Probabilistic Matrix
Inspection and Group Scheduling

Hooyeon Lee, Ashish Goel
Stanford University
haden.lee @cs.stanford.edu and ashishg @stanford.edu

Abstract

Consider an event organizer who is trying to sched-
ule a group meeting. Availability of agents is un-
known to the organizer a priori, but the organizer
may have probability estimates on availability of
each agent for each date/time option. The orga-
nizer can ask an agent to reveal her availability, but
it causes inconvenience for the agent, and thus the
organizer wishes to find an agreeable outcome at a
minimum number of such queries. Motivated by
this example, we study the Probabilistic Matrix In-
spection problem in which we are given a matrix of
Bernoulli random variables that are mutually inde-
pendent, and the objective is to determine whether
the matrix contains a column consisting only of
I’s. We are allowed to inspect an arbitrary entry
at unit cost, which reveals the realization of the en-
try, and we wish to find an inspection policy whose
expected number of inspections is minimum. We
first show that an intuitive greedy algorithm exists
for 1-row and 1-column matrices, and we general-
ize this to design an algorithm that finds an optimal
policy in polynomial time for the general case.

1

Scheduling an event for a group of agents is a frustrating task;
it tends to be tedious and time consuming. A typical schedul-
ing process can be described as an iterative approval voting:
An event organizer selects a candidate set of date/time op-
tions, and asks her invitees to respond with their availabil-
ity. Given the responses, the organizer chooses an agreeable
option and announces it, or she may repeat the process by
proposing another set of date/time options if no feasible out-
come is found. Naturally the organizer and her invitees wish
to reach an agreement within a small number of iterations and
proposed options — the more iterations and proposed options
there are, the more laborious a scheduling process becomes.
There exist several software tools that are designed to help
an event organizer handle a scheduling process more effi-
ciently — one of the most well-known tools is Doodle !. In

Introduction

"http://www.doodle.com

322

Doodle, an organizer can simply list as many date/time op-
tions as she likes, and each invitee is asked to respond with
her availability. Essentially, invitees participate in an ap-
proval voting upon all proposed options. Hence if too many
options are proposed, then invitees are given the burden of
answering them all. This often leads to undesired behaviors
of agents such as herding or procrastination, instead of hon-
est, quick responses [Zou er al., 2015]. On the other hand, if
the organizer proposes too few options, there may not exist an
agreeable outcome after all, which may result in another iter-
ation of proposals and responses. In fact, surveys find that the
most challenging part of group scheduling is due to “chasing
people who do not answer” and “finding a suitable time.” 2

One way to re-design Doodle is to ask invitees availabil-
ity questions in an adaptive manner. For instance, if a cer-
tain agent reports her unavailability for a specific date/time
option, the system may skip asking other agents about the
same option, but rather propose a different option that is more
likely to work for everyone. Formally, we model a group
scheduling process as the problem of inspecting a random
matrix. Consider a matrix of mutually independent Bernoulli
random variables where rows represent agents and columns
represents the set of potential outcomes (such as date/time op-
tions). Given probability distribution of the matrix, the orga-
nizer can “inspect” an entry of the matrix at unit cost to know
of the realization of it, and wishes to determine with certainty
whether the matrix contains a column consisting only of 1’s
at minimum number of inspections possible. In our exam-
ple, this corresponds to querying an agent for her availability,
and seeking an agreeable outcome. By abstracting away the
details of group scheduling, we are left with a mathemati-
cal model that represents the scheduling process, and in this
work we study the properties of an optimal inspection policy
and design an algorithm that finds it in polynomial time.

2 Related Work

Group scheduling is of tremendous practical importance, and
much research has been devoted to it. Jennings et al. pro-
posed the design of an agent-based meeting scheduling sys-
tem, in which an autonomous agent negotiates with other
agents on behalf of its human user [Jennings et al., 1995].

Zhttp://en.blog.doodle.com/2012/07/26/new-findings-a-small-
number-of-initiators-organize-most-of-the-meetings/

The emphasis was on the system description, rather than on
theoretical or empirical results. Somewhat more formal work
was done by Sen and Durfee, which focused on heuristic
negotiation-strategies for group scheduling [Sen and Durfee,
1998]. Ephrati et al. tackled incentive issues, adopting a
game-theoretic approach [Ephrati et al., 1994]. They pro-
posed three monetary-based meeting systems, in which in-
vitees bid their preferences using monetary “points”. They
extended the Vickrey-Clarke-Groves mechanism, preventing
manipulative behavior by the agents, while assuming that the
host has an access to the calendars of invitees — the authors
called this the “open calendar” system. In our work we as-
sume that agents are non-strategic and that the event orga-
nizer has no access to calendars of invitees, but rather has
probability estimates on availability of agents.

