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Abstract
In some auction domains, there is uncertainty re-
garding the final availability of the goods being auc-
tioned off. For example, a government may auction
off spectrum from its public safety network, but it
may need this spectrum back in times of emergency.
In such a domain, standard combinatorial auctions
perform poorly because they lead to violations of
individual rationality (IR), even in expectation, and
to very low efficiency. In this paper, we study the
design of core-selecting payment rules for such do-
mains. Surprisingly, we show that in this new do-
main, there does not exist a payment rule with is
guaranteed to be ex-post core-selecting. However,
we show that by designing rules that are “execution-
contingent,” i.e., by charging payments that are con-
ditioned on the realization of the availability of the
goods, we can reduce IR violations. We design two
core-selecting rules that always satisfy IR in expec-
tation. To study the performance of our rules we
perform a computational Bayes-Nash equilibrium
analysis. We show that, in equilibrium, our new
rules have better incentives, higher efficiency, and
a lower rate of ex-post IR violations than standard
core-selecting rules.

1 Introduction
Combinatorial auctions (CAs) have been successfully applied
in many real-world settings, including procurement auctions
[Sandholm, 2013], TV advertising auctions [Goetzendorf et
al., 2015], and government spectrum auctions [Cramton, 2013;
Ausubel and Baranov, 2014]. CAs are specifically designed
for domains where bidders can have complex preferences over
bundles of heterogeneous items. An important and seemingly
“innocent” assumption in auction design is that all of the goods
will be available for consumption by the winning bidders.
While this assumption is often satisfied, there are some do-
mains where this is not the case. In these domains, standard
mechanisms perform poorly and new designs are required.

1.1 Uncertain Availability: A Motivating Example
In the US, public safety networks are used by the police, fire-
fighters, and emergency medical technicians during times of

emergencies. In 2012, following the events of 9/11 and hurri-
cane Katrina, the US congress even reserved some parts of the
700MHz spectrum “to public safety for use in a nationwide
broadband network” [FCC, 2016]. However, this legislation
also allows for the use of this spectrum by private companies
when the spectrum would otherwise be idle. The company
Rivada Networks for example is currently designing an auction
platform for this purpose [Cramton and Doyle, 2015]. These
auctions can happen on a weekly or daily basis, or even in real-
time; but bidders have to accept the risk that the spectrum they
purchased in the auction might become unavailable because
an emergency occured and the spectrum is needed for public
safety reasons.

There are many other CA domains with this kind of uncer-
tain availability of goods. For example, the company Band-
widthX has developed a platform to auction off bandwidth
from wireless hotspots, but those hotspots can also become
unavailable at any point in time [Seuken et al., 2015]. Fur-
thermore, Moor et al. [2015] introduced an auction for data,
where the sellers only have imprecise estimates of the data
they will actually be able to supply.

1.2 Execution-Contingent Auctions
Domains with uncertain availability of goods pose new chal-
lenges. As we will show, standard mechanisms perform very
poorly: they violate individual rationality (IR), even in expec-
tation, they have bad incentives, and low efficiency in equi-
librium. To address these shortcomings, Porter et al. [2008]
introduced execution-contingent mechanisms, which charge
payments dependent on the realized availabilities of the goods
(see [Ceppi et al., 2015; Ramchurn et al., 2009] for exten-
sions). Using this paradigm, one can design mechanisms that
satisfy IR and strategyproofness in expectation. For domains
as described above, where many small auctions may be run
repeatedly over time, some IR violations may be acceptable,
as long as IR in expectation is satisfied.

However, the execution-contingent mechanisms studied in
the literature so far [Porter et al., 2008; Ceppi et al., 2015;
Ramchurn et al., 2009] are not suitable for CAs in practice
because they charge VCG-like payments. Unfortunately, in
a CA domain, VCG has numerous problems [Ausubel and
Milgrom, 2006]. Most notably, VCG can lead to very low or
even zero revenue, which opens up opportunities for collusion
between the seller and collections of bidders.
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1.3 Core-Selecting Payment Rules
These drawbacks of VCG have led to the development of
core-selecting payment rules which offer a principled way to
ensure that the revenue in the auction is high enough such
that there are no opportunities for collusion [Milgrom, 2007;
Day and Milgrom, 2008; Day and Raghavan, 2007; Ausubel
and Baranov, 2016]. They have already been used successfully
in practice, for example in the UK, Canada, the Netherlands,
and Switzerland to auction off billions of dollars worth of
4G spectrum. In this paper, we design execution-contingent
core-selecting payment rules for domains with uncertainty
availability of goods. The first question we ask is “what is the
right notion of an execution-contingent core?” Second, we
find that our execution-contingent cores may sometimes be
empty, and thus, our rules will only be “core-selecting” in a
relaxed sense. Finally, in contrast to prior work on execution-
contingent mechanisms, we are not fully content with rules
that satisfy “IR in expectation,” but also want to minimize the
rate of ex-post IR violations.

