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Abstract

Consider a buyer with independent additive valua-
tions for a set of goods, and a seller who is con-
strained to sell one item at a time in an online fash-
ion. If the seller is constrained to run independent
auctions for each item, then he would run Myer-
son’s optimal auction for each item. If the seller is
allowed to use the full power of dynamic mecha-
nism design and have the auction for each item de-
pend on the outcome of the previous auctions, he is
able to perform much better. The main issues in im-
plementing such strategies in online settings where
items arrive over time are that the auction might
be too complicated or it makes too strong assump-
tions on the buyer’s rationality or seller’s commit-
ment over time. This motivates us to explore a
restricted family of dynamic auctions that can be
implemented in an online fashion and without too
much commitment from the seller ahead of time.
In particular, we study a set of auction in which the
space of single-shot auctions is augmented with a
structure that we call bank account, a real number
for each node that summarizes the history so far.
This structure allows the seller to store deficits or
surpluses of buyer utility from each individual auc-
tion and even them out on the long run. This is akin
to enforcing individual rationality constraint on av-
erage rather than per auction. We also study the
effect of enforcing a maximum limit to the values
that bank account might grow, which means that
we enforce that besides the auction being individu-
ally rational on average it is also not far from being
individually rational at any given interval. Interest-
ingly, even with these restrictions, we can achieve
significantly better revenue and social welfare com-
pared to separate Myerson auctions.
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1 Introduction
The theory of dynamic mechanism design shows that if auc-
tions are repeated over time and buyers and sellers care about
the aggregate outcome of all auctions (as opposed to the out-
come of each individual auction), then it is possible to de-
sign mechanisms that are superior to running the same static
single-shot auction in terms of both revenue and social wel-
fare. This is in contrast to the auction formats used by search
engines to sell internet advertisement, which are mostly static
single-shot auctions. The advantage of static formats is that
they are easy to implement and the economic principles be-
hind them are well understood. Nevertheless, by restricting
to static mechanisms, exchanges are forgoing possibly very
significative gains in revenue.

What are the barriers preventing dynamic mechanisms to
become more prevalent in internet advertisement? If the seller
is allowed to use the full power of dynamic mechanism design
and have the auction for each item depend on the outcome
of the previous auctions, such dependency induces a gigantic
design space, making it difficult to solve for or even to de-
scribe such auctions. This creates problems not only for the
mechanism designer but also for buyers participating in the
mechanism, who need to play in a mechanism where every
decision may lead to unintended repercussions.

Our goal in this paper is to study a restricted family of
dynamic mechanisms, called bank account mechanisms, in
which single-shot auctions are augmented with a structure we
call bank account, a real number for each node that summa-
rizes the history so far. This structure allows the seller to store
deficits or surpluses of buyer utility from each individual auc-
tion and even them out on the long run, satisfying individual
rationality on average.

In dynamic mechanism design the incentive compatibil-
ity and individual rationality constraints are satisfied on av-
erage over all queries and not per each individual query. One
can think of bank account balance as how far each individ-
ual auction is from satisfying per-query incentive constraints.
In other words, bank accounts quantify how far a certain dy-
namic mechanism is from a static mechanism.

This last observation motivates us to introduce the notion
of a bank account limit, which is the maximum bank account
balance allowed. A mechanism with zero limit corresponds to
a static mechanism. We identify a trade-off between the bank
account limit and the revenue extracted: the revenue extracted
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per stage is upper bounded by the Myerson revenue plus the
bank account limit (Theorem 3), and is lower bounded by
constructed deterministic bank account mechanisms (Theo-
rem 2).

We further identify a subset of bank account mechanisms,
called double-reserve auctions, that can be easily imple-
mented and can guarantee higher revenue than simply run
separate Myerson auctions for each item (Theorem 2), while
ensuring the same buyer utility as separate Myerson auction.