All of the above directions are relevant to the general
problem of group scheduling, but not directly to this paper.
The most closely related work of which we are aware is the
“Batched Doodle” problem [Lee and Shoham, 2014]. Lee
and Shoham studied the “Batched Doodle” problem which
shares the same input (a matrix of mutually independent
Bernoulli random variables) and the same objective (to de-
termine whether it contains a column consisting only of 1’s)
as our work. However, in the Batched Doodle problem, an
organizer is allowed to query agents for a subset of date/time
options which corresponds to a submatrix consisting of a sub-
set of columns; essentially each operation of inspection is one
iteration of polling on a subset of outcomes. A solution to
the Batched Doodle problem is an ordered partition of the
columns, and its cost is measured by the (expected) number
of iterations (called “Time”) and queries incurred during the
process (called “Inconvenience”). Lee and Shoham show that
there exists an efficient algorithm for finding an optimal par-
tition for a fairly large class of cost functions that aggregate
Time and Inconvenience (for instance, a linear combination
of the two). The main difference between this work and the
work of Lee and Shoham lies in the solution domain (a unit
operation on a group of columns versus entries) and the cost
model (a function of Time and Inconvenience versus the num-
ber of inspections). The Batched Doodle generalizes Doodle
by allowing columns-by-columns inspections, and we further
generalize it by allowing entry-by-entry inspections. This
generalization allows our model to be more applicable than
that of Lee and Shoham.?

Lastly, in our work, we assume that the event organizer is
given probability estimates on availability of agents, but it is
not clear how one can obtain such probabilities. Probability
estimation is an interesting and challenging research ques-
tion on its own, and we do not attempt to solve the question
in this work. However, we provide several plausible meth-
ods for estimating the probabilities in the context of group
scheduling, which can enable our model and algorithm to be
deployed as a real-world application in the future. In the
psychology literature, Mann et al. found that cultural dif-

31t is worth noting that both this paper and the work of Lee and
Shoham consider an optimization problem under probabilistic as-
sumptions, but we are not aware of relevant work from the stochastic
optimization literature.

323

ferences between the Western, individualistic countries (such
as the United States) and the Eastern, collectivistic countries
(such as China and Japan) lead to different behaviors of re-
spondents when it comes to a group-decision making pro-
cess [Mann et al., 1998]. More recently, Reinecke et al. ana-
lyzed more than 1.5 million Doodle date/time polls from 211
countries, and confirmed similar findings regarding time per-
ception and group’s behavior [Reinecke et al., 2013]. Among
others, they found that “in comparison to predominantly in-
dividualist societies, poll participants from collectivist coun-
tries respond earlier, agree to fewer options but find more
consensus,” which agrees with the findings of Mann et al. Be-
sides the cultural differences, Doodle’s own surveys on event
scheduling found that people tend to respond to the schedul-
ing surveys on Mondays, while Monday is the least popular
day for having a meeting. * We believe that these studies
and findings can be used to design a reasonable estimator for
availability of agents, by utilizing the features that are known
to be crucial — such as demographics of the group and pur-
pose of the event being scheduled. Recent work by Zou et al.
analyzed over 340,000 Doodle polls data to study behavioral
patterns of the users, and they were able to identify response
functions that match the response patterns observed in the real
data [Zou et al., 2015]. We believe that a similar approach can
be taken to tackle the problem of probability estimation in the
context of group scheduling.

3 Formal Model

In this section we introduce mathematical notation we use in
this paper, and formally define the Probabilistic Matrix In-
spection Problem, followed by an example to help the reader
understand the setup.

3.1 Notation and Definitions

Definition 1 (Feasibility). Let A be a matrix whose entries
are from {0, 1}, and refer to the entry of A at row 7 and col-
umn c as a, .. We say that a column c of A is feasible if it
consists only of 1’s (otherwise it is infeasible). We say that
A is feasible if it contains at least one feasible column (other-
wise it is infeasible).

