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Abstract

We study convergence properties of opinion dy-
namics with local interactions and limited informa-
tion exchange. We adopt a general model where
the agents update their opinions in rounds to a
weighted average of the opinions in their neigh-
borhoods. For fixed neighborhoods, we present a
simple randomized protocol that converges in ex-
pectation to the stable state of the Friedkin-Johnsen
model. For opinion-dependent neighborhoods, we
show that the Hegselmann-Krause model converges
to a stable state if each agent’s neighborhood is re-
stricted either to a subset of her acquaintances or
to a small random subset of agents. Our experi-
mental findings indicate that for a wide range of
parameters, the convergence time and the number
of opinion clusters of the neighborhood-restricted
variants are comparable to those of the standard
Hegselmann-Krause model.

“Most people are other people. Their thoughts are someone else’s opin-
ions, their lives a mimicry, their passions a quotation.” — Oscar Wilde

1 Introduction

In everyday life, people form their opinions by exchanging
information about almost everything. Information exchange
is mostly local, in the sense that socially connected people
(e.g., family, friends, colleagues) interact more often and af-
fect each other’s opinion more strongly, and dynamic, i.e.,
discussions go on until opinions converge. Due to their ubiq-
uity and importance, opinion dynamics have been studied ex-
tensively for decades (see e.g., [Jackson, 2008]). The interest
has been intensified recently by the rapid growth of online so-
cial networks (e.g., Facebook, Twitter), which provide the ba-
sis for a better understanding (and possibly for applications,
see e.g., [Lever, 2010]) of opinion formation.

Over the years, several models of opinion formation have
been proposed. The standard assumption is that people (or
agents, in general) update their opinions to a weighted aver-
age of the opinions in their neighborhood. The updates pro-
ceed in synchronous parallel rounds, until opinions reach a
stable state. A distinctive feature of the models is whether
the agent neighborhoods are determined by a fixed social net-
work, decoupled from the opinion formation process, or they
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reflect the affinity of the agent opinions and are updated dur-
ing the process. Among the most influential models are those
of [DeGroot, 1974] and [Friedkin and Johnsen, 1990], in the
former case, and the bounded confidence model of [Hegsel-
mann and Krause, 2002], in the latter. In this work, we inves-
tigate how practical restrictions on the locality of agent inter-
action and on the amount of information exchanged in each
round affect the convergence properties of these models.

Related Work. The convergence properties of the Friedkin-
Johnsen (FJ) and the Hegselmann-Krause (HK) models have
received considerable attention. Both are known to converge
to a stable state relatively fast. In the FJ model, the stable state
is unique [Friedkin and Johnsen, 1990] and approximately
minimizes a certain notion of opinion disagreement in the net-
work [Bindel et al., 2011]. Moreover, the convergence time
is determined by the spectral radius of the adjacency matrix
[Ghaderi and Srikant, 2014] (see also [Ferraioli et al., 2012;
Yildiz et al., 2013] for discrete variants of the FJ model).

The HK model leads to opinion clustering, where the
agents form groups with consensus in each group (see e.g.,
[Blondel et al., 2009]). The single-dimensional HK model
is known to converge in at least 2(n?) and at most O(n?)
rounds, where n is the number of agents [Bhattacharyya et al.,
2013; Wedin and Hegarty, 2015]. [Lorenz, 2005] proved that
generalizations of the HK model converge to a stable state
under symmetric (and possibly time-dependent) local agent
interactions. E.g., this implies convergence of the Deffuant-
Weisbuch (DW) model [Deffuant et al., 2001; Weisbuch et
al., 2002], where two random agents meet and exchange
opinions in each round. Moreover, there has been signifi-
cant experimental work on the convergence properties of vari-
ants of the HK model and on confidence levels that are suffi-
cient or necessary for consensus (see e.g., [Fortunato, 2005;
Lorenz and Urbig, 2007]). Nevertheless, the convergence
properties of heterogeneous and/or asymmetric variants of the
HK model are far from being well understood. E.g., only re-
cently, [Chazelle and Wang, 2015] proved that the HK model
with partially stubborn agents converges.