1.4 Overview of Contributions
Our goal in this paper is to design payment rules that work
well in a domain with uncertain availability of goods. We
make the following contributions:

1. We generalize the EC-VCG mechanism introduced by
Porter et al. [2008] to domains with continuous and de-
pendent availabilities of goods.

2. We introduce two execution-contingent core-selecting
payment rules which satisfy IR in expectation.

3. We perform a computational Bayes-Nash equilibrium
(BNE) analysis evaluating our new rules in terms of in-
centives, efficiency, and ex-post IR violations.

The results from our BNE analysis show that our new pay-
ment rules have better incentives, higher efficiency, and a lower
rate of ex-post IR violations than standard core-selecting rules.

2 Preliminaries
2.1 Formal Model
Let N = {1, ..., n} be a set of bidders and let s be the seller.
Let G = {A,B,C, ...} be the set of goods, with |G| = m.
Each bidder has a valuation function v

i

: 2

G ! R which
specifies i0s value for every possible bundle S 2 2

G.
We consider a two time-period model: at allocation time,

there is uncertainty regarding which bundles will eventually
be available, and at consumption time, some of the availabil-
ity (depending on the mechanism) will be revealed. With
every bundle S we associate a random variable a(S) which
represents the availability of the bundle S, i.e., the extent to
which S will be available at the time of consumption. We let
ã(S) denote the realization of the random variable a(S) at
consumption time.

Let f be a joint probability mass function for all random
variables a(S). We assume that f is exogenous and known by
all agents.

The seller may have costs for providing the goods. We
denote costs by {c1, ..., cm}, where c

j

is the cost of the j-th
good. We assume that the cost function c(S) 2 R is additive,

such that c(S) =
P

S

c
j

. We assume that the seller does not
strategize, as is common in the analysis of CAs [Day and
Cramton, 2012].

An allocation is denoted as x = {x1, ..., xn

}, with x
i

de-
noting the bundle allocated to agent i and x�i

denoting the
vector of bundles of all agents except i. Similarly, for any
K ⇢ N , we use x

K

when referring to an allocation among
all bidders in K and use x�K

to denote an allocation among
bidders in N\K. We let v

i

(x
i

) denote bidder i’s true value
for its allocated bundle x

i

, and we let v̂
i

(x
i

) denote bidder
i’s value report for bundle x

i

(possibly non-truthful). We let
a(x

i

) denote the random variable corresponding to bundle x
i

,
and ã(x⇤

i

) denote the realized availability corresponding to
x⇤
i

. If bidder i is allocated bundle x⇤
i

then his realized value is
thus given by v

i

(x⇤
i

)ã(x⇤
i

).

Assumption 1. We assume that all bidders are “extremely”
single-minded, i.e., each bidder has non-zero value for exactly
one bundle S ✓ 2

G, and zero value for all other bundles
S0 6= S (including supersets of S).

Remark 1. This assumption allows for the simple definition
of the realized value we have just provided, i.e., v

i

(x⇤
i

)ã(x⇤
i

).
Without this assumption, we would have to consider all sub-
bundles of a bidder’s allocated bundle to compute his realized
value, i.e., max

S✓x

⇤
i

{v(S)ã(S)}, which may be computation-
ally infeasible in domains with a large number of goods. But
more importantly, we make this assumption to simplify the
notation and the analysis of the mechanisms we will present.
In future work, we will extend our results to the full domain.

Let x be an allocation. We let W
x

(the winners) denote
the set of allocated agents under this allocation, i.e., W

x

=

{i|x
i

6= ;}. The social welfare of the allocation x is

SW (x) =
X

i2W

x

(v
i

(x
i

)� c(x
i

))ã(x
i

).

We assume quasilinear utilities u
i

(x
i

, p
i

) = v
i

(x
i

) � p
i

,
where p

i

is bidder i’s payment for x
i

; we let p
s

denote the
payment received by the seller. We let p = (p

s

, p1, p2, ..., pn)
denote the vector of payments received by the seller and paid
by all bidders. We let O = hx, pi denote an outcome, i.e., an
allocation and the payment vector.

2.2 Properties of Mechanisms
Let v = (v1, ..., vn) and c = (c1, ..., cm). We let ã denote
the vector of availabilities at consumption time (which may
depend on the mechanism and the domain), i.e., ã = (ã(S) :
8S 2 2

G, ã(S) is known at consumption time). We let
M = hg, hi denote a mechanism, where g(v, c, f) = x is
an allocation rule and h(x, v, c, f, ã

M

) = p is a payment rule.
We now define a number of standard mechanism design proper-
ties; however, because we consider a domain with uncertainty,
we need to define most of these properties “in expectation.”

Definition 1. A mechanism M = hg, hi is strategyproof in

expectation if 8i 2 N , 8v
i

, for all v̂�i

E
f

[u
i

(g(v
i

, v̂�i

, c, f), p
i

)] � E
f

[u
i

(g(v̂
i

, v̂�i

, c, f), p
i

)].
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Definition 2. A mechanism M = hg, hi with
h(g(v, c, f), v, c, f, ã

M

) = p is ex-post individually

rational (IR) if 8i 2 N , 8v
i

, 8v̂�i

v
i

(g(v
i

, v̂�i

, c, f))ã(g(v
i

, v̂�i

, c, f))� p
i

� 0.