In the Probabilistic Matrix Inspection Problem, we do not
know of the values of the entries of A, as they are Bernoulli
random variables, but we know of probability distribution of
each entry. An input to the problem is this probability distri-
bution.

Definition 2 (Input instance). An input instance of the Prob-
abilistic Matrix Inspection problem is a pair of matrices
(A, P4) of size n by m where A is a matrix of Bernoulli
random variables and P, is the probability matrix associated
with it. We denote an entry of A as a, . and of P4 as p, ..
Each entry a, ., of A is a Bernoulli random variable, and p, .
is the probability of success for a,. . (i.e., prc = Pla, . = 1]).
We define s,]_[;":1 Dr.c to denote the probability that col-
umn c is feasible (probability of success for column c).

“http://en.blog.doodle.com/2012/05/23/mondays-for-planning-
busy-weekends/

Throughout this work we will assume that the set of ran-
dom variables {a, .} are mutually independent. This assump-
tion is crucial to our technical results because it allows to
compute (in polynomial time) the probability of a specific re-
alization of A conditioning on the event in which some entries
of A have already been realized. Without this assumption, it
is unclear how one can compute such probabilities without
having an access to the joint probability distribution over all
realizations of A (whose size is exponential in the size of A).

We define an “inspection” as an operation that can be per-
formed on A. One can inspect an arbitrary entry a, . of A
at unit cost, so as to know of the realization of the random
variable. In group scheduling, an inspection corresponds to
querying an agent about her availability for a certain outcome.
The objective of the problem is to determine whether A is fea-
sible or not, with minimum (expected) number of inspections
possible. The expectation is with respect to the probability
distribution specified by Py.

Because we are interested in determining feasibility of A
with minimum number of inspections, there are certain “un-
necessary inspections” that an optimal strategy must avoid.
For instance, if a certain entry a,. . is found to be unsuccess-
ful (i.e., a, . = 0 is realized), then there is no need to inspect
any other entry from the same column because the column is
already known to be infeasible. Similarly, if a certain column
is found to be feasible (which implies A is feasible) or if all
columns are found to be infeasible (which implies A is infea-
sible), then there is no need to inspect any other entries of the
matrix. Lastly, if p,. . = 0 or p, . = 1, then there is no need to
inspect the entry a, . because we already know its realization
with probability 1. Therefore, without loss of generality, we
will assume that p,. . € (0, 1) (i.e., prc # 0, 1) in this work.

Let us define what constitutes a solution to the problem.

Definition 3 (Inspection policy). Given an input instance
(A, Pa), a solution is any permutation of the entries of A,
and we call it an “inspection policy” (or simply, a “policy”).

The interpretation of a permutation is as follows. The en-
tries of A will be inspected in order specified by the permu-
tation. After each inspection, if A is found to be feasible or
infeasible, the inspection process ends. Otherwise, it contin-
ues inspecting the entries as specified, but it will not make
any unnecessary inspections as mentioned earlier.

If 7 is a permutation of the entries of A, we write C(m)
to denote the number of inspections performed by 7. C(m)
is a random variable whose probability distribution is deter-
mined by P4. We are interested in finding an optimal pol-
icy which minimizes the expected number of inspections,
E[C(m)]. Note that there are (nm)! permutations of the en-
tries of A, and therefore exhaustive search for an optimal per-
mutation will not produce an efficient algorithm.

3.2 Example

Consider a 2-by-2 matrix A of Bernoulli random variables
whose probability of success is given by P4 as follows. In
group scheduling, this corresponds to two agents and a set of
two date/time options being considered.
A= |:G,1,1 a1’2:| |:06 07:|
B az1 az22 ’ 0.9 0.8

A =

324

Let us consider an inspection policy 7 which inspects the en-
tries of A column-by-column while inspecting them from top
to bottom within a column:

1
aii

Suppose that the realization of A happens to be the identity
matrix of size 2 (i.e., a1;1 = ag2 = land az 1 = a12 = 0).
If we use , it will first inspect a1 ; and learn its realization.
Since a1,1 = 1, it will inspect ao ; next only to find that col-
umn 1 is infeasible after all. It will then inspect a; 2 and learn
that column 2 is also infeasible, which implies that A is infea-
sible. At this point, the inspection process terminates without
inspecting as . This specific realization of A happens with
probability pq,1(1 —p2,1)(1 —p1,2)p2,2, and yields C(7) = 3
because 3 inspections would occur. If the realization of A
happens to be the null matrix (i.e., all entries are 0’s), then 7
would only inspect aq,; and a1 2 but skip a1 and as ». In this
manner one can consider all 222 = 16 possible realizations
of A, and compute E[C()] in this example.