Recent work has also studied the convergence properties
of opinion dynamics that combine features of the DeGroot/FJ
and the HK models and allow for coevolution of the opinions
and the network under mutual influence between the agents.
E.g., motivated by applications of opinion dynamics to expert
opinion aggregation, [Carvalho and Larson, 2013] proved



convergence to consensus for a generalization of DeGroot’s
model, where the influence between two agents is inversely
proportional to the distance of their opinions. Subsequently,
[Tsang and Larson, 2014] analyzed experimentally the con-
vergence properties of a similar model where the agents are
skeptical towards opinions far away from theirs. On the the-
oretical side, [Bhawalkar et al., 2013] investigated the exis-
tence and the efficiency of stable states for discrete and con-
tinuous coevolutionary opinion formation processes.

Motivation and Contribution. An important assumption in
most of the previous work is that each agent exchanges opin-
ions with all its neighbors in every round. In the HK model,
in particular, determining each agent’s neighborhood requires
access to the opinions of all agents! This assumption is cru-
cial for establishing existence of and convergence to a stable
state in the FJ model [Ghaderi and Srikant, 2014] and fast
convergence to opinion clustering in the HK model [Bhat-
tacharyya et al., 2013]. However, this assumption is ques-
tionable in real life and in modern online social networks.
Instead, it is far more reasonable to assume that agents act
within a social network and update their opinions by con-
sulting the opinions of a small (possibly random) subset of
their neighbors. Motivated by this natural observation and
by experimental work on opinion dynamics with communica-
tion regimes [Urbig and Lorenz, 2004], we introduce variants
of the FJ and the HK model where information exchange in
each round is limited (for both models) and local (for the HK
model). We thoroughly investigate, both theoretically and ex-
perimentally, to which extent the convergence properties of
the FJ and the HK models are affected by such practical con-
siderations in the opinion exchange between the agents.

For the FJ model, we present a simple randomized proto-
col where each agent consults the opinion of one of her social
neighbors in each round. We show that it converges in expec-
tation to the stable state of the FJ model, albeit in exponential
time. Our result indicates the importance of lively communi-
cation for the fast convergence of opinion dynamics.

Our main contribution concerns variants of the HK model
with local agent interactions and limited (and possibly asym-
metric) communication in each round. To decouple the
two issues, we consider two variants of the HK model, one
accompanied by a fixed social network and another with
agent neighborhoods determined by random sampling in each
round. In the former variant, the agents are embedded in an
undirected network and exchange opinions only with their
social neighbors in each round. Due to this restriction, the
relative order of agent opinions is not preserved and stan-
dard convergence proofs for the HK model cannot be ap-
plied. Inspired by the notion of temporal network connectiv-
ity [Kempe et al., 2002] and using a recent result of [Chazelle,
2011], we prove convergence of this variant to a stable
state, where opinion clustering occurs within social neighbor-
hoods. Our approach provides a simpler and more versatile
proof of the main results in [Hendrickx and Blondel, 2006;
Lorenz, 2005]. We also extend this convergence result to mul-
tidimensional opinions. In the variant with random sampling,
each agent consults the opinions of a small random subset of
other agents, chosen independently in each round. Extending
our temporal connectivity approach, we show that this vari-
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ant converges to a stable state. Conceptually, HK with ran-
dom sampling can be regarded as a significant generalization
of the DW model. Technically, the DW model employs sym-
metric opinion exchange between random agent pairs. Hence,
its convergence follows directly from the result above. On the
other hand, HK with random sampling employs asymmetric
opinion exchange (i.e., it may be that an agent ¢ consults the
opinion of an agent j, but 5 does not consult ¢’s opinion).
Thus, convergence proofs for symmetric variants of the HK
model do not apply to HK with random sampling (e.g., condi-
tion (2) in [Lorenz, 2005, Theorem 2] is violated). Moreover,
such asymmetric variants of the HK model either do not con-
verge to a stable state, or if they converge, it is notoriously
difficult to be proven (see e.g., [Bhawalkar et al., 2013]).