We also put forward an algorithm to compute the op-
timal double-reserve auction with any given bank account
limit constraints via dynamic programming. Furthermore,
the algorithm admits an FPTAS for any multiplicative ✏-
approximation (Theorem 4).

Finally, we empirically evaluate the revenue performance
of a heuristically constructed double-reserve auction and the
optimal one on an infinite sequence of i.i.d. items. Moreover,
we prove a lower bound of its revenue as a function of the
bank account limit for any regular distribution (Theorem 5).

In a parallel work [Zuo et al., 2016], we consider the dy-
namic mechanism design under ex-post IR constraints. We
also prove a characterization result concerning sufficiency of
bank account mechanism in that setting and establish some
simple bank account mechanisms that guaratee constant ap-
proximation ratios to the optimal revenue.

Related Work The area of dynamic mechanism design has
attracted a large body of research work in the last decade
[Cavallo, 2008; Pai and Vohra, 2008; Pavan et al., 2008;
Cavallo et al., 2009; Gershkov and Moldovanu, 2009; Berge-
mann and Välimäki, 2010; Gershkov and Moldovanu, 2010;
Athey and Segal, 2013; Kakade et al., 2013; Papadimitriou
et al., 2014; Pavan et al., 2014]. We refer to [Bergemann
and Said, 2011] for a comprehensive survey on the topic and
cite here a couple of representative papers: [Bergemann and
Välimäki, 2010] study the problem of efficient mechanism
design in a dynamic environment where agents receive pri-
vate information over time, and generalize the idea of pivot
mechanisms [Green and Laffont, 1977] to this dynamic set-
ting. [Pavan et al., 2014] provide characterization of dynamic
local and global incentive compatibility constraints, and use
the characterization to design optimal dynamic mechanisms
in Markov environments. However, the optimal mechanism
is individually rational only when the initial signal being ob-
served, while in our independent valuation setting, it leads to
full surplus extraction from all rest stages. [Papadimitriou et
al., 2014] work on the discrete (except for the last stage) and
correlated valuation distribution setting, and prove hardness
results to compute deterministic optimal mechanism subject
to ex post individually rational constraint for the two-stage
case.

The problem of optimal multidimensional mechanism de-
sign [Manelli and Vincent, 2006; 2007; Cai et al., 2012a;
2012b; Hart and Nisan, 2012; Daskalakis et al., 2013; Li and
Yao, 2013; Wang and Tang, 2014; Daskalakis et al., 2015;
Cai et al., 2016] is closely related to our approach, espe-
cially the bundling technique used to improve the expected
revenue [Tang and Sandholm, 2012; Babaioff et al., 2014].

2 Preliminaries and Model
Problem Consider the problem for selling a sequence of
items, one at each stage, to a buyer who has independent ad-
ditive valuations for the items. In each stage t 2 [T ], the type
(or valuation) vt 2 R+ of the buyer is privately drawn from
a public distribution Ft, i.e., vt ⇠ Ft. The prior distribution
Ft is independent stage-wise.

The outcome of each stage t is specified by a pair (xt, pt),
where xt 2 [0, 1] denotes the probability of item the buyer
obtains in stage t and pt 2 R+ denotes the corresponding
payment. The buyer utility (or simply utility) of this stage is

ut(·; vt) = xt(·) · vt � pt(·).
Then the seller’s objective is to design some mechanism
that maximizes the total revenue,

PT
⌧=1 pt. Let v(⌧,⌧ 0) =

v⌧ , . . . , v⌧ 0 be the vector of buyer’s types from stage ⌧ to ⌧ 0.
Similar for x(⌧,⌧ 0) = x⌧ , . . . , x⌧ 0 , p(⌧,⌧ 0) = p⌧ , . . . , p⌧ 0 , etc.