Another way to compute E[C(r)] is by de-coupling C()
into two random variables N (7, ¢) with ¢ € {1,2} where
N(m, ¢) denotes the number of inspections (on column c¢) per-
formed by 7 conditioning on the event that (at least one ele-
ment of) column c is inspected. We can efficiently compute
these: E[N(m,¢)] = 1-Play,. = 0] + 2 - Play,. = 1] for
¢ € {1,2}. To express E[C ()] in N (7, c)’s, we need to take
conditional probability into account, as column 2 is inspected
only if column 1 is infeasible: E[C(7)] E[N(m,1)] +
E[N(m,2)](1 — s1) = 2.382. Recall that s, is the probability
of success for column c.

2
az,1

3
a2

4
a2,2

4 Technical Results

We first consider two special cases (1-row or 1-column ma-
trices) of the Probabilistic Matrix Inspection problem, which
admit intuitive, greedy algorithms. We then discuss a cou-
ple of interesting properties of an optimal inspection policy,
which leads to our main result and algorithm.

4.1 1-Row Matrix and 1-Column Matrix

Let us first consider the case where an input matrix A has
only one row (i.e., n = 1). In this case it is natural to inspect
entries with largest probability first because we can stop as
soon as we find an entry whose value is 1 — which makes
its column and A feasible. This intuition is exactly what an
optimal policy should do in the single row case.

Lemma 1 (1-Row Matrix). When n = 1, an inspection pol-
icy m is optimal if and only if it inspects the entries in non-
increasing order of their associated probabilities.

Proof. Without loss of generality let us assume that a policy 7
inspects the entries in increasing order of their column index;
thatis, 7(i) = a1 ;. Recall that C'(7) is a random variable that
denotes the number of inspections 7 incurs. We can express
the expectation of C(7) in terms of p; .’s as follows:

B(C() =m (ﬁ a —pl,w) £ (p]- [1a —pm) .

ey

Suppose that there exists some c* such that py o+ < p1,c-41
(if no such c* exists, then 7 is an inspection policy that in-
spects the entries in non-increasing order of probabilities).
Let 7’ be the same policy as 7 except we swap the order of
a1,c+ and aq ¢+ 4q. That is, 7’ is defined as follows.

() =n(c*+1) ifj=c*
7'(j) = ¢ 7'(j) = 7(c*) ifj=c"+1
PG =wl) A A A+
After expressing E[C(7)] and E[C(#")] as in Equation 1, one

can re-arrange the terms to obtain the following:

c -1

[T =pii) | Pres1—pre).

j=1

2
This quantity is positive if py c=41 > p1,c~ (recall that p; ; €
(0, 1) for all j as mentioned in Section 3).

This proves the lemma because any policy that inspects
an entry with smaller probability before another entry with
higher probability is suboptimal, and therefore an optimal
policy must inspect entries in non-increasing order of their
associated probabilities. O

E[C(m)]-E[C(x")]

Although the proof of Lemma 1 is simple, it confirms cor-
rectness of our intuition. Equation 2 illustrates this intuition;
conditioning on the event that the first ¢* — 1 inspections
fail (whose probability is the product term in Equation 2),
the difference E[C(7)] — E[C(7’)] depends on the difference
in the probabilities of success between the next-entry-to-be-
inspected by 7 and 7.

We can also consider the case where an input matrix A
has only one column. Intuitively, if we wish to minimize the
expected number of inspections, we must inspect entries with
smallest probability first because we can stop as soon as we
determine that A is infeasible. Lemma 2 formally states this
intuition about optimal policy, and we omit a proof of it as it
can be easily done by following the proof of Lemma 1.

Lemma 2 (1-Column Matrix). When m = 1, an inspection
policy m is optimal if and only if it inspects the entries in non-
decreasing order of their associated probabilities.

