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Abstract

We propose a new distributed algorithm for de-
coupling the Multiagent Simple Temporal Network
(MaSTN) problem. The agents cooperatively de-
couple the MaSTN while simultaneously optimiz-
ing a sum of concave objectives local to each agent.
Several schedule flexibility measures are applica-
ble in this framework. We pose the MaSTN decou-
pling problem as a distributed convex optimization
problem subject to constraints having a block an-
gular structure; we adapt existing variants of Al-
ternating Direction Method of Multiplier (ADMM)
type methods to perform decoupling optimally. The
resulting algorithm is an iterative procedure that
is guaranteed to converge. Communication only
takes place between agents with temporal inter-
dependences and the information exchanged be-
tween them is carried out in a privacy preserving
manner. We present experimental results for the
proposed method on problems of varying sizes, and
demonstrate its effectiveness in terms of solving
quality and computational cost.

1 Introduction

One basic challenge in many multiagent planning and
scheduling domains is that of managing interdependencies
between the planned activities of different agents over time.
Effective, optimized multiagent schedules often require tight
coordination among agents, but such schedules also tend
to be brittle in dynamic and uncertain execution environ-
ments. To hedge against this problem, so-called “flexible
times” planning and scheduling procedures (e.g., [Smith and
Cheng, 1993; Laborie and Ghallab, 1995; Smith et al., 2000;
Policella er al., 2009]) have been increasingly adopted as
a basic means of retaining temporal flexibility in the plan.
These procedures rely on an underlying representation of the
plan/schedule as a Simple Temporal Network (STN) [Dechter
et al., 1991], an edge weighted graph that encodes all con-
straints between start and end points of activities in the plan
and enables efficient determination of feasible activity execu-
tion intervals through temporal constraint propagation. In dis-
tributed planning settings, however, where each agent main-
tains a local STN that represents its portion of the overall
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multiagent plan, there is the additional complication of main-
taining consistency across agent schedules as local planning
constraints change during execution. If communications are
reliable, then it is possible to maintain consistency by simply
distributing the constraint propagation process [Smith et al.,
2007]. However in cases where communications are unreli-
able, a better solution might be to compromise somewhat on
flexibility and decouple the subplans of constituent agents.

The concept of temporal decoupling was first introduced
in [Hunsberger, 2002]. 1In brief, it entails elimination of
all inter-agent temporal constraints (i.e., all constraints relat-
ing time points in the local STNs of two agents). For each
such constraint, the set of feasible time point assignments
admitted by this constraint is partitioned into two consec-
utive subintervals, and then new local constraints are sub-
stituted that allocate these subintervals respectively to both
agents (The position where the interval of feasible assign-
ments is split is sometimes referred to as the decoupling
point.) Once a temporal decoupling is obtained, an indi-
vidual agent is free to adjust its local schedule within the
stated local bounds of its STN without disrupting the consis-
tency of the overall joint multiagent plan. Initial centralized
algorithms for computing a temporal decoupling were pro-
posed in [Hunsberger, 2002], and in [Planken er al., 2010]
the tractability of the optimal problem was first established.
Subsequently, [Boerkoel and Durfee, 2011; 2013] formu-
lated temporal decoupling as a distributed multiagent prob-
lem, and proposed a distributed algorithm for decoupling an
interdependent multiagent schedule (however with no guar-
antee of optimality). Other recent work [Wilson et al., 2013;
Witteveen et al., 2014] has focused alternatively on develop-
ing more accurate characterizations of flexibility, which pro-
vide a stronger basis for optimization.

One advantage of a distributed approach to decoupling in
several domains is its potential for sensitivity to privacy con-
cerns. Consider a civil construction project, where different
subcontractors are engaged to perform specific construction
tasks (e.g., plumbing, painting). These contractors need to co-
operatively construct a plan for the project subject to temporal
dependencies (e.g., walls must be plastered before painted).
At the same time, each subcontractor has its own private con-
straints (e.g., other contracting commitments and schedules),
which would not normally be revealed to other contractors
for business reasons. Decoupling the project plan gives in-



dividual contractors the flexibility to locally reorganize work
plans to better accommodate new commitments without need
for renegotiation with other contractors.