Definition 3. A mechanism M = hg, hi with
h(g(v, c, f), v, c, f, ã

M

) = p is individually rational in

expectation (IRE) if 8i 2 N , 8v
i

, for all v̂�i

E
f

[u
i

(g(v
i

, v̂�i

, c, f), p
i

)] � 0.

Definition 4. The rate of ex-post IR violations of a mecha-
nism M = hg, hi with h(g(v, c, f), v, c, f, ã

M

) = p is de-
fined as the following probability:

P(v
i

(g(v
i

, v̂�i

, c, f))ã(g(v
i

, v̂�i

, c, f))� p
i

< 0) (1)

Definition 5. A mechanism is budget balanced if the sum
of all payments paid by the bidders is equal to the payment
received by the seller, i.e.,

X

i2N

p
i

= p
s

.

Definition 6. A mechanism is expected social welfare maxi-

mizing if its allocation rule selects an allocation x with
x 2 argmax

x

E
f

[SW (x)].

2.3 VCG Mechanism
The famous VCG mechanism [Vickrey, 1961; Clarke, 1971;
Groves, 1973] selects a social welfare maximizing allocation
and computes payments equal to the externality each agent
imposes on all other agents. We let x⇤ denote the allocation
which maximizes social welfare when all agents are consid-
ered, and x�i denotes the allocation which maximizes social
social welfare when all agents except i are considered. VCG
payments are then:

pVCG
i

= SW (x�i

)� SW�i

(x⇤
).

VCG is a particularly attractive mechanism because, in a
domain without uncertainty about the availability of goods, it
is social welfare maximizing, strategyproof and satisfies IR.

3 Execution-Contingent VCG
Porter et al. [2008] generalized the VCG mechanism to do-
mains with uncertain availability of goods by introducing
an execution-contingent variant of VCG. The main idea is to
make payments contingent on the realized availabilities, which
implies that the payments are not computed at allocation time,
but at consumption time (see Figure 1). They considered a do-
main with binary and independent random variables capturing
the availabilities, and proved that in this domain, their mecha-
nism is strategyproof and IR in expectation. However, in the
domains we described in the beginning, the availabilities of
the goods will typically be dependent (e.g., consider a terrorist
attack affecting a whole city) and the availabilities may be
continuous (e.g., a resource can be used partially). We now
introduce the ECC-VCG mechanism, which generalizes the
mechanism introduced by Porter et al. [2008] to also handle
continuous, dependent random variables.

TimeBidders 
submit bids

Allocation Consumption
time

Payments
computation

Figure 1: Flow chart of execution-contingent mechanisms.

ECC-VCG Mechanism.
• Allocation rule: select x⇤ 2 argmax

x

E
f

[SW (x)]

• Payment rule:

p

ECC-VCG

i

= E
f

[SW (x

�i

)|ã(x⇤
j

), j 2 W

x

⇤
]� SW�i

(x

⇤
)

The idea behind this execution-contingent conditional VCG
mechanism is similar to standard VCG: pECC-VCG

i

represents a
bidder’s externality on all other bidders, except that we do not
know this externality exactly and thus compute an estimate
by taking the conditional expectation. The following example
illustrates the ECC-VCG mechanism.
Example 1. Consider a setting with three bidders N =

{1, 2, 3}, two goods G = {A,B} and a seller s with no costs.
The bidders’ values are provided in the following table:

A B {A,B}
Bidder 1 0.1
Bidder 2 0.2
Bidder 3 0.3

Let a({A}), a({B}), a({A,B}) denote availabilities of
{A}, {B} and {A,B} respectively; let f denote the joint
probability mass function for these random variables. The
following table specifies f :

(a) a1 = 0

a2 a3 = 0 a3 = 1

0 0.25 0
1 0.25 0

(b) a1 = 1

a2 a3 = 0 a3 = 1

0 0.1 0
1 0 0.4

It is easy verify that the expected marginal availabilities
of the bundles {A}, {B}, and {A,B} are 0.5, 0.65 and 0.4
respectively. Thus, the efficient allocation is to allocate A to
bidder 1 and B to bidder 2, and E

f

[SW (x)] = 0.1 · 0.5 +

0.2 · 0.65 = 0.18.
Now assume that after the allocation has happened the

realized availabilities are ã1 = 0 and ã2 = 1. Thus
E
f

[a3|ã1, ã2] = 0. The execution-contingent payments are:

pECC-VCG1 = 0.2 · ã2 � (0.2 · ã2) = 0 (2)
pECC-VCG2 = 0� (0.1 · ã1) = 0 (3)

However, if realized availabilities were ã1 = 1 and ã2 = 1,
then E

f

[a3|ã1, ã2] = 0.4 and execution contingent payments
would be

pECC-VCG1 = 0.2 · ã2 � (0.2 · ã2) = 0 (4)
pECC-VCG2 = 0.3 · E

f

[a3|ã1, ã2]� (0.1 · ã1) = 0.02. (5)
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Note that the ECC-VCG mechanism only takes the realiza-
tion of the allocated bundles into account when computing
payments. If we know the realizations of all bundles at con-
sumption time, then we can use the following mechanism:

