iff t a�→t′ is in Lm− , s a k��→s′ is in S; and

• ! ∶ W → 2(Am− × indx) is the controller function, defined
as !(w) = {�a,k� � w a k��→w′ is in � for some w

′}. �
Given the current state t of Lm and the current state s of

the production plant system, the maximal controller generator
returns the set of possible delegations, such that each mem-
ber �a,k� represents the delegation of each action ai to the
behavior specified by ki. A production controller �T , P � is
generated by C as follows:

• T = (W,w0,A
m− ,�′,�′UN) is an m-TTP, and its transition

relation �

′ ∶W ×Am− ×W is such that w a�→w′ is in �

′ iff�a,k� ∈ !(w);

�

′
UN is the subset of �′ defined as the set of transitions

w

a�→w′ in �

′ such that w a�→w′′ is in �

′ for some w′ ≠ w′′:
multiple transitions deriving from the existence of dif-
ferent available delegations of actions to behaviors (i.e.
same a, different k) constitute controllable transitions,
whereas multiple transitions deriving from the produc-
tion plant system’s nondeterminism (i.e. same a and k)
will constitute uncontrollable transitions;

• P is such that for any system history h = s

0 a1k0��→�
a`k`��→s` (with s

0 = s0) and action vector a, if �s0, t0�
a1k1��→�s1, t1� a2k2��→� a`k`��→�s`, t`� is in C for some t1�t`,
then P (h,a) = k only if �a,k� ∈ !(�s`, t`�).T is obtained by projecting out delegation indexes from

transitions, while the corresponding composition P is ob-
tained by selecting, at each step, for a given action a, a vector
k such that a transition from the current state exists with la-
bel a,k. Note that this means that the second component in
W ⊆ T × S plays the same role of the arbitrary set M in
Definition 6: for the same state in Lm, there may be more
than one possible state in the production plant system S , as
this is nondeterministic (e.g., states �11,AX� and �01,AX� in
Figure 5).
Theorem 1. Let C be the maximal CG for Lm and S . Then
(i) any P is a composition for T in S iff �T , P � is generated
by C and (ii) T is the largest realizable m-TPP for L in S .
Proof. (Sketch) LetH⇡,P be the set of histories of S that may
be obtained by running the controller P in S to match all the
actions in a given trace ⇡ of an m-TTP T (see [De Giacomo
and Sardina, 2007; De Giacomo et al., 2013]).

(i) (⇐) P is a composition for T , i.e. it realises any trace
⇡ = t0 a1�→� (recall t0 = t0). First, we show that for any his-
tory h

` = s0 a0k0��→� a`k`��→s` in H⇡,P (s0 = s0) we have s

j �
t

j , for any 1 ≤ j ≤ �⇡� (for j = 0 this follows by Definition 10).
By induction on `, h`+1 ∈ H`+1

⇡,P is such that s` a`+1k`+1�����→s`+1
is in S by definition, so �t`, s`� a`+1k`+1�����→�t`+1, s`+1� is inC, P (h`

,a) = k`+1, and from s

` � t

` it follows that
s

`+1 � t

`+1. Then, for any ⇡ and h ∈ H⇡,P as above
with �h� < �⇡�, by the definition of � for any action a with
t

` a`+1��→t`+1 in T , we have s

` a`+1k���→s`+1 in S . Further, assumeT is not a m-TPP for L. Then by Definition 8, for some
trace �t0, s0� b1k1��→� b`k`��→�t`, s`� we have t

` a�→t′ in Lm such
that either (1) no �t`, s`� b`+1��→�t`+1, s`+1� exists s.t. b`+1 is
subsumed by a, or (2) there exists i s.t. bi = − and in ev-
ery set ⇧ in contr(outT (�t`+1, s`+1�, i,ai)) there is a trace�t`+1, s`+1� b`+2��→� b`+q��→�t`+q, s`+q� and b`+q ≠ ai. Then it is
easy to see how this implies the same for every set ⇧′ in
contr(outS∗L(�t`+1, s`+1�, i,ai)). Thus we exclude both (1)
and (2) as they contradict s` � t

`.
(i) (⇒) We prove that for any trace t

0 a1�→� a`�→t` of T and
history h = s

0 a1k1��→� a`k`��→s` ∈ H`
⇡,P , if P is a composi-

tion for T then �t0, s0� b1k1��→� b`k`��→�t`, s`� a k�→�t, s� is in C
for k = P (h,a). If not, then �a,k� �∈ !(�t`, s`�), and, by
definition, either there is no s

` a k��→s`+1 in S , no t

a`�→t′ in T ,

276



Figure 5: A graphical representation of the maximal CG for the production cycle LR in Figure 1 and the production plant
system S in Figure 2. A generated production controller �T , P � is as follows: T is obtained by removing indexes k from
transitions (it is thus unique); given a system history h and an action vector a, P (h,a) = k only if a transition labelled with
a,k exists from last(h) (hence many P exist). Solid and dashed lines represent controllable and uncontrollable transitions ofT , respectively, and n denotes no-op − actions. For instance, by delegating the action vector ��,−� to behaviors �1,2� from
state �11,XX� (namely � to B1 and − to B2), the next state can either be �11,AX� or �01,AX�, depending on the successor
state reached by B1 (see Figure 2). On the other hand, the two transitions labelled with �−,↵� from �01,AA� are controllable:
they represent two distinct control choices, to delegate action ↵ to B2 and to pause B1 or vice-versa, respectively.

or s

`+1 �� t

`+1. In the first two cases P is not a composi-
tion. If the latter holds, it must be the case that in any trace�s`+1, t`+1� a`+1k`+1�����→� condition (3) of Definition 9 does not
hold, hence �T , P � is not a production controller generated
by C.