4.2 Inspection of Entire Column

Another interesting property of an optimal inspection policy
is that once it inspects the first entry of a column, then it must
commit to it and continue inspecting the remaining entries
of the column until feasibility of the column is determined.
Otherwise, if the policy switches to another column too soon,
then it is not optimal.

Theorem 1 (Optimality of inspecting entire column). Con-
sider any inspection policy w. Without loss of generality,
let us assume that for each column c, ™ inspects ay, . the
last among n entries of the column. Let b. be the index of
7 such that w(b.) = an.. Without loss of generality, as-
sume by < by < --- < by, (we can do this by re-labeling
the columns of A). If there is some column c* such that
bex > n - c*, then T is not optimal.

325

Proof. First, note that b. > n - ¢ for all ¢ because we assumed
by < by < -+- < by, and therefore the entries of previous
columns must appear before the last entry of each column.

Let 7 be an inspection policy being considered in the the-
orem for which there exists some ¢ with b, > n - c¢. Let us
construct a different inspection policy /. First, 7 inspects
all entries of column 1 in the same order 7 does. Then, 7/
inspects all entries of column 2 in the same order 7 does, and
so on. In particular, 7’ inspects all entries of a column before
inspecting another column, while preserving the original or-
dering of the entries within each column that is given by .
We will show that E[C(7)] < E[C(w)].

Let us define a set of new random variables which can be
used to express C(-), as we did in Section 3.2 when analyz-
ing an example. Recall that s, = Hle ar is the probability
of success for column c. Let N (7, ¢) (N(7', ¢), respectively)
be a random variable that denotes the number of entries of
column c that is inspected by 7 (by 7/, respectively), condi-
tioning on the event that column c is inspected (i.e., when the
previous ¢ — 1 columns are infeasible). We can then express
E[C()] and E[C(7")] as follows:

) 3)

E[C(r)] =) E[N(r',c)] <H(1 - sc)> NG
c=1 k=1

To prove the theorem we will first show that for any re-
alization of A, N(m,c¢) > N(n’,c) holds for all ¢; this im-
mediately implies E[C'(7)] > E[C(n’)]. We will then show
that there exists at least one realization of A such that for
some column ¢’ the strict inequality N(w,¢’) > N(x',c)
holds. These two statements together imply that E[C(7)] >
E[C(7")].

Consider any realization of A with the condition that the
first m — 1 columns are infeasible (recall that m is the number
of columns of A). Then N(m,c) = N(n’,¢) for all ¢ regard-
less of feasibility of column m. To see why, both 7 and 7’
would inspect the same set of entries in each of the first m — 1
columns in the same order until the column is determined to
be infeasible, and therefore N(m,¢) = N(n'/,¢) if ¢ < m. If
column m is feasible, then both 7 and 7’ would inspect all n
entries of it, and thus we have N(m,m) = N(7',m) = n.
Otherwise, if column m is also infeasible (in which case A is
infeasible), then 7 and 7’ would inspect the same set of en-
tries of column m in the same order until the first infeasible
entry of the column is found. Therefore if the first m — 1
columns are infeasible we have N (,¢) > N(n’,¢) for all c.

Now consider any realization of A with the condition that
at least one of the first m — 1 columns is feasible. Let ¢
be the smallest index of feasible columns of A. Because the
columns from 1 to ¢’ — 1 are infeasible, N (r,¢) = N(7',¢)
for all ¢ < ¢’ for the same reason we stated earlier for the
other case. Since ¢ is feasible, N(m,c¢') = N(n/,c') = n as
both policies would inspect all n entries of ¢’. By our con-
struction of 7’ it is clear that N(7’,¢) = 0 for all ¢ > ¢/;

c—1

1

m

=S ENG) [[]-s0)

and

therefore we have N (,c) > N(n’,c) for all ¢ > ¢’. In sum-
mary N (m,¢) > N(7’,c¢) holds for all ¢ in this case as well.