2.1 Dynamic Mechanisms
By revelation principle, it is without loss of generality to re-
strict attention to direct mechanisms, where the agent reports
its private type to the mechanism in each stage.
Definition 1 (Direct Mechanism). A direct mechanism is
a pair of allocation rule and payment rule, i.e., M =

hx(1,T ), p(1,T )i, where xt : Rt
+ ! [0, 1], pt : Rt

+ ! R+, 8t.
Furthermore, the allocation x(1,T ) and payment p(1,T ) sat-

isfy the following constraints,
• Incentive compatible (IC). Incentive compatible in per-

fect Bayesian equilibrium: for any history, truth-telling
is the best response for current and upcoming stages in
expectation.

• Individually rational (IR). Stage-wise interim individ-
ually rational: for any history, the expected utility for
current and upcoming stages is non-negative.

Formally, we first define the following notation for the ex-
pected buyer utility after stage t, with given history v(1,t) and
bidding strategy b(t+1,T ), i.e.,

U
b(t+1,T )

t (v(1,t)) = Ev(t+1,T )

h TP
⌧=t+1

u⌧ (v
⇤
(1,⌧); v⌧ )

i
, (1)

where v⇤(1,⌧) = v(1,t), bt+1(vt+1), . . . , b⌧ (v⌧ ). We use Ut

without superscript to denote the utility by truthful bidding,
and the formal definitions are 8t, v(1,t), v0t, b(t+1,T ),

IC: ut(v(1,t); vt) + Ut(v(1,t))

� ut(v(1,t�1), v
0
t; vt) + U

b(t+1,T )

t (v(1,t�1), v
0
t) (2)

IR: ut(v(1,t); vt) + Ut(v(1,t)) � 0 (3)

For for any mechanism M , denote the overall expected rev-
enue by REV(M) = Ev(1,T )

⇥PT
⌧=1 p⌧ (v(1,⌧))

⇤
, overall ex-

pected buyer utility by UTL(M) = U0, and overall expected
efficiency by EFF(M) = UTL(M) + REV(M).

The mechanism is deterministic, if for each stage t, and any
history v(1,t), xt(v(1,t)) 2 {0, 1}; the mechanism is history
independent, if both xt and pt only depend on the type of
current stage, vt, but not v(1,t�1).
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Buyer
Seller

Bank Account

Step 3. 
Deposit

Step 2. 
Payment

Step 1. 
Spending

Figure 1: Cash flow in BAM. Seller’s revenue comes from
both Spending (Step 1) and Payment (Step 2). The balance
in the bank account belongs to the buyer, but the seller can
spend it according to the spending policy st.

Mechanism 1 ((Static) Myerson Auction). Separate Myer-
son auction MS is the auction that sells each item separately
using single-stage Myerson auction.

Let �t 2 argmaxu ⇢t(u) be the Myerson price of stage
t, where ⇢t(u) =

�
1 � F(u)

�
· u. Hence REV(MS

) =PT
⌧=1 ⇢⌧ (�⌧ ).
Separate Myerson auction is deterministic and history in-

dependent. More generally, we called a mechanism separate
posted-price auction, if the seller sells each item separately
using single-stage posted-price.

2.2 Mechanisms with Bank Accounts
Intuitively, a bank account mechanism (BAM) is a separate
auction augmented with a bank account to ensure IR on av-
erage. Instead of explicitly depending on the full history, a
BAM depends on a real number, bank account balance (or
simply balance).
Definition 2 (BAM). A bank account mechanism B =

hz(1,T ), q(1,T ), d(1,T ), s(1,T ), bal(1,T )i, where for each t,

• Allocation rule zt : R+ ⇥ R+ ! [0, 1], maps balance
and value to allocation.

• Payment rule qt : R+ ⇥ R+ ! R+, maps balance and
value to payment.

• Deposit policy dt : R+ ⇥R+ ! R+, maps balance and
value to how much money the buyer needs to add into
the bank account.

• Spend policy st : R+ ! R, maps balance to how much
money to spend from the bank account.

• Initial balance of stage t, balt, is a function of history
v(1,t�1), satisfying the follows, where bal1 = 0.