In this paper, we describe and analyze a new distributed
algorithm for temporal decoupling that explicitly addresses
agent privacy concerns. Our approach, which adapts re-
cently proposed Alternating Direction Method of Multiplier
(ADMM) type methods (e.g., [Boyd et al., 2011]), is de-
signed to share only the minimal amount of information
about inter-agent dependencies necessary to optimally de-
couple, and thus agent privacy is preserved to the maximal
extent possible. Our approach also offers several other ad-
vantages over previously developed decoupling algorithms.
First, it provides a distributed decoupling procedure that, in
contrast to the heuristic procedure of [Boerkoel and Durfee,
2013], is guaranteed to produce the optimal decoupling for
a given decoupling objective, provided that the objective is
a concave function. Second, by supporting concave objec-
tives, the algorithm is not bound to a single definition of
flexibility but can operate with several (including those spec-
ified in [Boerkoel and Durfee, 2013; Wilson et al., 2013;
Witteveen et al., 2014] which are all linear). Third, it is even
possible to ascribe different decoupling objectives to individ-
ual agents in circumstances where agents may be more self-
interested and have different goals.

The remainder of the paper is organized as follows. First
we summarize the multiagent decoupling problem. Next, we
present our ADMM-based decoupling algorithm. We analyze
the performance of our ADMM-based approach on the set
of reference problems first introduced in [Boerkoel and Dur-
fee, 2013] using their flexibility metric. By also solving these
problems separately with a centralized optimization method,
we show that in practice, our iterative ADMM procedure con-
verges quickly to near-optimal solutions. We next analyze the
algorithm’s practical solving characteristics and communica-
tion requirements. Finally, we draw some conclusions and
identify some directions for future research.

2 Temporal Decoupling Problem

The algorithm presented in this paper solves the distributed
multiagent simple temporal network (MaSTN) decoupling
problem first posed in [Boerkoel and Durfee, 2013]. We begin
with a brief review of MaSTNs and then explain the MaSTN
decoupling problem.

2.1

Within a MaSTN, each agent’s schedule is represented as a
Simple Temporal Network (STN) and agent schedules form
components of the overal MaSTN. An STN [Dechter et al.,
1991; Hunsberger, 2002] is a collection of time points 7 =
[2,t1,..,tny] and a set of binary constraints C of the form
t; —t; < 5, where t;,t; € T and z is a fixed arbitrary time
point reference. Following the convention of [Hunsberger,
20021, we represent an STN by the pair < 7,C >. A fea-
sible solution is an assignment of values to the elements in
T that respects the constraints in C. In [Dechter ef al., 1991]
polynomial time algorithms are provided for computing such
feasible assignments.

Multiagent Simple Temporal Network
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Agent B

Figure 1: Decoupling a 2 agent MaSTN.

In the multiagent settings considered in this paper, it is as-
sumed that each agent maintains its own private STN. Ac-
cordingly, we associate an agent with each ¢; € T\{z} as its
owner O(t;), and distinguish two types of constraints within
the set C associated with the overall MaSTN: (1) intra-agent
constraints, which are local to a given agent and considered
private (i.e., O(t;) = O(t;) or one of t;, ¢, is z), and (2) inter-
agent constraints, which couple the STNs of different agents

2.2 Decoupling

The overall goal of decoupling is to decompose the MaSTN
into component STNs, one for each agent, that can be inde-
pendently maintained with assurance that the overall MaSTN
remains globally consistent. We explain the basic problem in
two steps with the aid of the simple two-agent example shown
in Fig.(1). In this example, we assume the following notation
and definitions:

na — Number of time points owned by agent A+1

A; — Time point ¢ in agent A ,i € {1,...,n4}

Ta = {A:}4

np — Number of time points owned by agent B+1

B; — Time point ¢ in agent B , 3 € {1,...,np}

T —{Bi};2

z — Common reference time point for all agents,
ThaNTp = {Z}

Cv,,v; — Problem specified constraint value for

edge from time point V; to time point V
where V;,V; € T4 UTpg,and V; # V.