ECR-VCG Mechanism.
• Allocation rule: select x⇤ 2 argmax

x

E
f

[SW (x)]

• Payment rule:

pECR-VCG
i

= E
f

[SW (x�i

)|ã(S), 8S]� SW�i

(x⇤
)

This execution-contingent realized VCG mechanism is a
special case of ECC-VCG, as the payment rule uses a more
precise estimate of the externality imposed on other bidders.
Theorem 1. ECC-VCG and ECR-VCG are strategyproof in
expectation.

Proof. We prove the theorem for ECC-VCG; the proof for
ECR-VCG is analogous. We let v̂

i

denote a reported value
function of agent i 2 N and v

i

is the true value of the agent.
Let x⇤ be the optimal allocation given (v̂

i

, v̂�i

). Consider the
conditional expectation in the payment rule:

E
f

[SW (x

�i

)|ã(x⇤
j

), j 2 W

x

⇤
] (6)

=

X

k2W

x

�i

(v̂

k

(x

�i

k

)� c(x

�i

k

))E
f

[a(x

�i

k

)|ã(x⇤
j

), j 2 W

x

⇤
]. (7)

Now the payment of a bidder i 2 W
x

⇤ is

p

ECC-VCG

i

=
X

k2W

x

�i

(v̂
k

(x�i

k

)� c(x�i

k

))E
f

[a(x�i

k

)|ã(x⇤
j

), j 2 W

x

⇤ ]

�
X

k2W

x

⇤\i

(v̂
k

(x⇤
k

)� c(x⇤
k

))ã(x⇤
k

) + c(x⇤
i

)ã(x⇤
i

)

The expected utility of bidder i in this case is
E
f

[u
i

(x⇤)] = E
f

[v
i

(x⇤
i

)a(x⇤
i

)� p

ECC-VCG

i

] =

E
f

h
v

i

(x⇤
i

)a(x⇤
i

)� c(x⇤
i

)a(x⇤
i

) +
X

k2W

x

⇤\i

(v̂
k

(x⇤
k

)� c(x⇤
k

))a(x⇤
k

)

�
X

k2W

x

�i

(v̂
k

(x�i

k

)� c(x�i

k

))E
f

[a(x�i

k

)|a(x⇤
j

), j 2 W

x

⇤ ]

| {z }
does not depend on v̂

i

i

The first three terms under the last expectation is equal to
expected social welfare if the agent reports truthfully. Thus,
because the allocation rule maximizes expected social welfare,
and because the last expression is independent of i’s report,
truthful reporting maximizes agent i’s expected utility. In this
case: E

f

[u
i

(x⇤
)] = E

f

[SW (x⇤
)]� E

f

[SW (x�i

)].

Theorem 2. ECC-VCG and ECR-VCG are individually ratio-
nal in expectation.

Proof. We show the theorem for ECC-VCG. From the proof
of Theorem 1 we know that under truthful reporting

E
f

[u

i

(x

⇤
)] = E

f

[SW (x

⇤
)]� E

f

[SW (x

�i

)]. (8)

Because the allocation rule selects an expected social wel-
fare maximizing allocation we know that E

f

[SW (x⇤
)] �

E
f

[SW (x�i

)]), and thus E
f

[u
i

(x⇤
)] � 0. The proof is analo-

gous for ECR-VCG.

4 Core-Selecting Payment Rules
VCG-based rules are attractive because they are strategyproof
(or strategyproof in expectation, in our domain). However,
they are not suitable in CAs because they can lead to very
low or even zero revenue, which opens up opportunities for
collusion between the seller and collections of bidders. In this
section, we introduce our execution-contingent core-selecting
payment rules. To this end, we first need some definitions:
Definition 7. An outcome O is blocked by a coalition K ⇢ N
of bidders, if there exists another outcome ¯O which is weakly
preferred over O by every bidder i 2 K and which provides
higher utility for the seller. In this case K is called a blocking
coalition.
Definition 8. An outcome O is in the core if it is (a) individu-
ally rational and (b) is not blocked by any coalition.

If O⇤
= hx⇤, pi and K ⇢ N is a coalition of bidders, thenP

i2K

(v
i

(x⇤
i

)� p
i

) is the total opportunity cost of agents in
the coalition. We let !(K) denote the total welfare which
the coalition could achieve by redistributing goods among
themselves. The maximum additional value which K could
give to the seller is !(K) �

P
i2K

(v
i

(x⇤
i

) � p
i

). A core
constraint guarantees that this amount is not larger than what
the seller can already get under the current allocation, and this
core constraint has to hold for all possible coalitions:

X

i2W

x

⇤

(p

i

� c(x

⇤
i

)) � !(K)�
X

i2K

(v

i

(x

⇤
i

)� p

i

) 8K ✓ N

A core-selecting mechanism selects a social welfare max-
imizing allocation and picks payments from the core. Un-
fortunately, in general combinatorial auction domains (with
complements), even without uncertain availability of goods,
there does not exist a payment rule that is Bayes-Nash incen-
tive compatible and core-selecting [Goeree and Lien, 2016].
Of course, this impossibility extends to our new domain. Thus,
none of our core-selecting payment rules can be truthful.