So far we proved the first claim we stated earlier: for all
realizations of A, we have N(m,c) > N(7’,¢) for all c. Let
us now prove the second claim. Let ¢* be the smallest in-
dex c of columns such that b. > nc (note that ¢* < m be-
cause b,, = nm by definition). Consider any realization of
A with the condition that the first ¢* — 1 columns are infea-
sible and column c* is feasible (feasibility of other columns
do not matter). Using the same arguments we used earlier,
we can show that N(m,¢) = N(n’,¢) for all ¢ < ¢*, that
N(m,¢*) = N(n',¢*) = n, and that N(x',¢) = 0 for all
c > c*. However, because b.~ > n - c*, there is at least
one entry a,s » with ¢’ > ¢* which appears before b,, .- in
« (otherwise, if no such entry exists, then b.~ would be equal
to n - ¢*). This implies that there exists some ¢’ with ¢/ > ¢*
such that N(m,¢’) > 0. This proves the second claim that
for some realization of A, there is some column ¢’ for which
N(m,) > N(x',¢'), and together with the first claim we
proved earlier, this implies that E[C(7)] > E[C(n")].

This proves the theorem: Any policy that does not inspect
all entries of a column consecutively is suboptimal. O

By Theorem 1, when seeking an optimal policy, it is suffi-
cient to consider the set of policies that inspect an entire col-
umn before committing to another column. Lemma 2 hints
that one should inspect the entries of each column in increas-
ing order of probabilities, and this is what we prove next.

4.3 Optimal Ordering within Column

Lemma 2 states that an optimal policy must inspect the entries
in increasing order of their probability of success, if Aisa 1-
column matrix. This argument can be generalized to the case
where there is more than one column: If an optimal policy is
to inspect an entry of some column ¢, it must inspect the entry
with smallest probability of success first.

Theorem 2 (Optimal ordering within column). Consider any
inspection policy . If there exist two entries a,, . and Gy, .
Sfrom the same column such that a,, . appears before a,., . in
T and Pr, c > Pry,c then m is not optimal. In other words,
when restricted to each column, an optimal policy must in-
spect the entries of the column in non-decreasing order of
probabilities.

Proof. Let w be an inspection policy being considered in the
theorem. Because of Theorem 1 we can assume, without loss
of generality, that 7 inspects all entries of column 1, followed
by column 2, and so on. Further let us assume that 7 inspects
the entries of each column in increasing order of their row
index (we can do so by re-labeling the indices of entries).
Precisely, 7(r + n(c — 1)) = a, defines m. Let p, .~ and
Dr+1,c+ be the entries with p,. .+ > p,11 o+. Let us consider a
different inspection policy 7’ that is the same as 7 except that
7’ inspects py41 .+ before p, ., by swapping the ordering of
them.

7T/(j) = ar+1’c* lf ’/T(j) = ar,c*
(7)) = 7 (j) = ar e if7(j) = ary1,c-
©'(5) = 7(j) otherwise

326

We claim that E[C(7")] < E[C(n)], which implies that 7
is not optimal.

Let us define new random variables N (7, ¢) and N (7', ¢)
as we did in our proof of Theorem 1 (i.e., the number of in-
spections performed by the respective policy on column c,
conditioning on the event that the column is inspected). Then
we can express E[C/(7)] and E[C(7)] in terms of the new
random variables and s.’s as we did in Equations 3 and 4.

Observe that N(m,¢) = N(x’,¢) for any realization of A
if ¢ # ¢*. To see this, first note that column ¢ would not be
inspected by 7 or by 7’ if any of the previous columns (that
is, columns 1 through ¢ — 1) is found to be feasible, in which
case N(m,¢) = N(n’,¢) = 0. Otherwise, if column c is
inspected, both policies would inspect the entries of ¢ in the
very same order, so N (m,¢) = N (7', ¢) must hold. Therefore
we conclude that E[N (, ¢)] = E[N (7', ¢)] when ¢ # c*.

We will now show that E[N (7, ¢*)] > E[N(n’, ¢*)] holds.
This immediately implies E[C(7)] > E[C(n")] due to Equa-
tions 3 and 4. Let us express E[N (7, ¢*)] in terms of p, .-’s.

n—1

E[N(m,c")]=n (1:[pk,c*> + Zj(l — Pje*) <H pk,:*)

Note that the event N (7, c¢*) = j occurs if the first j — 1
entries are feasible while the j-th entry is not feasible when
j <m,and N(m,c*) = n occurs if the first n — 1 entries are
feasible (but the n-th entry’s feasibility does not matter).