We partition the constraint set C into inter and intra-agent
constraints. The constraint linking time points Az to As is
an example of an intra-agent constraint and represented as a
directed edge whose edge weight is given by C'4, a,. Sim-
ilarly, the edge connecting time points A4 and Bs, is an ex-
ample of an inter-agent constraint. The constraint set C is
specified in the problem and is equivalently represented in
the STN framework. For example, if the problem specifies
the following constraints:

Ay — Ay
Ay — Ay

120

<
< 60



STN-Agent B

STN- Agent A

Figure 2: Corresponding minimal STN for problem in Fig 1.
Green edges are inter-agent coupling edges. Red edges are
tightened to dominate green edges.

then, we assign the values C4, 4, = 120and Cy, 4, = —60.

Using just the intra-agent constraints specified for each
agent, agents A and B can separately compute STNs that
are minimal with respect to intra-agent constraints [Dechter
et al., 1991]. All pairs of distinct vertices within the com-
puted STNs are now connected through a directed edge.
We denote the edge connecting vertices ¢ and j for agent
A’s minimal STN with respect to intra-agent constraints as
wa,,A,. Intuitively the interval [—w. 4,,wa, ], represents
the bounds on the value that time point A; can be assigned
in any feasible schedule subject to just the intra agent con-
straints. We denote a vector containing all the edges in
the just computed minimal STN of agent A as Wy
[{wAi,Aj}] 7Vi7j € {1,...777,14}71' 7é j7 ie. Wy
[wAl,A2va17A3a <oy WAL A, s WAy A WA Agy - -+
WAy Ay, WA, , ,AnAfl]T- We are now ready to formu-
late our two agent decoupling problem.

Constraints

The central idea behind decoupling is to tighten the bounds on
time points that are involved in inter-agent constraints such
that any assignment of values to those time points within
those bounds can be decided independently by an agent with-
out need for coordination with other agents participating in
inter-agent constraints, while also ensuring such an assign-
ment is feasible with respect to an agent’s own intra-agent
constraints. The approach we adopt is to start from the min-
imal STNs computed using just intra-agent constraints (i.e.,
‘W 4 for each agent A), and then let the agents cooperatively
further tighten their corresponding STN edges so that the in-
ter agent constraints are also implied. We denote the vector
containing edges in the further tightened STN of agent A as
Pa = [{pa,,a,},Vi,j € {1,...,na},i # j (refer to the
definition of W above for expansion). Next, we present
necessary constraints on P 5, Py that the agents need to sat-
isfy for decoupling.

Since time points A4 and Bj in our problem in Fig.2 partic-
ipate in an inter-agent constraint, decoupling the time points
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for that constraint yields the following decoupling equations:
(DEC)

PAsz +P2B; < Ca, By )]

Dz,4, +PBs,2 < Uy a, 2

For the inequalities that follow we present them for agent A,

it is analogous for agent B. We also remind the reader that a

minimal STN can be interpreted as a shortest path distance

graph. Hence, all edges in the tightened STN for each agent

must obey triangle inequality.