8vt, balt+1 = balt � st(balt) + dt(balt, vt). (4)

At stage t, a BAM works as follows, (see Figure 1)
1. The seller spends the buyer’s balance by st(balt). (So

st(balt) becomes part of seller’s revenue.)
2. Upon receiving buyer’s report vt, the seller allocates

the item to the buyer with probability zt(balt, vt) and
charges qt(balt, vt).

3. The buyer deposits an amount of dt(balt, vt) to the bank
account.

By Definition 2, bank account mechanism is a subset of
direct mechanisms. A BAM is deterministic, if in each stage
t, 8vt, balt, zt(balt, vt) 2 {0, 1}.

We impose a limit L on the maximum value that the bal-
ance can reach, i.e.,

Lt = maxv(1,t)
balt, L = maxt2[T ] Lt.

Intuitively, the larger the limit, the more trust needed from the
buyer.

Consider the following example that illustrates the bank
account mechanisms.

Example 1. Consider a two-stage example, where v1 and v2
are two i.i.d. random variables which take value 1 or 2 with
probability 1/2. A bank account mechanism B is defined as
follows.

z1(bal1, v1) = 1; z2(0, 1) = 0, z2(0, 2) = z2(0.5, v2) = 1;

q1(bal1, v1) = 1; q2(0, 1) = 0, q2(0, 2) = 2, q2(0.5, v2) = 1;

d1(bal1, 1) = 0, d1(bal1, 2) = 0.5; d2(bal2, v2) = 0;

s1(bal1) = 0; s2(bal2) = bal2.

B operates as follows,

1. The first item is sold at posted-price 1.

2. If v1 = 2, the buyer offers a pre-payment of amount
0.5 to the seller before learning v2 (d1(bal1, 1) = 0.5,
s2(bal2) = bal2).

3. The seller sets a posted-price r for the second item. If
bal2 = 0, r = 2; if bal2 = 0.5, r = 1.

4. The buyer learns v2, and buys the second item if and
only if v2 � r.

The revenue comes from both the payment when the buyer
buys the items (step 1 and 4) and the pre-payment (step 2),
and is 2.25 in expectation.

2.3 Partial Characterization
The following lemma characterizes sufficient conditions for a
BAM to satisfy IC and IR.

Lemma 1. Let ût(balt, v0t; vt) denote the stage utility for
bank account mechanism B, i.e.,

ût(balt, v
0
t; vt) = zt(balt, v

0
t) · vt � qt(balt, v

0
t). (5)

B is IC and IR, if the following are satisfied, 8t, balt, vt, v0t.

ût(balt, vt; vt) � ût(balt, v
0
t; vt), (6)

st(balt) = Evt

⇥
ût(balt, vt; vt)� ût(0, vt; vt)

⇤
, (7)

ût(balt, vt; vt) � 0. (8)

In particular, (6)(7) =) IC; (7)(8) =) IR.

In the rest of the paper, BAM refers to bank account mech-
anism satisfying (6)(7)(8) and qt � 0.

389



Proof. Throughout the proof, we use short notations as fol-
lows,

balt = balt(v(1,t�1)), bal
0
t+1 = balt+1(v(1,t�1), v

0
t),

st = st(balt), s
0
t = st(bal

0
t),

ut = ut(v(1,t); vt), u
0
t = ut(v(1,t�1), v

0
t; vt).