Our experimental findings indicate that if the size of ran-
dom neighborhoods is roughly log n /e, where n is the num-
ber of agents and ¢ is the agent confidence, the HK model
with random sampling converges at comparable speed and to
almost the same number of opinion clusters as the standard
HK model. On the other hand, the HK model on random
Gn,p and power-law networks and on real-world social net-
works converges noticeably slower and to a larger number of
clusters than the standard version. This behavior is amplified
by small confidence values. The delay in convergence is jus-
tified by the existence of opinion clusters with relatively large
diameter in the social network, while the cluster proliferation
is justified by the existence of many small opinion clusters in
relatively isolated parts of the network.

Due to the space limitations, some proofs and a significant
part of our experimental justification are omitted.

2  Models of Opinion Dynamics

We consider a population of n agents, each maintaining an
opinion x;(t) € [0, 1] in each time step ¢ € N. We let Z(t) €
[0, 1]™ denote the vector of agents’ opinions at time ¢.

We use ||Z]|; and ||Z||oc to denote the 1-norm and the
infinity-norm of a vector Z, respectively. We say that a se-
quence {Z(t)}+en converges to a stable state z* if for all
v > 0, there is a t, so that for all ¢ > ¢, ||Z(¢) — &*||c < 7.
The Friedkin-Johnsen Model. We are given a weighted net-
work G(V, E) and the agents’ initial opinions Z(0). Each
agent ¢ corresponds to vertex ¢ € V, has weight w;; € (0, 1]
for her initial opinion and weight w;; € [0,1) for the current
opinion of each other agent j. We assume that w;; = w;, for
all 4, 5, and that Zjev w;; = 1. Atany round ¢t > 1, each
agent ¢ updates her opinion to

zi(t) = Z wizj(t — 1) + wi;zi(0)
j#i
We let A denote the adjacency matrix of G with 0 on its
main diagonal and let B be the diagonal matrix with B;; =
wjy;, for all 7. Then, (1) can be written in matrix form as:

#(t) = AZ(t — 1) + BZ(0) 2)

Since w;; > 0, A is a substochastic matrix and has spectral
radius p(A) < 1. Thus, (2) converges to a unique stable state
#* = (I — A)~'BZ(0), where [ is the n x n identity matrix,

in O(F4%3}) time steps [Ghaderi and Srikant, 2014].

(D




The Hegselmann-Krause Model. We are given the agents’
confidence € > 0 and their initial opinions Z(0). At any round
t > 1, agent < computes her opinion-dependent neighborhood

Si(tye) ={j: |wi(t = 1) —z;(t = 1) < ¢}

and updates her opinion to the average of the opinions in
Si(t7 E), i.e., ,’Ei(t) = ZjESi(t,E) .%‘j(t — 1)/‘51‘(15, 8)|

We consider two variants of the HK model with local agent
interaction and limited information exchange. In the network-
HK model, we are also given a undirected connected social
network G(V, E'). The neighborhood of each agent ¢ is now
restricted to her social neighbors:

Si(G,tye) ={j:{i,j} € Fand |z;(t—1)—x;(t—1)| < ¢}

In the random-HK model, we let k be the size of the sample.
At any round ¢ > 1, each agent ¢ samples (from all agents,
with replacement) a random subset K; of k agents and lets

Si(Ki,t,€) = {j S K’L and |{Ez(t — 1) — ZCj(t — 1)| < E}

We require that {¢,7} € FE and i € K, for all 4, so that 7 is
always included in S;, in both variants. Then, agent ¢ updates
her opinion to the average of the opinions in S;(G, t, ) and
Si(K;, t, ), respectively.

To establish that the two variants converge, we use the fol-
lowing equation describing the agent opinions at round ¢t > 1:

Z(t) = AgAy_1 - A1Z(0) 3

Each A, is an n X n matrix with 1/|5;| in position A,.(i, j),
if j € S;, and 0, otherwise (S; is S;(G,t,e) for network-
HK and S;(K;,t,¢) for random-HK). A, corresponds to the
adjacency matrix of an unweighted graph (undirected for
network-HK and directed for random-HK), but with normal-
ized entries so that A, is stochastic.