We can express E[N (7/, ¢*)] in a similar manner, and sim-
plify E[N (7, ¢*)] — E[N (7', ¢*)] as follows:

E[N(m,c")] = E[N(r',c")] =7 (1:[pk,o*) (Pr.c* = Prat.cr).
k=1

The quantity above is positive if p,. c+ > P41 ¢+, Which is the
assumption we began with. This proves the theorem. O

Theorems 1 and 2 together tell us that in order to find an
optimal policy we only need to decide the ordering of the
columns. There are still m! orderings of columns, and an ex-
haustive search algorithm would not be efficient. As we were
able to generalize Lemma 2 to Theorem 2 by generalizing
the optimal solution for 1-column case, it would be natural to
consider generalizing Lemma 1 in a similar manner.

This idea leads to the following greedy algorithm: First we
sort columns by their probability of success (s, H:f:l Dr.c)
in decreasing order, and inspect the entries of each column in
increasing order of their associated probabilities. However, as
the following example shows, this algorithm is suboptimal.

A:{“U }’P =

4 =
@21

a1,2
az.2

0.4459 0.2262
0.4459 0.8114

Here we have s; = 0.199 and s = 0.184, and the greedy
algorithm would produce 7 = (a1,1 a2;1 @12 agz2). Its
expected cost, E[C(7)], is 2.428, but if we inspect the second
column first, then the expected cost is 2.407 which is optimal
in this example. One can consider another greedy algorithm
which inspects the columns in increasing order of their ex-
pected number of inspections (within column), but this algo-
rithm turns out to be suboptimal as well.

4.4 Main Result and Algorithm

Let us present the main result that leads to an efficient algo-
rithm for finding an optimal inspection policy.

Theorem 3. Let s. be the probability of success for column c
as before. Let L. be the expected number of inspections that
column c incurs if its entries are inspected in increasing or-
der of their probability of success, conditioning on the event
that column c is inspected and infeasible. An optimal pol-
icy must be a column-by-column policy (due to Theorem 1),
must inspect the entries of each column in non-decreasing or-
der of probabilities (due to Theorem 2), and must inspect the
columns in non-decreasing order of pi.(1 — s.)/sec.

Proof. Consider a column-by-column inspection policy 7
which inspects the column 1 through m in increasing order
of their index (we can assume this without loss of generality
by re-labeling columns).

As before, let N(m,c) be a random variable that denotes
the number of inspections performed by 7 on column ¢, con-
ditioning on the event that column c is inspected. Then we
can express E[N(m, ¢)] in terms of s, and .. as follows.

E[N(m,c)l =sc-n+ (1 —sc) - pre (5)
This equation holds because if the column is feasible (with
probability s.), it would require n inspections, but if it is not
(with probability 1 — s.), it would require (. inspections in
expectation. The equation above simply considers these two
events, and calculates the expected value of N (7, ¢).

Suppose that there is some column ¢* such that i« (1 —
Sex)/Sex > prer41(1 — Sexy1)/Ser+1. Because m inspects
column c* before column c¢* + 1, it would not be inspecting
the columns in increasing order of p.(1 — s.)/s.. Consider
a different inspection policy 7’ which inspects the columns
in the same order as 7 except that 7’ inspects column ¢* + 1
before c* by swapping the inspection ordering of the two. We
can relate N (m,-) to N(’,) as follows.

N(m,e*+1) ifc=c*
N(7',¢) =< N(m,c*) ife=c"+1
N(m,c) otherwise

As we did in proofs of Theorems 1 and 2, we can use Equa-
tions 3 and 4, and simplify E[C(7)] — E[C(n’)] as follows.

' < 1:[(1- 81)) SevSer i1

(6)
The quantity in Equation 6 is positive if the difference of the
weighted expected values (in the first parentheses) are posi-
tive. Using Equation 5 we obtain the following inequality.

E[N(m,c")] _ E[N(m,c" +1)]
Scx Sex 41
Sprer (1= 5ex)/8er > prerp1(1 = Sex 1) /S 41
By definition of c*, the second inequality above holds, which
implies E[C(7)] > E[C(n")]. Therefore, an optimal inspec-
tion policy must inspect the columns in non-decreasing order
of pe(1 — sc)/se- O

327

Because there is a unique ordering of columns if we sort
them by p.(1 — s.)/sc (up to ties), Theorem 3 leads to the
following algorithm: We inspect the columns in increasing
order of p.(1 — s¢)/sc, and in each column, we inspect the
entries of it in increasing order of probabilities. This algo-
rithm can easily be implemented to run in polynomial time.