We construct a direct mechanism M as follows, which has
the same allocations and payments with B for any v(1,T ).

xt(v(1,t)) = zt(balt, vt), pt(v(1,t)) = qt(balt, vt) + st+1

Firstly, we prove that M is IC. According to (5),

ût(balt, v
0
t; vt) = ut(v(1,t�1), v

0
t; vt) + s0t+1, (9)

combining with (6), 8t, v(1,t�1), vt, v
0
t,

ut(v(1,t�1), v
0
t; vt) + s0t+1  ut(v(1,t); vt) + st+1. (10)

Let v0t be bt(vt). Take expectation to (10) over vt, and subtract
st from both sides,

Evt [u
0
t + s0t+1 � st]  Evt [ut + st+1 � st]. (11)

Denote u00
t+1 = ut+1(v(1,t�1), v

0
t, v

0
t+1; vt+1), and s00t+2 =

st+2(balt+2(v(1,t�1), v
0
t, v

0
t+1)), then

Evt

⇥
u0
t + s0t+1 � st + Evt+1 [u

00
t+1 + s00t+2 � s0t+1]

⇤

=Evt,vt+1 [u
0
t + u00

t+1 + s00t+2]� st (12)

Sum over the LHS of (11), and recursively apply (12),
PT

⌧=t+1 LHS(11)

= U
b(t+1,T )

t (v(1,t�1), v
0
t)� s0t+1 + E[sT+1(bal

⇤
T+1)]

= U
b(t+1,T )

t (v(1,t�1), v
0
t)� s0t+1, (13)

where sT+1 ⌘ 0. Similarly, sum over both sides of (11),

U
b(t+1,T )

t (v(1,t�1), v
0
t)� s0t+1  Ut(v(1,t))� st+1. (14)

Adding (14) to (10) implies (2), so M is IC.
Secondly, we prove that M is IR. By (9) and (7),

Evt [ut + st+1 � st] = E

vt

[ût(balt, vt; vt)]� st

= E

vt

[ût(0, vt; vt)]

Thus 8v(1,t), Ut(v(1,t))� st+1 is a constant, i.e.,

Ut(v(1,t))� st+1 =

PT
⌧=t+1 Ev⌧

⇥
û⌧ (0, v⌧ ; v⌧ )

⇤
. (15)

Add (15) to (9),

ut + Ut(v(1,t)) = ût(balt, vt; vt)

+

TX

⌧=t+1

E

v⌧

⇥
û⌧ (0, v⌧ ; v⌧ )

⇤
,

By (8), the RHS is non-negative, so M is IR by (3).
In summary, for any BAM, B, the equivalent direct mecha-

nism M is IC or IR if the corresponding sufficient conditions
are satisfied.

2.4 Bank Account Mechanism is WLOG
In this paper, we focus on bank account mechanisms instead
of general direct mechanisms. This is formally justified by
the following theorem.
Theorem 1. For any direct mechanism M , there is a con-
structive BAM, B, such that,

REV(B) � REV(M), UTL(B) = UTL(M).

In particular, if M is deterministic, B is also deterministic.
We omit the proof here and refer readers to the full version

of our paper.

3 Double-Reserve Auction
By Theorem 1, the revenue optimal bank account mechanism
is optimal among any mechanism. An extreme example is
that a BAM could extract almost all valuation by allocating
the t-th item and charging the buyer E[vt+1] in the t-th stage
for each t = 1, . . . , T � 1.

However, there are a list of drawbacks of such mechanisms,
such as, randomized allocation rule, large bank account, and
pre-payment (positive payment even not get allocated).

In this paper, we introduce a subset of practical bank ac-
count mechanisms coined double-reserve auction, which in
practice can be easily implemented as a special posted-price
auction: for each stage t, there are a low reserve price and a
high reserve price; if the (t � 1)-th item is sold to the buyer,
sell the t-th item at the low reserve price, otherwise at the
high price.
Mechanism 2 (Double-Reserve Auction). A double-reserve
auction B is defined upon a separate posted-price auction M
and pre-specified bank account limits, {Lt}Lt=1. Let r(1,T )

be a series of auxiliary functions with rt(0) being the reserve
price of M on stage t. Denote Valt(a, b) =

R b
a (1�Ft(v))dv.