In the convergence proofs, we use the coefficient of ergod-
icity T(A) = § max; ; | AT (€; — €;)||1 of a stochastic square
matrix A, where AT is A’s transpose and €; is the vector with
1 in coordinate ¢ and O elsewhere (see e.g., [Seneta, 1979]).
We know that for any stochastic matrices A, B, (i) 7(A4) < 1,
(i) 7(AB) < 7(A)7(B), and (iii) 7(A) = 0 iff rank(A) = 1.
Moreover, if A has strictly positive elements only, 7(A) < 1.

We also let Pr[E] denote the probability of an event E and
E[X] denote the expectation of a random variable X .

3 The FJ Model with Limited Information

A natural question about the FJ model is whether we can
simulate the opinion formation process by simple protocols
where agents consult the opinions of a small subset of their
neighbors in each round. To this end, we present such the
Limited Information Protocol, or LIP-FJ, in brief, and dis-
cuss its convergence properties.

Let (G(V, E), Z(0)) be an instance of the FJ model and let
A(t) € (0,1). In LIP-FJ, at any round ¢ > 1, each agent ¢
selects one index j € V' with probability w;; and sets s;(t)
xj(t—1),if j # 4, and s,(t) = x,(0), if j = 4. Then, agent ¢
updates her opinion to z;(£) = A(t)z;(t—1)+(1—A(¢))s;(¢).

We observe that (i) for any fixed instance and any fixed
round ¢, the set Q! of possible values of the random variable
Z(t) is finite; and that (ii) for any possible value i of Z(t — 1),

E[Z(#)[Z(t = 1) = g] = AO)7 + (1 = A1) (A¥ + BZ(0))
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For brevity, let p;_1(¢) = Pr[Z(¢ — 1) = 4] be the probability
that the opinions at round ¢ — 1 are as in 3. Then, using (i)
and (ii), we obtain that for any fixed ¢t > 1,

EE®)] = Y. pa@EEEE-1) =4
geqi-1
= At Y. pai+
geai-1
+(1=A@®) D pa(@) (A7 + B(0)))

,g'th—l
Using linearity of expectation, we conclude that any ¢ > 1,
E[Z(t)] = A#)E[Z(t—1)]+(1-A(t)) (AE[Z(t—1)]4+BZ(0))

Then, using induction on ¢ and standard properties of the ma-
trix infinity norm v(A) = || Al € (0,1), we show that for
an appropriate choice of A(¢), LIP-FJ converges in expecta-
tion to the stable state 7* = (I — A)~! B#(0) of the FJ model.

Theorem 1. For any instance (G(V, E), Z(0)) and any round
t > 1, the opinions maintained by LIP-FJ satisfy

IE[Z(t)] — 7|, < e~ 17D Zama 02D |1 7(0) — 7o

where T* is the stable state of the FJ model.

If A(t) = £, then [[E[Z(t)] — |, < e~ /et=v(A),
by Theorem 1, and LIP-FJ converges in expectation in time
exponential in 1/(1 — v(A)). The experiments indicate that
for such values of A(¢), LIP-FJ indeed converges asymptoti-

cally to Z at a very slow rate. For larger values of A(t), e.g.,

for \(t) =1— %, Zflzl(l — A(q)) converges to a constant
value. Therefore, the expected distance to * stops decreas-
ing after a finite number of rounds. If we set A(¢) to some
constant, aiming at improving the convergence time, the ex-
periments indicate that LIP-FJ does not converge asymptoti-

cally to &*, due to the high variance of the stochastic process.