The core in a domain with uncertainty. In contrast to the
standard domain, defining the core in a domain with uncertain
availability of goods is less straightforward. The difficulty
arises from the fact that in a domain with uncertainty agents
might be willing to deviate either before or after availabili-
ties of goods are realized. In the former case, we can talk
about an ex-ante core while the latter case implies an ex-post
core. Although these two concepts differ only in the amount of
information which is used to evaluate the expected total wel-
fare achieved by a coalition, we will show that these concepts
actually lead to quite different properties.

In the next section, we will first present an ex-ante core-
selecting payment rule, which is not execution contingent.
However, as we will later see in Section 5, this leads to a
relatively large rate of IR violations, compared to execution-
contingent payment rules. To address this, we will then study
ex-post core-selecting payment rules in Sections 4.2-4.5.

4.1 Ex-ante Core-Selecting Payment rules
A straightforward approach to generalize the idea of a core
to a domain with uncertainty is to apply the core constraints
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as defined in the previous section to the expected values of
the bidders. In this case the total expected welfare E

f

[!(K)]

that a coalition K can achieve in expectation is E
f

[!(K)] =

max

x

E
f

[

P
i2K

(v
i

(x)� c
i

(x))a(x)]. By limiting this value
to be smaller than the expected total utility which agents in
the coalition can get under the current allocation we ensure
that the agents in the coalition are not be willing to deviate
from the current allocation. Formally, this gives rise to the
following set of core constraints, which have to hold for all
K ✓ N :

E
f

h X

i2W

x

⇤

(p

i

� c(x

⇤
i

)a(x

⇤
i

))

i
� (9)

E
f

h
!(K)

i
�

X

i2K

E
f

h
(v

i

(x

⇤
i

)a(x

⇤
i

)� p

i

)

i
(10)

Even though this core is not execution contingent, it pro-
vides all core properties ex-ante, i.e., before availabilities of
goods are realized. Furthermore, the following corollary says
that this core is never empty:
Corollary 1. In a domain with uncertain availability of goods,
the ex-ante core is never empty.

The corollary follows from the fact that the core must con-
tain at least one point, namely pay-as-bid (see [Day and Mil-
grom, 2008, Footnote 1]).

4.2 Impossibility of Ex-post Core-Selecting
Payment Rules in Domains with Uncertainty

In this section, we will show the surprising result that there
does not, in general, exist an ex-post core-selecting payment
rule in a domain with uncertain availability of goods. For this,
we first need a few more definitions. Assume that hx⇤, pi is
an auction outcome and let L ✓ 2

G be a fixed set of bundles.
Definition 9. A generalized expected coalitional value
!
ge

(K,L) of a coalition K ✓ N given the set L is the maxi-
mum expected welfare the coalition can achieve given realized
availabilities corresponding to bundles from L. Formally,

!

ge

(K,L) = max

x

E
f

hX

i2K

(v

i

(x

i

)� c(x

i

))a(x

i

)

���ã(S), S 2 L

i

Note that bidders have a total opportunity cost ofP
i2K

(v
i

(x⇤
i

)ã(x⇤
i

) � p
i

) for joining coalition K. If they
decide to join, then in expectation they can achieve a to-
tal welfare of !

ge

(K,L) and thus they can provide at most
!
ge

(K,L) �
P

i2K

(v
i

(x⇤
i

)ã(x⇤
i

) � p
i

) of additional value
to the seller, which gives rise to the following set of core
constraints:

Generalized Ex-post Core Constraint 8K ✓ N :

X

i2W

x

⇤

(p
i

�c(x⇤
i

)ã(x⇤
i

)) � !

ge

(K,L)�
X

i2K

(v
i

(x⇤
i

)ã(x⇤
i

)�p

i

)

Note that different choices of L lead to a different definitions
of an ex-post core. However, we refer to any of these cores as
ex-post cores, which reflects the fact that the core property is
guaranteed for the point in time when availabilities have been
realized.

Unfortunately, in our domain, the ex-post core can some-
times be empty.
Theorem 3. In a domain with uncertainty, there does not
exist a mechanism that is budget balanced and ex-post core-
selecting.

Proof. Consider a setting with two bidders N = {1, 2} and a
seller s. Assume that there are only two goods A and B. We
assume that the first bidder has an value v1({A}) for a bundle
{A} and the second bidder has a value v2({AB}) for a bundle
{AB}. We let v1({A}) > 0 and v2({AB}) > 0. We also let
the costs of those goods to be equal to zero.