Then B is formally defined as, where I is indicator function.

zt(balt, vt) = I[vt � rt(st(balt))] (16)
qt(balt, vt) = zt(balt, vt) · rt(st(balt)) (17)

st(balt) = balt (18)

dt(balt, vt) = zt(balt, vt) · Lt+1 (19)

Lt = min{Lt,Valt(0, rt(0))}
The function rt(⇠) above is defined to meet the requirements
of Lemma 1, particularly, rt(⇠) equals to the value such that
Valt(rt(⇠), rt(0)) = ⇠.1

3.1 Revenue Properties of Bank Account
Mechanism with Limits

We now study the revenue properties of double-reserve auc-
tion and general bank account mechanism with limits. Con-
cretely, for double-reserve auction, we prove a revenue lower
bound (Theorem 2); for general bank account mechanisms,
we prove a revenue upper bound (Theorem 3).
Theorem 2. For any separate posted-price mechanism M ,
the double-reserve auction B defined upon M with any given
bank account limits, {Lt}Lt=1, satisfies

1rt(⇠) is unique, non-negative, and strictly decreasing.
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• B is a BAM (satisfying Lemma 1);
• UTL(B) = UTL(M);
• REV(B) � REV(M);
• REV(B) is increasing in L(1,T ).

Proof. 1. B is a BAM (satisfying Lemma 1).
By (16), B is deterministic. Meanwhile, by (18), balance is

always completely spent at the beginning of each stage. Thus
by (19), balt only has two possible values, 0 or Lt (bal1 = 0

by definition).
Since Lt  Valt(0, rt(0)), rt(balt) is well-defined. More-

over, according to the proof of Lemma 1, B can be imple-
mented by a direct mechanism with stage payment as follows,

pt(v(1,t)) = qt(balt, vt) + st+1(balt+1)

= zt(balt, vt) ·
�
rt
�
st(balt)

�
+ Lt+1

�
.

In particular, when the item is sold, the payment can be two
different values, depending on whether balt is 0.

Condition (6) and (8) are satisfied by (16) and (17), while
(7) is ensured as follows.

E

vt

[ût(balt, vt; vt)] =
R1
rt(balt)

(v � rt(balt))dFt(v)

=

R1
rt(balt)

(1� Ft(v))dv = Valt(rt(balt),+1)

=)Evt [ût(balt, vt; vt)� ût(0, vt; vt)]

= Valt(rt(balt),+1)�Valt(rt(0),+1) = st(balt)

The second “=” is from integration by parts.
2. UTL(B) = UTL(M).

UTL(B)

(15)
=

PT
⌧=1 Ev⌧

⇥
û⌧ (0, v⌧ ; v⌧ )

⇤

=

PT
⌧=1

R1
r⌧ (0)

�
v � r⌧ (0)

�
dF⌧ (v) = UTL(M)

3. REV(B) � REV(M).
Denote the expected revenue improvement for stage t by t,

t = Ev(1,t)

⇥
qt(balt, vt) + st(balt)

⇤
� ⇢t

�
rt(0)

�

= Ebalt

⇥
⇢t
�
rt(balt)

�
+ balt

⇤
� ⇢t

�
rt(0)

�

= ↵t

�
⇢t
�
rt(Lt)

�
+ Lt

�
� ↵t⇢t

�
rt(0)

�

= ↵t

�
⇢t(rt(Lt)) + Valt(rt(Lt), rt(0))� ⇢t(rt(0))

�

= ↵t

R rt(0)

rt(Lt)
vdFt(v) � 0

where ↵t = Pr[balt = Lt], and the last “=” is from inte-
gration by parts. Hence the overall revenue improvement is
non-negative, i.e., REV(B)� REV(M) =

PT
⌧=1 ⌧ � 0.

4. REV(B) is increasing in L(1,T ).
Moreover, each t is weakly increasing in bank account limit
Lt0 for t0  t.2 Hence the expected revenue increases as the
bank account limit increases.