(TRI)

pAi,Aj _pAi,Ak _pAk,Aj S 0) Viaj7 k S {15 ey nA}(3)

where i # j # k. While Eqn.(3) ensures that every closed

path of length 3 on the STN is consistent, the following in-

equalities ensure that every path of length 2 is also consistent.
(CON)

—pa,A; — Py A, S0V G el nat,&i > 5 (4

The upper bound value for each edge pa, 4, is derived by

noting that the decoupling process only shortens distances
(edges) on the distance graph. For any valid p4, a,, we have
(UB)

DAL A; S WA, A, )
The specification of all aforementioned constraints was pre-
viously developed in [Planken et al., 2010]. To this formula-
tion we introduce a way for computing the lower bounds for
Pa;,A;- The sum of the edge weights along any closed path
of lengths 2 and 3 must necessarily be > 0 on any shortest
path distance graph. For any valid pa, 4,, we have:

(LB)
DA, A; = Max(—Pa; A —PALA, — PAGA;)
VE e {1,...,na}\{i,7}
> max(—wa; A, —WA; A, — WA, A, ),
Vk e {1,...,na}\{i, 7}
where Eqn.(6) is obtained from Eqn.(5). The L B constraints

proposed are not necessary but can significantly improve the
efficiency of the solving procedure (see Sec.3 below).

(6)

Optimal Decoupling

As the constraints defined in the previous section are all
affine, a number of decoupling solutions can exist for a given
MaSTN, and our objective in this paper is to find the op-
timal decoupling. We assume a proper concave function
(Flex) for defining the flexibility of a STN and parametrize
it by the STN’s edge weights. As the decoupling pro-
cess decomposes the MaSTN into individual STNs, one for
each agent, we define the social welfare as the sum of the
flexibilities of each agent’s STN. By optimal decoupling,
we aim to maximize the social welfare. Previously devel-
oped flexibility measures (e.g., [Boerkoel and Durfee, 2013;
Wilson et al., 2013]) are all applicable in this framework.
The resulting objective has a separable form with respect to
the agents and hence is particularly suitable in applications
that require minimal communication between agents and/or
where certain privacy requirements exist.



Privacy Considerations

As indicated earlier, the time points and constraints in an
agent’s STN can be partitioned into private and shared vari-
ables. In Fig.(2), A, is a shared time point while elements in
the set {T4 — A4} are private to agent A. For the problem
in Fig.(2), Eqns.(1) and (2) suggest that the minimal informa-
tion that agent B requires from agent A are the edges pa4,.
and p, a4. Similarly, agent A’s inference over the time points
and constraints in agent B should be restricted to pgp3 . and
D, B3- Let us consider a case where we add a third agent C'to
the problem in Fig.(2) and include an inter-agent constraint
between time points Az and Cs. Although, A, and A3 are
both shared variables, since agent C' is coupled with agent A
only via time point Ag, the decoupling algorithm should be
able to restrict C’s inference over agent A’s variables to just
DAas,> and p, a3. This minimal amount of information shar-
ing specification in the problem has the additional advantage
of minimizing the communication overhead between agents.
The algorithm proposed in the next section produces the op-
timal MaSTN decoupling under these privacy considerations.

3 A Distributed Convex Optimization
Representation For Decoupling

In this section, we represent the IV agent decoupling problem
in a convex optimization framework. Following the conven-
tion introduced in the previous section, we denote P; as the
vector of all edges in the STN of agent ¢ and the problem is to
find an optimal assignment of values to Py, Vi € {1,...,N}
subject to the DEC, TRI, CON, LB and UB constraints. The
decoupling problem in matrix notation is represented as:

Primal

N
i —Flex(P;
p i, 2 —Flea(P)

S.t.
51 E2 EN Pl b
1

D Pz C1

2 < |c

DN PN CN

Li <Py <U, ..., Ly <PN<Upn

where,

P; — Vector of edge weights in agent i’s STN

N
Z FE;P; <b — DEC constraints of all agents
i=1
D;P; < c¢; — TRI and CON constraints for agent %
L; < P; <U; — LB and UB constraints for P;
[E] = [E1E; ... Exy] e RV

Notice that the primal formulation is a minimization prob-
lem defined over a block diagonal constraint set. Matrices
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D; and c¢; for agent ¢ is obtained by analogously represent-
ing all constraints in Eqns.(3) and (4) for agent A in matrix
notation. All DEC constraints in the multi agent problem are

collectively represented as Zszl E;P; < b, let the number
of DEC constraints be 1. We denote F; , as a row vector
and define it to be the entries in row 7 corresponding to agent
i's matrix E;, since each row in E represents a DEC con-
straint between exactly 2 agents, entries in F; , correspond-
ing to non-interacting agents of row r are all set to 0. We first
show how the primal problem is generically solved and later
present the the necessary modifications to meet the privacy
requirements in our problem. For the reminder of the paper,
we convert DEC constraints into equality constraints through
the addition of slack variables.!