Given this specific set-up, there are seven different alloca-
tion rules we must consider: the allocation rule can allocate
none of the items; it can allocate item A to bidder 1 and noth-
ing to bidder 2; it can allocate item A to bidder 2 and nothing
to bidder 1; etc. For each of these seven different allocation
rules, there exists a joint probability mass function and a set
of realized availabilities, such that we can construct an empty
core.

We first consider the case where bidder 1 is allocated item
A and bidder 2 is allocated the empty set. We let a({A})
and a({AB}) denote the availabilities of the bundles {A} and
{AB} respectively, and we let f denote the corresponding
joint probability mass function, which is defined as follows:

(a) a({AB}) = 0

a(A) a(B) = 0 a(B) = 1

0 �000 �010

1 �100 �110

(b) a({AB}) = 1

a(B) = 0 a(B) = 1

�001 �011

�101 �111

Here 0 < �
ijk

< 1, i, j, k 2 {0, 1}, denotes the probability
of the event that a({A}) = i, a({B}) = j, and a({AB}) = k.
Now we assume that ã({A}) = 0, ã({B}) = 0, ã({AB}) =
1. We can show that for any L ✓ 2

G, the corresponding ex-
post core is empty. Indeed, 8L ✓ 2

G

: E[a({AB})|ã(S), S 2
L] > 0. Thus, the ex-post core constraint is then:

!
ge

({s, 2}, L) =
v2({AB}) · E[a({AB})|ã(S), S 2 L]  0 + p

s

= p1.

Here, p1 and p
s

are payments of the first bidder and the
seller respectively (which are equal, given budget balance, i.e.,
p1 + p

s

= 0). Now, taking into account that v2({AB}) >
0 but p1  v1({A})ã({A}) = 0 (another core constraint),
we get a contradiction. The proof for the other six possible
allocations is analogous.

4.3 Framework for Execution-Contingent
Mechanisms

Given that the ex-ante core can lead to large IR violations
(as we will show in Section 5), and given the impossibility
result regarding ex-post cores from Theorem 3, this raises
the question which core to consider in practice. In this sec-
tion, we put forward the idea of designing mechanisms that
select payments inside an ex-post core whenever this core is
not empty. Specifically, we design two execution-contingent
payment rules. As we will later show in Section 5, for these
payment rules, the empty core cases happen relatively rarely.
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We will now first define a mechanism framework for
execution-contingent payment rules which we then instantiate
in two different ways:

Execution-Contingent Core-selecting Mechanism
Framework
• Framework parameters:

1. Reference point: p⇤

2. Core constraints: Core⇤

• Allocation rule: select x⇤ 2 argmax

x

E
f

[SW (x)]

• Payment rule:

p =

⇢
p 2 argmin

p2⇧ ||p� p⇤||2 if Core* \ IR 6= ;
p⇤ else

where ⇧ = Core⇤ \ IR \MRC.

The first framework parameter, p⇤, is a reference point,
which we will either instantiate to p⇤ = pECC-VCG or pECR-VCG,
as defined by the ECC-VCG and ECR-VCG mechanisms.
The second framework parameter is a set of core constraints
Core⇤, which we will accordingly instantiate to ECC-Core
or ECR-Core, to be defined next. The ultimate core-selecting
payment rule then first tries to find a payment vector p that
minimizes the Euclidean distance to the reference point p⇤,
from among all payment vectors in the core that also minimize
the revenue for the seller (the so-called minimize-revenue con-
straint (MRC)). We defined the mechanism framework this
way to be analogous to the Quadratic rule [Day and Cramton,
2012], i.e., the core-selecting rule most commonly used in
practice. In a domain with uncertain availabilities, however,
the core (i.e., the intersection of the core constraints and the
IR constraints) can be empty. In this case, we charge the refer-
ence point p⇤, which will then be outside the core. Thus, all
of these execution-contingent mechanisms are only ex-post
core selecting whenever the core is non-empty. In Section 5,
we will analyze how often such “empty core” cases occur in
equilibrium.

4.4 ECC-Core Mechanism
Before we can introduce the ECC-Core mechanism, we need
one more definition.
Definition 10. An expected coalitional value !

e

(K) of a coali-
tion K ⇢ N is the maximum expected welfare the coalition
can achieve knowing realized availabilities of allocated bun-
dles. Formally,

!

e

(K) = max

x

E
f

hX

i2K

(v

i

(x

i

)� c(x

i

))a(x

i

)

���ã(x⇤
i

), i 2 W

x

⇤

i

Note, that this is a special case of Definition 9 when assum-
ing L = {S ✓ x⇤

i

, i 2 W
x

⇤}1.
Knowing realized availabilities of allocated bundles, bidders

have a total opportunity cost of
P

i2K

(v
i

(x⇤
i

)ã(x⇤
i

)� p
i

) for
joining coalition K. If they decide to join, then in expectation

1Depending on the information structure of the domain, the avail-
ability that is revealed to the mechanism may only be ã(x⇤

i

), i 2 W

x

⇤

or ã(S), 8S ✓ x

⇤
i

, i 2 W

x

⇤

they can achieve the total welfare of !
e

(K) and thus they
can provide at most !