4 Convergence of Network-HK

We proceed to show that the HK model on social networks
converges to a stable state. We consider any fixed instance
(G(V,E),e,%Z(0)) of the network-HK model. As in Sec-
tion 2, we let A; be the stochastic matrix encoding the agent
neighborhoods in round ¢ and let G; be the corresponding
undirected network. Then, #(t) = A;Z(t — 1) foreach ¢ > 1.
Our approach is motivated by temporal graph connectivity.
Specifically, we say that a set of agents S C V' is weakly con-
nected if for any non-empty S’ C S and any ¢y € N, there is
around t > tg so that G includes at least one edge connect-
ing an agent in S’ to some agent in S \ S’ (we highlight that
the sequence {G}+>0 and weak connectivity depend on the
opinion formation process). Intuitively, all agents in a weakly
connected set influence each other with their opinions.

Lemma 1. Let (G(V, E),e,%(0)) be an instance of network-
HK, where the opinion dynamics keep V weakly connected.
Then, all agents converge to a single opinion x*.

Proof. To prove the lemma, it suffices to show that there is
a round tg so that the coefficient of ergodicity of the matrix



C = Ay Ayy—1--- Ay is 7(C) < e/2. Given this, we have
that Z(t9) = CZ(0), by (3), and that for all agents ¢ and j,

|zi(to) — 2;j(to)| = [(Ci — C;)@(0)]

<|Ci=Cili<2r(C) < (4

where Cj is the i-th row of matrix C. Since at ¢ all opinions
are within distance ¢, in any round ¢ > ¢, all agents take the
average of all opinions in their social neighborhood (includ-
ing their opinion). Hence, after round ¢(, we have essentially
an instance of DeGroot’s model on the undirected connected
network G (enhanced with self-loops). Since G (with self-
loops) defines an irreducible and aperiodic process, by [Jack-
son, 2008, Cor. 8.3.11, all agents converge to a single opinion.

So, we need to show that for any & > 0, there is a ¢y such
that 7( A, Ag,—1 -+ - A1) < d. To this end, we first show that
since V remains weakly connected, for any round ¢, there is a

round £(t), such that the matrix Cf(t) = AyyApty—1- - At

has all its elements positive, and thus, T(Cf (t)) < 1.
We recall that any matrix A; has only positive diagonal el-

ements. Moreover, an element Cf (t)(i, 7) is positive iff there
is a (time-respecting) walk (7,41, . ..,4,—1,7) from agent i to
agent j such that (i) the first edge {4, 41 } exists in some net-
work G with ' > ¢, (ii) for each index ¢, 1 < ¢ < m — 1,
if the edge {i;—1,%,} exists in some Gy, then the edge
{iq,1q41} exists in some network Gy with t” > ¢/, and (iii)
the last edge {i;m—1,7} exists in some Gy with ¢/ < £(¢)
(since any matrix A; has positive diagonal elements, the walk
can wait at each intermediate agent until the next edge ap-
pears). The existence of such a walk between any pair of
agents in V' follows from the definition of weak connectivity.

Then, [Chazelle, 2011, Theorem 2.5] implies that there is
a fixed n > 0, so that for any round ¢ and the correspond-
ing round £(t), 7(Ag) --- A¢) < 1 —n. Now, we can con-
catenate an appropriately large number of non-overlapping
sequences Ay, ..., Ay and obtain a sequence Ay, ..., Ay,
with 7(Ay, -+ - A1) < 4, for any § > 0. O

If V is not weakly connected, we can show that it admits
a unique partition into weakly connected components. Ap-
plying Lemma 1, we get that the agents in each component
converge to a single opinion. Thus, we obtain the following:

Theorem 2. Network-HK converges to a stable state.

Extension to d-Dimensional Opinions. We can generalize
Theorem 2 to the case where each agent ¢ maintains a d-
dimensional opinion #;(t) € [0, 1]¢ by the d-dimensional HK
model (see e.g., [Bhattacharyya er al., 2013]) on a social net-
work G. The proof is essentially identical, with the only dif-

ference that in (4), we need that 7(C) < £/(2V/d).