Dual
N )’ — . T . Ppp— .
mazx Y oict I Flex(P;) + X' (E;P;i — b))
Li<P;<U;

Li(A)

where Zf;l bi=10 (7

% if IJ; ;- is a non-zero vec-
tor, else b = 0, where b} represents rth row entry in vector
b;. Many distributed algorithms solve the primal problem by
transforming to its dual. Every consistent MaSTN has a valid
decoupling [Hunsberger, 2002] i.e. 3 solution satisfying con-
straints in the primal; combining this fact with our concave
flexibility metric assumption ensures that the primal and dual
optimal objective values are equal, and the primal optimal
solution is attainable from dual optimal solution [Boyd and
Vandenberghe, 2004]. Hence we can equivalently work with
the dual form since Eqn.(7) suggests that computations can
be carried out in parallel by each agent. Solution strategies
for the dual typically consists of an inner loop where each
agent independently solves the minimization problem for the
current estimate of the shared vector A € R"*1 and an outer
loop where solutions from all agents are accumulated to up-
date \.

Recently, ADMM [Boyd ef al., 2011] type methods have
been popularized as having improved convergence properties
over prior art in terms of convergence with respect to primal
variables P; in Eqn.(7). The original ADMM algorithm takes
a sequential approach to solving Eqn.(7) where each agent
take turns in updating its variables. This limitation has been
addressed in Consensus ADMM type methods such as the
Dual Consensus ADMM (DC-ADMM) method [Chang et al.,
2015]. DC-ADMM is attractive in our context since it helps
improve agent utilization. The philosophy of DC-ADMM is
to have each agent maintain a private copy of A (possibly with
different values at the start of the algorithm), and drive their
private estimates of A\ to consensus through neighbor wise

To respect privacy, we set b}

'Since exactly two agents participate in each row/constraint of
matrix F, we arbitrarily assign ownership of the slack variable to
one of the participating agents (say k) and append it to Px. We
represent the new DEC constraints as Zfil E;P; =b.



consensus constraints such as Eqns.(8) and (9).
DC-ADMM Primal

ZL (&)

A = mij,Vj S N@igh(i),Vi S {1, ey ®)
/\jzmij,VjENeigh(i),ViG{l,..., ©)]

where, \; € R"W*1 is agent i's estimate, Neigh(i) is the
set of agent ¢’s neighbors with whom ¢ exchanges the vector
A; and m;; is a consensus slack variable € RW*1. Notice
that DC-ADMM Primal and the Dual problem in Eqn.(7) are
equivalent. The DC-ADMM Primal problem is solved us-
ing the standard ADMM framework; we refer our readers to
[Chang et al., 2015] for details.

Algorithmically, at each iteration of DC-ADMM, agents
exchange their estimate of the dual vector A with neighbors
and use it to update their own estimate (cf Algorithm 3 in
[Chang et al., 2015]). In our problem, if agent ¢ does not par-
ticipate in row 7, then £; . = 0 and b] = 0. This implies that

r*" row entry of the dual vector is 1nconsequent1al to agent
1. Also, for DC-ADMM to work correctly, agent ¢ is required
to transmit values to its neighbors that are inconsequential to
itself but they may be required for its neighbors. In a certain
sense, transmitting these inconsequential values via agent ¢
can be considered as a privacy violation; it is susceptible to
manipulation; and is also inefficient to store and transmit.