e

(K) �
P

i2K

(v
i

(x⇤
i

)ã(x⇤
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) � p
i

) of
additional value to the seller, which gives rise to the following
set of core constraints:

ECC-Core Constraint 8K ⇢ N :
X

i2W

x
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)ã(x

⇤
i

)) � !

e

(K)�
X

i2K

(v

i

(x

⇤
i

)ã(x
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By plugging these constraints as Core⇤ into the mechanism
framework together with p⇤ = pECC-VCG as the reference point,
we obtain a full specification of the execution-contingent con-
ditional core (ECC-Core) mechanism. The following example
demonstrates how a coalition imposes a core constraint:

Example 2. Consider the setting from Example 1, with coali-
tion K = {b3, s}. The expected coalitional value for this
coalition is !

e

(K) = 0.3 · 0.4 = 0.12. The corresponding
core constraint is p1 + p2 � 0.12.

4.5 ECR-Core Mechanism
If we know the realizations of the availabilities of all bundles at
the consumption time, and not only of those allocated, then we
can use more accurate execution-contingent core constraints:

ECR-Core Constraint 8K ⇢ N :
X

i2W

x

⇤

(p

i

� c(x

⇤
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)ã(x

⇤
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)) � !(K)�
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where !(K) = max

x

P
i2K
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))ã(x
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)

Note that this definition is a special case of Definition 9
assuming L = {S : S 2 2

G}. To get a full specification of
the mechanism we use these core constraints together with
pECR-VCG as parameters for the execution-contingent mecha-
nism framework. As we will show in Section 5 exploiting this
additional knowledge can significantly decrease the rate of IR
violations.

The following theorem shows that ECC-VCG and ECR-
VCG provide lower bounds for the corresponding core-
selecting payment rules. This is useful to know, because it also
implies that using these payment vectors as reference points
in the overall mechanism framework makes sense.

Theorem 4. ECC-Core and ECR-Core payments are lower-
bounded by ECC-VCG and ECR-VCG payments respectively.

Proof. Consider ECC-Core mechanism. If the ECC-Core
is empty, then the mechanism charges ECC-VCG payments
which are trivially lower-bounded by ECC-VCG payments. If
the ECC-Core is not empty, then consider a coalition K =

N\{k}, where k 2 W
x

⇤ . In this case

E[!(K)] = E
f

[SW (x

�i

)|ã(x⇤
i

), i 2 W

x

⇤
]

Then,
p

i
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[SW (x

�i

)|ã(x⇤
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ECC-VCG

i

.

The proof for ECR-Core is analogous.
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Figure 2: Additive shading factors of local bidders depending
on costs distribution c ⇠ U [0, c

max

] for two levels of variance
of the availabilities a.

5 Comparison in Bayes-Nash Equilibrium
Our core-selecting payment rules are not strategyproof in ex-
pectation, and indeed, there do not even exist strategyproof
core-selecting rules in domains without uncertainty [Goeree
and Lien, 2016]. For this reason, we must analyze the proper-
ties (efficiency, IR violations, etc.) of our rules in equilibrium.
The equilibrium concept we adopt for our auction domain is
a Bayes-Nash equilibrium, i.e., where each bidder knows his
own value, but only knows the distribution over other bidders’
values, the seller’s costs, and the availabilities.

Unfortunately, deriving the Bayes-Nash equilibrium of core-
selecting payment rules analytically is very complex, and only
feasible for very simple settings [Goeree and Lien, 2016]. For
this reason we follow the approach by [Lubin and Parkes,
2009] and [Lubin et al., 2016], and use a computational ap-
proach to find approximate BNEs for our rules. Concretely,
we restrict the strategy space of the agents to additive shading
strategies, and then use an algorithm based on fictitious play
which, using an iterative best response method, converges to
an ✏-BNE in this restricted strategy space. Specifically, all the
equilibria we report in this paper are ✏-BNEs with ✏=0.01.

5.1 Benchmark Rules
In addition to the ECC-Core and ECR-Core mechanisms, we
also study the following three benchmark rules:
• Std-Core Mechanism: This refers to the standard core-

selecting payment rule (the Quadratic rule as defined in [Day
and Cramton, 2012]). The allocation rule selects an alloca-
tion assuming that all items are available, and payments are
computed at allocation time.

• Exp-Core Mechanism This mechanism uses the ex-ante
core as defined in Section 4.1, and then picks payments from
this ex-ante core using the Quadratic rule [Day and Cram-
ton, 2012]. Note that this mechanism satisfies individual
rationality in expectation.

• IR-ECR-Core Mechanism: This refers to a rather artificial
but still interesting mechanism. The allocation rule first
maximizes expected social welfare, but then checks for every
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Figure 3: Efficiency depending on costs distribution c ⇠
U [0, c

max

] for two levels of variance of the availabilities a.

possible realization of the availabilities whether the resulting
payments will satisfy ex-post IR. Only if this is the case
will the allocation be made - otherwise no trade will happen.
Thus, this rule is guaranteed to satisfy ex-post IR by design.