S Convergence of Random-HK

Next, we show that the random-HK model, where each agent
contacts only k& random agents in each round, converges to
a stable state. Let (k,e,Z(0)) be any fixed instance. As be-
fore, we let A; be the stochastic matrix that encodes the agent
neighborhoods in round ¢ and let G; be the corresponding
network. Now A; is a random matrix and G, is a random di-
rected network. Again, Z(t) = A;Z(t — 1), for any ¢ > 1.
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Since the process is now stochastic, we prove that each agent
converges to a specific opinion with probability arbitrarily
close to 1.

We first prove the equivalent of Lemma 1, but now with the
notion of e-connectivity. For any two disjoint sets of agents
Sl,SQ, we let dt(Sl,SQ) = miniesw-e& ‘fﬂl(t) — .L'j(t)|
be their distance at round t. We say that a set of agents
S is e-connected at round t, if for any non-empty S’ C S,
d'(S’,S\S") < e. Asetof agents S breaks at round t if S is
e-connected at round ¢ — 1 and is not e-connected at round ¢.
We note that once S” and S\ S’ break, they behave as indepen-
dent subinstances in the future. We also say that agents ¢ and
Jj are (e,t)-connected if there is a “path” (¢,41,...,%k—1,5)
so that for each “step” g, |z4(t) — zq+1(t)] < e. The di-
ameter at some time step ¢, denoted diam(t), is the maxi-
mum distance |x;(t) — z;(t)| overall (e, t)-connected pairs of
agents i, j. We observe that if at time step ¢, diam(¢) < e,
then no break occurs in the future. We also let I'; be the
set of all opinion vectors % such that for all rounds ¢ > 0,
Pr[at most [ breaks occur in {0, ¢} | #(0) = ¢] = 1. Namely,
I'; consists of all vectors 4 such that if the initial opinions are
1/, then no matter the random choices, at most [ breaks oc-
cur. E.g., all vectors with a single opinion belong to I'y. We
next show that in a set that remains e-connected during the
(random) opinion formation process, all agents converge to a
single opinion with probability that tends to 1.

Lemma 2. Ler (k,e,%(0)) be an instance of the random-HK

model with Z(0) € Ty. For any 7, > 0, there is a round tg
such that

Pr[diam(t) <] >1-4

Proof sketch. Without loss of generality, we assume that
there exists a single e-connected component (otherwise, the
lemma applies to each e-connected component separately).
Since #(0) € I'y no break occurs and the agents are (g, t)-
connected for all ¢ and all random choices.

Letp = 1 — (1 — 1/n)" be the probability that an agent j
is not in the sample set of agent ¢ in a round ¢. For any round
¢, we denote Cy = Ayyop2/p---Agand Dy = Ag_q--- Ay
The important step is to show that there is some fixed > 0
such that for any fixed value of Dy, E[7(Cy)|Dy] <1 —n/2.

For any round t' > ¢, pos(t') (resp. pos;(t')) denotes the
number of positive entries in (resp. the i-th row of) matrix
Ay -+ Ay. We have 0 < pos(t') < n? and pos(t’ + 1) >
pos(t'). As long as pos(t') < n?, there is some agent i
with pos;(t) < m. As in the proof of Lemma 1, pos;(t’)
is the number of agents reachable from ¢, between rounds
¢ and t', by time-respecting walks. Since V' is e-connected
and no break occurs, if pos;(t') < n, there is at least one
new agent reachable from 4 in round ¢ + 1, with probabil-
ity at least p. Hence, for any round ¢ with pos(t') < n?,
pos(t’ + 1) > pos(t') with probability at least p, and the
expected number of rounds before it becomes pos(t') = n?
for the first time is at most n?/p. By Markov’s inequality,
Prpos(¢ + 2n%/p) < n%|D,] < 1/2. Moreover, since
pos(¢ + 2n?/p) = n? implies that 7(Cy) < 1,

Pr[r(Cy) < 1|Dy] > 1/2

As in the proof of Lemma 1, since Cp is the product of

2n? /p matrices, there exists a fixed fractional n > 0 such



that if 7(Cy) < 1, then 7(Cy) < 1 — 1. Thus, we obtain that
for any fixed value of Dy, E[7(Cy)|D,] <1 —n/2.