To avoid communication of non-essential and potentially
private information, we adjust the DC-ADMM procedure to
ensure that an agent creates Lagrange dual variables € R only
for rows in matrix E that an agent participates in. This also

N}
N}

Algorithm 1 Modified DC-ADMM For Decoupling
Given: ¢,k = 1,J% =

YT

1(07«) = 0, Vr € Rg(i), for each agent

1eV={1l...N}
repeat

for 7 € V in parallel do

Pi(k) =arg min — Flex(P;)+

iPi<c;
L;<P;<U;
2
1: Ei Pi — b — J*Y
ZE ( s i QT +y7,(kr 1) +y(k 1)
4 c
r€ERE (1)

where j = Neighg(i,r)

for each r € Rg (i) do
j= NeighE(i T)
yl(lz) (Ez TP(k) b — J(k 1) (yl(’i 1)+y(k 1)))
end for

for each r € R (i) do
j = Neighg(i,r)
J(k> J(k D (y(k>
end for
end for
k=k+1
until Termination Criterion

k
y$y
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ensures correspondingly fewer consensus constraints in our
formulation. We define Rg(4) as a function that outputs a
set containing indices of all rows in which agent ¢ is involved
in matrix E. The function Neighg(i,r) outputs j if agent ¢
shares the constraint with agent 7 in row r of matrix E. A
lagrange dual variable y; , € R is allocated by agent ¢ iff r €
REg(i), likewise y; , is allocated by agent j iff r € Rg(j).
Hence the modified DC-ADMM method for the decoupling
problem can be represented as:

Modified DC-ADMM Primal
N

bT
I{I;fl?(} Dnll%nci Flex(P;) + Z | Yir <E¢7rPi 2)
{u; »} =1 L<PSU; reRg(7)
S.t.
Yir = Wiy Yjr = Ui, where j = NeighE(i7r)

Vr € Rg(i),Vie{l,...,N}

where u; , is a consensus slack variable € R. In Algorithm
1, we applied Sion’s Minimax theorem and standard ADMM
updates to the Modified DC-ADMM primal problem for solv-
ing. The steps taken to derive Algorithm 1 are identical to
those taken in [Chang, 2014], so we only present the final
algorithm (see Algorithm 1).

At a high level, Algorithm 1 is executed in parallel by each
agent with intermittent communication between them at each
iteration. Notationally, we indicate the estimate of a variable

(var) belonging to agent 7 at the k" iteration as var( ). The

Algorithm accepts as input a penalty multiplier ¢ € R*. In
step 1 of each iteration, all agents independently solve a min-
imization problem in polynomial time. The solution obtained
(P.(')) will be feasible with respect to intra-agent constraints,
with some infeasibility across DEC constraints. Pi(k) corre-
sponds to assignment of values to agent i’s STN at the k"
iteration. In step 2, the dual variables are updated using edge
weights of the agent’s STN computed in step 1 and relevant
Lagrange dual values from neighbors in the previous itera-
tion. The updated variables are then communicated to rele-
vant neighbors. For example, if agents ¢ and j share the con-
straint in the " row of matrix E, then agent i’s estimate of
Yir at the kth jteration (i.e. yf T)) is computed using yj( , -b
and communicated only to agent j. Similarly, agent j updates
and communicates yj(kr) only to agent i. Recall Rg(7) outputs
all relevant rows in matrix F for agent ¢ and Neighg(i,r)
outputs the neighbor of agent ¢ corresponding to row r iff
r € Rg (l)

In practice however the agents do not jointly construct the
matrix £ (This has been introduced into Algorithm 1 to sim-
plify the explanation.) The shared DEC constraints are as-
sumed to be known by each respective pair of agents; the
agents only need to ensure correct exchange of Lagrange vari-
able values corresponding to each shared DEC constraint.
In step 3, an agent’s updated dual variables and those re-
ceived from its neighbors are used to update temporary vari-
ables (for agent i this refers to variables belonging to the set
{JivT}VreRE(i)) whose values are utilized in step 2. Note,
the consensus slack variables appearing in the Modified DC-



ADMM primal problem were eliminated in the process lead-
ing to Algorithm 1.