5 Discussion and Future Work

In this work we defined the Probabilistic Matrix Inspection
problem motivated by group scheduling and Doodle. We
first considered two special cases, and discovered interesting
properties of an optimal inspection policy which agree with
our intuition. We then generalized our findings to design an
efficient algorithm to solve the general case, and along the
way we showed that two natural greedy algorithms fail to find
an optimal solution. While we believe that our technical re-
sults make a great starting point for studying and optimizing
a group scheduling process, there remain several open prob-
lems and future work to be done.

As we discussed in Section 2, our model and algorithm rely
on the assumption that probability estimates on availability of
agents are available. We suggested several ideas motivated
by previous work in the literature, but it will be important
to deploy such ideas into a system, and integrate it with our
algorithm. From a theoretical perspective, there remain sev-
eral open problems. While we assumed that an inspection can
be performed on a single entry at unit cost, one can general-
ize the cost model by allowing an inspection of any subset
of entries whose cost depends on, for example, the number
of entries being inspected. In the context of group schedul-
ing, an inspection on many entries means querying multiple
agents at the same time for one or many outcomes (but an
inspection is not limited to the entries from the same col-
umn or row). This generalization is particularly useful when
scheduling takes place in a hierarchical setting such as corpo-
rates. For instance the event organizer may feel that the cost
of querying a supervisor is significantly different from that of
querying a colleague.

Lastly, although we focused on relating our model to group
scheduling, the Probabilistic Matrix Inspection problem has
other applications. Finding the right childcare facility, for ex-
ample, involves extensive inquiries as parents wish to gather
more information about how they would handle certain situ-
ations, what benefits and environments they provide, and so
on. Through advertisements or brochures parents may even
be able to gauge the likelihood of a certain facility satisfying
their needs. Yet they still need to inquire facilities for precise
information, which can be modeled by our probabilistic ma-
trix model where columns correspond to facilities and rows
correspond to the needs of parents.

Acknowledgements

This work was funded in part by the National Science Foun-
dation (under grant IIS-1347214), AFOSR MURI, and the
Kwanjeong Educational Foundation. The authors also thank
anonymous reviewers, Albert No, Ernest Ryu, and Minyong
Lee for providing feedback on this paper.

References

[Ephrati ef al., 1994] E. Ephrati, G. Zlotkin, and J.S. Rosen-
schein. A non-manipulable meeting scheduling system.
In Proceedings of the 13th international workshop on dis-
tributed artificial intelligence, pages 105-125, 1994.

[Jennings et al., 1995] N. R. Jennings, A. J. Jackson, and
London E Ns. Agent-based meeting scheduling: A design
and implementation, 1995.

[Lee and Shoham, 2014] Hooyeon Lee and Yoav Shoham.
Optimizing time and convenience in group scheduling. In
Proceedings of the 2014 international conference on Au-
tonomous agents and multi-agent systems, pages 1345—
1346. International Foundation for Autonomous Agents
and Multiagent Systems, 2014.

[Mann et al., 1998] Leon Mann, Mark Radford, Paul Bur-
nett, Steve Ford, Michael Bond, Kwok Leung, Hiyoshi
Nakamura, Graham Vaughan, and Kuo-Shu Yang. Cross-
cultural differences in self-reported decision-making style

and confidence. International Journal of Psychology,
33(5):325-335, 1998.

[Reinecke ef al., 2013] Katharina Reinecke, Minh Khoa
Nguyen, Abraham Bernstein, Michael Niaf, and
Krzysztof Z Gajos. Doodle around the world: On-
line scheduling behavior reflects cultural differences in
time perception and group decision-making. In Pro-
ceedings of the 2013 conference on Computer supported
cooperative work, pages 45-54. ACM, 2013.

[Sen and Durfee, 1998] S. Sen and E.H. Durfee. A formal
study of distributed meeting scheduling. Group Decision
and Negotiation, 7(3):265-289, 1998.

[Zou et al., 2015] James Zou, Reshef Meir, and David
Parkes. Strategic voting behavior in doodle polls. In Pro-
ceedings of the 18th ACM Conference on Computer Sup-
ported Cooperative Work & Social Computing, pages 464—
472. ACM, 2015.

328