As we proposed, double-reserve auction is easy to imple-
ment, and can improve the revenue without hurting the buyer
utility under any given bank account limit. A natural question

2↵t is increasing in Lt0 . rt(Lt) is decreasing (hence the integra-
tion is increasing) in Lt0 when t = t0. Therefore t is increasing.

is: what is the limitation of such mechanisms comparing with
the optimal mechanism under the same bank account limit?
The following theorem provides an upper bound on the rev-
enue for any mechanism under given limit.

Theorem 3. For any bank account mechanism B with limits
{Lt}Tt=1,

REV(B) 
TX

⌧=1

L⌧ + REV(MS
) =

TX

⌧=1

�
L⌧ + ⇢⌧ (�⌧ )

�
,

where MS denotes the separate Myerson auction. In other
words, the revenue improvement comparing with separate
Myerson auction is bounded by the sum of bank account limit
on each stage.

Proof. Assume by contradiction that there exists a BAM, B,
such that,

REV(B) >
PT

⌧=1

�
L⌧ + ⇢⌧ (�⌧ )

�
. (20)

Then we construct a mechanism M that operates indepen-
dently on each stage but generates strictly higher revenue than
Myerson auction in at least one stage.

To ensure that the constructed mechanism is history inde-
pendent and IC-IR within each single stage. We create a fake
bank account to mimic the behavior of the real bank account
in B. One can think of the balance bal†t of the fake bank ac-
count as simply a number, satisfying that the distribution of
bal†t is the same as the distribution of the real balance (as a
random-valued function of previous types).

Consider the following construction of M based on B.

xt(vt) = zt(bal
†
t , vt), pt(vt) = qt(bal

†
t , vt),

where in each stage t, bal†t is a random variable drawn by the
following process for ⌧ from 1 to t� 1.

bal†⌧+1 = bal†⌧ � s⌧ (bal
†
⌧ ) + d⌧ (bal

†
⌧ , v

†
⌧ ).

Thus bal†t is independent of the buyer’s real types, and has the
same distribution with balt. Note that vt is independent of the
history, hence independent of balt as well. Then

Ev(1,t�1)
[qt(balt, vt)] = Ebal†t

[pt(vt)],

s⌧ (bal⌧ )  bal⌧  L⌧ ,

=) REV(M) =

PT
⌧=1 Ebal†⌧ ,v⌧

[p⌧ (v⌧ )]

= REV(B)� Ev(1,T )

⇥PT
⌧=1 s⌧ (bal⌧ )

⇤

� REV(B)�
PT

⌧=1 L⌧ >
PT

⌧=1 ⇢⌧ (�⌧ )

=) 9⌧, s.t. Ebal†⌧ ,v⌧
[p⌧ (v⌧ )] > ⇢⌧ (�⌧ ), (21)

namely, at least in one stage ⌧ , M generates strictly higher
revenue than the optimal revenue, ⇢⌧ (�⌧ ).

In particular, by construction M is history independent,
and by (6)(8) and qt � 0, M is also IC and IR within each
single stage. Thus (21) contradicts the optimality of Myerson
auction for single-shot case.
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Figure 2: HDR vs. OPT on revenue and efficiency for different distributions.

3.2 Compute Optimal Double-Reserve Auction via
Dynamic Programming

As we proved by Theorem 2, the double-reserve auction de-
fined upon a separate posted-price auction has a quantified
revenue improvement guarantee. In particular, it is better than
the separate Myerson auction when defined on separate My-
erson auction.

However, this construction is not guaranteed to be optimal
among the double-reserve auctions. In this section, we com-
pute optimal double-reserve auctions.
Theorem 4. The optimal double-reserve auction subject to
given bank account limit can be computed through a dynamic
programming algorithm.

Moreover, for any ✏ > 0, there is an FPTAS3 to achieve an
✏-approximation of the optimal double-reserve auction.