Now, we can work as in the proof of Lemma 1. Taking an
appropriatelly large number of rounds, we obtain a ¢y and a
matrix C' = Ay, - - - Ay such that 7(C) < ~/2 with probabil-
ity atleast 1—¢. Then, the Lemma follows from the properties
of the coefficient of ergodicity, similarly to (4). O

We proceed to show that the random-HK model converges
asymptotically, with probability that tends to 1. We recall that
if there exists a round ¢* with diam(t*) < ¢, then Z(t*) € T'y
and Lemma 2 again implies convergence in each e-connected
component separately. The following lemma establishes the
existence of such a round ¢* with probability that tends to 1.

Lemma 3. Let (k, e, Z(0)) be any instance of the random-HK
model. For any 6 > O there is a round t* such that
Pr[diam(t*) <e]>1-9§

Proof sketch. Intuitively, if £(0) € I';, there are constants p
and to such that Pr[Z(tg) € T;_1] > p. Moreover, there
is a constant m such that Pr[Z(mty) € T'g] ~ 1, i.e., with
almost certainty, all possible breaks have occurred by round
mto. Then, the proof follows easily from Lemma 2.

In the following, we let t; be the number of rounds in
Lemma 2 for v = ¢. Namely, ¢ is such that if Z(0) € I'y then
Pr[diam(to) < €] > 1 — §. For brevity, we let p = 1/n*nto
and let P(y,m) = Pr[diam((m + 1)tg) < £|Z(0) = 7].
Namely, P (i, m) is the probability that the diameter is at
most ¢ after (m + 1)to rounds, given that the initial opinion
vector is 7.

At first, we consider the case where £(0) € I'; and prove
inductively that

m) >

P((0), (1-0)(1->0-p)") )
We can verify (5) is true for m = 1. We inductively assume
that m satisfies (5) and consider the following cases for m+1.

Pr[Z(to) € T'o] = 0. Therefore, since £(0) € I'y, no break
occurs in {0,tg} for all random choices. Thus, #(0)
satisfies the hypothesis of Lemma 2 and P(Z(0),0) >
1—4. Asaresult, P(Z(0),m +1) > 1—0.

Pr[#(to) € T'o] > 0. There is an opinion vector i € I'g such
that Pr[Z(to) = ¢] > p. Since Z(0) € I'y, if Z(to) # .
then Z(to) € I'1. Hence, we obtain that:

P(#(0),m +1) =

Pr(Z(to) = ] P(§,m) + Y Prli(to) = @] P(d,m)
ael;

(1=9)p+1-p)(1—-1-p)™)

(1=86)(1—(1—p)™)

Now we extend the proof to the case where Z(0) € T,
for any 2 < [ < n — 1. We recursively define the func-
tions fi(m) = pfi—1(m — 1) + (1 — p) fi(m — 1), for all
m,l > 2, with fi(m) = (1 —J)(1 — (1 — p)™). Using in-
duction and the same arguments as above, we can show that
if Z(0) € Ty, then P(Z(0),m) > (1 — &) fi(m). We ob-
serve that lim,, o f1(m) = 1. Then, by the definition of
fi, we can show inductively that lim,, oo frn—1(m) 1.

Since at most n — 1 breaks can occur, we conclude that
P(f(())ﬂn) > (1 - 5)fn—1(m)- O

>
>
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Figure 1: Comparison of average convergence time of the
standard HK and the random-HK models.

6 Experimental Evaluation

We performed computer simulations so as to obtain a better
understanding of the convergence properties and the number
of clusters of network-HK and random-HK. We sketch the
main conclusions of the experimental evaluation, which con-
firm and enhance our results in sections 4 and 5.

The Random-HK Model. We simulate the random-HK and
the standard HK models for 625 agents and 21 values of
e € [.01,.45], repeating each run for 100 different initial
opinion vectors to account for the randomness in local inter-
action. Opinions are selected uniformly at random from [0, 1]
in all our simulations. We choose k = min(n/10,logn/¢) to
ensure that with high probability every agent has some neigh-
bors in each cluster.