3.1 Termination Criterion

We chose to use the extent of infeasibility of the DEC con-
straints as our termination criterion. If agents ¢ and j share
(k)

+

i

a DEC constraint at row r, it can be shown that F; , P

Ej,rpgk) —b = 20(1/1(7]? + yj(kr) — yl(,kfl) — y](-’kfl)) , where

k is the iteration number. The term on the right side goes
to zero as k — oo, owing to the convergence characteristics
of ADMM. In our set up, the agents determine the magni-
tude of infeasibility for the DEC constraints at each iteration
by simply examining the exchanged Lagrange dual values as
the expression above suggests. When all DEC constraints are
satisfied within an acceptable tolerance ey, s, Algorithm 1 ter-
minates.

4 Empirical Analysis
4.1 Experiment Design

To evaluate the effectiveness of our approach, we tested
our algorithm on a set of reference problems called the
BDH _Problem_Instances®, due to [Boerkoel and Durfee,
2013]. This dataset contains problems with varying numbers
of agents, specifically there are 50 MaSTN instances each for
2,4,8,12, 16, and 20 agent problems. In each problem, each
agent has 10 tasks to complete, which implies each agent STN
consists of 20 time points. The number of inter-agent con-
straints specified for each problem instance is 50 x (N — 1),
where NN is the number of agents in the problem.

The flexibility measure we optimized was that specified
in [Boerkoel and Durfee, 2013] due to [Hunsberger, 2002],
given that this was the assumed objective when this problem
set was generated. To define flexibility below, we adopt the
convention used in section 2.2. Mathematically, the flexibil-
ity between 2 time points A; and A; belonging to agent A is
defined equal to p 4, A; DA A The flexibility for agent A’s

STN is given by

i,5€{1,....na},i>]

Flex(Pa) = DA, A; T DA A

The objective we optimize is the sum of the flexibilities of all
agents in our [V agent decoupling problem. (We would expect
to obtain comparable results to those presented below if the
flexibility measure of [Wilson er al., 2013] were substituted).
The penalty multiplier ¢ in Algorithm 1 was set to 1 on the
assumption that the coupling constraints are fairly evenly dis-
tributed. The feasibility tolerance €7,y was set to 0.1 based
on the judgment that a maximum infeasibility with regard to
any single DEC constraint of < one tenth of a time tick would
be insignificant from a practical perspective.

Our ADMM-based decoupling algorithm was written in
C++ with Message Passing Interface (MPI) for inter-agent
communication. For performing minimization in Algorithm
1, we used an Interior Point Solver IPOPT [Wichter and

Zhttps://data.3tu.nl/repository/uuid:ce3ad00b-d905-4be3-8785-
228ael9e371a
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Number | Average Average Average
Agents | Iterations % Dev Time (in sec)

2 209 1.59 x 1073 43

4 408.1 459 x 1073 122.6

8 595.9 598 x 10717 324.9

12 666.7 417 x 1077 591.3

16 658.2 3.105x 10~% 749

20 663.5 3.497 x 1072 940.5

Table 1: Convergence performance of proposed algorithm

Biegler, 2006] with warm start. Each problem instance was
also solved centrally using IPOPT to provide optimal solu-
tions for bench-marking. All experiments were carried out
on an Intel 4 core i7-4790 processor at 3.6 GHz.

4.2 Results

The experimental results are summarized in Table 1. For each
problem set size, we show

o the average number of iterations until the feasibility tol-
erance threshold is met,

e the average % deviation of the solution found from the
optimal solution, where % deviation is defined as:

OptimalFlex — ComputedFlex
OptimalFlex

% Dev = x 100

e average total computation time required.