(ii) If T ′ � T exists, then there exists a trace ⇡ such that
last(⇡) b�→t is in T ′ for some t, but last(⇡) b�→t′ is not inT for any t

′. Since T ′ is realizable, there exists a com-
position P

′ s.t. h ∈ H⇡,P ′ where P

′(h,b) is defined, and
P (h,b) is not. So there is no trace �t0, s0� b1k1��→� b`k`��→�t`, s`�
in C, with s

0 b1k1��→� b`k`��→s` = h and t

0 b1�→� b`�→t` = ⇡, s.t.�t`, s`� b k�→�t, s� for some s and k, and t as above. Then by
construction either s` �� t

` or s �� t. �
Computing the lazy simulation relation � between S andLm can be done by following the algorithm for the standard

simulation relation � in [De Giacomo et al., 2013], but check-
ing the controllable closure tree at each step (Definition 9).
An algorithm can be derived accordingly. Performance can
be improved by reordering actions a according to indexes k
in S so as to substantially reduce the number of transitions.

6 Conclusions

In this paper we consider the parallel behavior composition
problem in a manufacturing setting, where many instances of
a product are to be manufactured on a production line. We
introduced a novel solution concept, target production pro-

cesses, and showed how to generate the largest realizable TPP
for a given production plant.

There are subtle conceptual and technical differences be-
tween the parallel behavior problem and classical behavior
composition in the AI literature. In particular, multiple con-
current actions must be delegated to the available behaviors
in the plant, rather than just one. We note that this is not the
same as multiple behavior composition [Sardina and De Gia-
como, 2008], in which several target modules are realized in
the same shared available system. Multiple behavior compo-
sition is equivalent to realizing Lm− , which we argue is overly
demanding. Moreover, the target desired module is not given
as an input to the problem, but is part of the solution con-
structed from the specified production recipe and plant.

Our work is just the first step in manufacturing composi-
tion. We have defined the problem, and provided a notion of
“adequacy” for solutions in the form of TPPs that respect re-
quirements R1-R5. Further work is needed in order to refine

m-TPPs to “efficient” manufacturing processes, for example,
with respect to average throughput, machine utilization, load
balancing, etc. Such optimizations can be done after the TPP
has been built, or possibly during synthesis by discriminating
between controllers from individual lazy simulation relations
�

j+. Another avenue we are interested in pursuing, is link-
ing our parallel composition problem with the composition
of high-level programs [Sardina and De Giacomo, 2009], at
least from a representational perspective.

277



Acknowledgments

We thank the anonymous reviewers for their helpful feed-
back. We acknowledge the support of the Australian Re-
search Council (under DP120100332) and the RMIT Founda-
tion (under an International Visiting Fellowship for the sec-
ond author to visit RMIT University).

References

[Calvanese et al., 2008] Diego Calvanese, Giuseppe De Gia-
como, Maurizio Lenzerini, Massimo Mecella, and Fabio
Patrizi. Automatic service composition and synthesis:
The Roman Model. IEEE Data Engineering Bulletin,
31(3):18–22, 2008.

[De Giacomo and Sardina, 2007] Giuseppe De Giacomo and
Sebastian Sardina. Automatic synthesis of new behaviors
from a library of available behaviors. In Proceedings of the

International Joint Conference on Artificial Intelligence

(IJCAI), pages 1866–1871, 2007.
[De Giacomo et al., 2013] Giuseppe De Giacomo, Fabio Pa-

trizi, and Sebastian Sardina. Automatic behavior composi-
tion synthesis. Artificial Intelligence, 196:106–142, 2013.

[Foresight, 2013] The future of manufacturing: A new era of
opportunity and challenge for the UK. The Government
Office for Science, London, 2013. Ref: BIS/13/810.

[Lustig and Vardi, 2009] Yoad Lustig and Moshe Y. Vardi.
Synthesis from component libraries. In Proceedings of the

International Conference on Foundations of Software Sci-

ence and Computation Structures (FoSSaCS), pages 395–
409, 2009.

[Milner, 1971] Robin Milner. An algebraic definition of sim-
ulation between programs. Technical report, Stanford Uni-
versity, Stanford, CA, USA, 1971.

[Sardina and De Giacomo, 2008] Sebastian Sardina and
Giuseppe De Giacomo. Realizing multiple autonomous
agents through scheduling of shared devices. In Pro-

ceedings of the International Conference on Automated

Planning and Scheduling (ICAPS), pages 304–312, 2008.
[Sardina and De Giacomo, 2009] Sebastian Sardina and

Giuseppe De Giacomo. Composition of ConGolog
programs. In Proceedings of the International Joint Con-

ference on Artificial Intelligence (IJCAI), pages 904–910,
2009.

[Stroeder and Pagnucco, 2009] Thomas Stroeder and Mau-
rice Pagnucco. Realising deterministic behaviour from
multiple non-deterministic behaviours. In Proceedings

of the International Joint Conference on Artificial Intel-

ligence (IJCAI), pages 936–941, 2009.
[Yadav and Sardina, 2012] Nitin Yadav and Sebastian Sar-

dina. Qualitative approximate behavior composition. In
Proceedings of the European Conference on Logics in Ar-

tificial Intelligence (JELIA), volume 7519 of Lecture Notes

in Computer Science (LNCS), pages 450–462. Springer,
2012.

[Yadav et al., 2013] Nitin Yadav, Paolo Felli, Giuseppe De
Giacomo, and Sebastian Sardiña. Supremal realizability of

behaviors with uncontrollable exogenous events. In Pro-

ceedings of the International Joint Conference on Artificial

Intelligence (IJCAI), pages 1176–1182, 2013.

278