Figure 1 shows the average convergence time for different
values of €. The curve for random-HK is very similar to that
for the standard HK model. Naturally, random-HK results in
larger convergence times, as every agent has access to less
information. The peak at .25 is where we move from two
clusters to one cluster in the stable state.

The number of opinion clusters is an important property
of the HK model. We calculate it by sorting the final opin-
ion values and separating the groups which differ more than €
from each other. Figure 2 shows the average number of clus-
ters created by each model as € changes. At a first glance,
the limited amount of information in random-HK does not
hinder its ability to simulate the standard HK model effec-
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Figure 2: Comparison of the number of clusters created by
the standard HK and the random-HK models.
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Figure 3: Convergence time of the network-HK model for
various values of € on two types of networks.

tively regarding the number of clusters. The small difference
in the number of clusters is rather insignificant, especially if
one considers the rather unstable behavior of the HK model.
Specifically, even small perturbations during the opinion for-
mation can cause noticeable differences in the final clustering
of the agents. To demonstrate this, we first simulate the stan-
dard HK model, and then, we repeat the process on the same
initial opinion vector, but with some small random perturba-
tions for few randomly selected rounds. The perturbations
consists of increasing € to 2¢ for the selected round. Our sim-
ulations show that for ¢ < 0.25, these small perturbations
may significantly change the resulting number of clusters.

The Network-HK Model. We start with the convergence
time for different types of networks. We mostly focus on ran-
dom G,, ,, networks (see e.g., [Bollobas, 2001]) and Barabdsi-
Albert (preferential attachment) graphs [Barabési and Albert,
1999]. We select 64 different values of n € [256,1024] and
create 10 relatively sparse networks for each value. We run
the network-HK and the standard HK models on each of these
networks for 10 values of ¢ € [.001, .4].

The resulting convergence times are shown in Figure 3. For
both network types, the variance drops as ¢ increases. This
happens because for large values of €, the agents can more
easily find other agents at opinion-distance at most ¢, regard-
less of the network structure. As a result, the opinion for-
mation process behaves more uniformly. The lower variance
in Barabdsi-Albert networks (compared to G,, ;, networks) is
mostly due to their smaller diameter. Our simulations show
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Figure 4: Comparison of the number of clusters created by
the network-HK and the standard HK models.
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Figure 5: Network-HK leads to many singleton clusters.

that the convergence time depends more on the value of ¢,
less on the network type, and not so much on the number of
agents n. A notable exception is chain networks where, for
large values of ¢, the convergence time heavily depends on n.

As for the number of clusters, we repeat the simulations
that we performed for the random-HK model. We now cre-
ate random G, ,, networks with p € [logn/n,.1]. To count
the clusters at the stable state, we delete every edge that con-
nects agents at opinion-distance more than € and count the
number of connected components. The results are depicted
in Figure 4. The absolute difference in the number of clus-
ters is now quite large. It is larger than 300, for ¢ = .01, and
slowly drops to 0, when both models reach consensus. We ob-
serve a similar behavior for sparse Barabasi-Albert networks.
To explain the cluster proliferation, we run both models for
¢ = .15 and a random G o0,.05 network. Figure 5 shows that
the large number of clusters for network-HK is due to the fact
that many agents (and especially agents with extreme opin-
ions) fail to find any neighbors at opinion-distance at most ¢,
which leads to many singleton clusters.

Finally, we test the network-HK model on the Facebook
“circles” network [Leskovec, 2012], with 4039 nodes and
88234 edges (see Figure 6a). Compared to the computer-
generated networks before, this instance takes much longer to
converge. To obtain a better understanding of the increased
convergence time, we draw, at round ¢ = 40, the agents who
will eventually form a cluster with opinions in [.2, .4]. In Fig-
ure 6b, we see that the future cluster consists of tightly bound
communities which communicate with each other through a
small number of edges. As a result, information exchange is
slow, which crucially affects the convergence time.
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Figure 6: Network-HK on the Facebook network.
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