As can be seen, optimizing performance is quite good; the
percentage deviation from the optimal ranging from .0016 to
.0006 of 1% depending on the size of the problem. On feasi-
bility, the termination condition ensures that the maximum
infeasibility with regard to any one DEC constraint is 0.1
time tick. However, we have also examined the Root Mean
Squared (RMS) error of infeasibility of constraints (indicative
of the magnitude of individual DEC constraint violations),
defined as
1
) 2

where L is the number of DEC constraints. When the values
obtained for instances of certain problem size are averaged,
the resulting average RMS values range from 0.01 to 0.06
depending on problem size. Hence the average infeasibility
associated with a particular DEC constraint is closer to one
hundredth of a time tick. Since [Boerkoel and Durfee, 2013]
have not to our knowledge published the solutions they ob-
tained on these problems, it is not possible to perform a direct
performance comparison with their approach. However, we
can note that their approach makes no claim of finding opti-
mal solutions. The computation times shown in Table 1 were
achieved using a single 4-core machine, which, for the 20-
agents test problems, required multiple agents to share cores.
In practice, where we expect agents to operate independently
and have devoted cores, the computation time will signifi-
cantly reduce. Moreover, as shown in the plot of a representa-
tive run in Fig.3, the algorithm quickly drops to the vicinity of
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Figure 3: Solving progress on a 20 agent problem instance.
Termination condition is satisfied at iteration 671.

the optimal and then oscillates around this neighborhood until
the acceptable tolerance is achieved. If a compromise can be
made on optimality such that a larger tolerance is acceptable,
then the computation time will be substantially shorter.

Finally, a few words about message traffic. Lack of data
on the amount of communication required by the approach
of [Boerkoel and Durfee, 2013] on these problems again
prevents a direct comparison along this dimension. How-
ever we can distinguish differences in communication re-
quirements. If we consider a single Lagrange dual vari-
able transmitted from one agent to another as the smallest
bit of information, then the number of such bits transferred
over the course of generating a decoupling can be seen to be
|DEC Constraints| x 2 x iterations (i.e., the product of
the number of DEC constraints times twice the number of it-
erations it took for convergence). In comparison, the method
of [Boerkoel and Durfee, 2013] entails establishment of a
chordal graph and requires communication each time an edge
is formed or updated which is of O(Vsz), where V is the
number of shared time points.

5 Conclusions And Future Work

In this paper, we have presented a new distributed algorithm
for decoupling inter-dependent multiagent simple temporal
networks (MaSTNs). We formulate the problem as a convex
optimization problem and adapt a recently proposed Alter-
native Direction Method of Multiplier (ADMM) method to
specify a distributed, iterative procedure that is guaranteed in
the limit to converge to the optimum, given a concave flex-
ibility objective. The procedure works by tolerating some
amount of infeasibility across agent plans/schedules, and it-
eratively minimizing the magnitude of infeasibility (the dual
objective) to some acceptable threshold. Experimental analy-
sis of the procedure on a set of reference MaSTN decoupling
problems has shown strong performance. Over this problem
set, the solutions found are within .0016 - .0005 of 1% of the
optimal decoupling, and convergence is observed to require a

relatively small number of iterations.

Our ADMM-based decoupling procedure improves on
prior work in decoupling of MaSTNs in several ways. Most
importantly, it provides for the first time a decoupling algo-
rithm that addresses agent privacy concerns, requiring sharing
of only the minimal amount of information necessary to pro-
duce an optimal decoupling. It is also the first distributed de-
coupling algorithm offering an optimality guarantee. Finally,
it accommodates a range of decoupling objectives, making
the approach more broadly applicable to more self-interested
settings where agents may have different objectives.

One potential limitation of the approach, given its re-
liance on a matrix formulation, is its scalability to large agent
plans/schedules. An important point not made explicit in our
formulation is that our objective metric requires all edge in-
formation, which prohibits the use of Partial Path Consistency
(PPC) [Planken et al., 2008] as a way of reducing the number
of TRI constraints. One thrust of our current work aims at
investigating other approaches to reducing model size.
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