Proof sketch. Dynamic programming (DP) algorithm.
For any double-reserve auction B, a stage does not de-

pends on latter stages and it can only influence the latter
ones through the balance. The balance balt is a random vari-
able distributed according to a two-valued distribution, i.e.,
Pr[balt = Lt] = ↵t and Pr[balt = 0] = 1� ↵t.

↵t+1 = 1� ↵tFt(rt(Lt))� (1� ↵t)Ft(rt(0)) (22)

Moreover, ↵t+1 is uniquely defined by ↵t and rt(0), and so is
the expected stage revenue. Hence B is entirely determined
by r(1,T )(0), and the optimal double-reserve auction can be
computed via DP, where the state update formula is,

ht(↵t) = maxrt(0)

�
t + ⇢t(rt(0)) + ht+1(↵t+1)

�
. (23)

ht(↵t) is the maximum expected revenue from stage t to
stage T with specified ↵t. Note that t and ↵t+1 are func-
tions of ↵t and rt(0).
FPTAS for the DP: a natural FPTAS to implement the DP
algorithm is to discretize ht over its domain, [0, 1]. One crit-
ical observation is that ht is increasing (proof omitted) and
bounded (Theorem 3), so can be ✏-approximated by at most
O(tL/✏) many sample points over [0, 1].

4 Empirical Evaluations
In this section, we empirically evaluate the expected revenue
and efficiency of the optimal double-reserve auction (OPT)
and the so-called heuristic double-reserve auction (HDR)
over the infinite stream of i.i.d. items as functions of the bank

3Fully Polynomial Time Approximation Scheme.

account limit L. The reason that we propose and evaluate
HDR is that it is easy to implement, non-sensitive to prior
distribution F , and yields near optimal revenue, compared to
the OPT. As a result, HDR can be used as a replacement of
OPT in practice.

To simplify notation, we remove all subscript t because of
the i.i.d. assumption. Besides, by revenue and efficiency in
this section, we refer to per stage revenue and efficiency.
Mechanism 3 (HDR). HDR is the better one of two double-
reserve auctions, B0 and B00.

(1) B0: r0(0) = �; (2) B00: r00(L) = 0.
Intuitively, with given limit L, (1) B0 is the double-reserve

auction defined upon separate Myerson auction; (2) B00 is the
double-reserve auction with the lower reserve r00(L) being 0.

We provide a lower bound analysis for the revenue of HDR
as a function of the limit L.
Theorem 5. The expected revenue per stage ⇡ is lower
bounded by L. If F is regular, then ⇡ is further lower bounded
as follows, where G = 1� F , and ⇠ = 1� eLF(�)/⇢(�).

⇡ � G(�)
G(�)⇠ + 1

L+

✓
G(�)2⇠

(G(�)⇠ + 1)F(�)
+ 1

◆
⇢(�)

Empirical Evaluations We evaluate both mechanisms on
exponential distribution (� = 1), lognormal distribution
(lnN (0, 1)), and [0, 1] uniform distribution (Figure 2). For
each case, we illustrate the revenue and efficiency of OPT and
HDR as functions of the limit L. Note that when the limit is
greater than the mean of the valuation distribution, both OPT
and HDR converge to fully surplus extraction, therefore the
revenue and efficiency will equal to the mean.

In all three cases, the revenue of HDR and OPT are very
close, especially when L is less than 50% of the mean. In
particular, the revenue improvement (compared with Myer-
son revenue) can be fitted as a linear function of L with co-
efficient roughly 0.4 to 0.5 when L is small. As L tends to
the mean of each distribution, both HDR and OPT converge
to fully surplus extraction. As for efficiency, HDR is better
than OPT for most cases, except for the lognormal distribu-
tion when L  0.6.

In summary, for all the distribution considered above, for
reasonably small limit (less than 50% of the mean), the rev-
enue improvements of both mechanism (OPT and HDR) are
very close, and grows almost linearly as the limit increases.
In contrast, the efficiency of HDR almost dominate that of
OPT.
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