5.2 The Local-Local-Global (LLG) Domain
We study the well-known LLG domain. In this domain, there
are two goods A and B. There are two local bidders who
are each interested in one of the goods, and their values are
drawn uniformly from [0, 1], and there is a global bidders who
is only interested in the bundle consisting of both goods, and
his value for the whole bundle is drawn uniformly from [0, 2].
The seller’s costs are drawn uniformly from [0, c

max

], where
c
max

is a parameter which we vary in our analysis.
It is easy to show that under Exp-Core, ECC-Core, ECR-

Core, and IR-ECR-Core, if the global bidder gets allocated,
he is charged the respective generalized version of the VCG
payment. Thus, by Theorem 1, ECC-Core and ECR-Core
are strategyproof in expectation for the global bidder, and the
same result can be shown for Exp-Core and IR-ECR-Core.
For this reason, we only need to compute the BNE strategies
of the local bidders for those rules. For Std-Core, we also
compute the BNE strategy for the global bidder.

5.3 Results
Strategies. Figure 2 shows the BNE strategies of the local
bidders; on the left side for a domain with low variance in the
availabilities of the goods, and on the right side for high vari-
ance in the availabilities of the goods. Note that these results
are not “simulations,” but that each point in these figures is the
result of our BNE algorithm (and it takes about 8 hours to find
a BNE for one payment rule on a machine with 20 cores).

We see that Std-Core has the worst incentives; the global
bidder actually also shades (not shown in Figure 2), with a
shading factor roughly twice as high as that of the local bidders.
ECC-Core, ECR-Core and Exp-Core have very similar incen-
tives, and IR-ECR-Core has the best incentives. Furthermore,
the higher the costs, the lower the shading factors (except for
Std-Core), which makes sense, because with higher costs, the
opportunities for trade get smaller, and thus it gets more risky
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to shade. We also see that the shading factors are lower in the
high variance domain, which makes sense, because the higher
the uncertainty, the more risky it is to shade.

Efficiency. Figure 3 shows the efficiency achieved by all
mechanisms (we simulate 1 million auctions using the compu-
ated BNE strategies to calulate the efficiency). We see that our
new mechanisms achieve higher efficiency than both, Std-Core
as well as IR-ECR-Core.2 By comparing the low variance and
high variance domains, we see in what sense the IR-ECR-
Core mechanism is really just a straw-man: while it works
well in the low variance domain, in the high variance domain
the mechanism has to cancel a lot of allocations because it
cannot guarantee ex-post IR for all possible realizations of the
availabilities, which drives down efficiency. In contrast, our
execution-contingent mechanisms can handle this uncertainty.

Rate of Ex-post IR Violations. Figure 4 shows the rate
of ex-post IR violations. Again, Std-Core performs worst.
But this analysis now also demonstrates the advantages of
ECC-Core and ECR-Core over Exp-Core. While all three
mechanisms had good incentives and high efficiency, we now
see that ECC-Core and ECR-Core have a significantly lower
rate of ex-post IR violations, which makes sense because ECC-
Core and ECR-Core are execution-contingent. This advantage
is even more pronounced for the high-variance domain. In
this domain, we even see a small advantage of ECR-Core over
ECC-Core, which makes sense, because ECR-Core takes even
more information into account when computing payments.

Empty Core Analysis. While in a domain without uncer-
tainty, there always exists a price vector in the core, one of

2There is one exception: with zero costs, Std-Core achieve 99%
efficiency while our rules achieve 98% efficiency. This happens
because under our rules, the global bidder plays truthful and the
local bidders shave, which leads to an efficiency loss. Under Std-
Core, all bidders shave roughly proportionally, which leads to almost
no efficiency loss in equilibrium (with zero costs). However, this
peculiarity of the LLG domain does not generalize to larger domains.
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the interesting and perhaps unexpected features of our domain
is that the ECC-Core as well as the ECR-Core can be empty.
For this reason, we also study how often this happens in our
domain. Figure 5 shows that in the low variance domain, the
core is typically not empty, especially if the costs are non-zero
then the probability of an empty core is close to 0. However, in
the high variance domain, the rate of empty core cases is sig-
nificantly higher. This is explained by the fact that the higher
the variance in availabilities of bundles, the more flexible the
core constraints are, and thus the more likely they can be in
conflict with each other (and thus lead to an empty core).

6 Conclusion
In this paper, we have studied mechanisms for combinatorial
auctions with uncertain availabilities of goods. We have intro-
duced two execution-contingent core-selecting payment rules
which both satisfy IR in expectation. Furthermore, we have
performed an extensive computational Bayes-Nash equilib-
rium analysis, comparing our new rules with three benchmark
rules to study the trade-off between different mechanism de-
sign objectives. Our results show that, compared to a standard
core-selecting auction, our rules have significantly higher effi-
ciency and lower ex-post IR violations. Furthermore, compar-
ing our two execution-contingent mechanisms, we conclude
that the more information about realized availabilities the
mechanism has, the more of it should be exploited in the com-
putation of the payments, as this leads to an lower rate of IR
violations. Moreover, by comparing our rules to an ex-post
IR rule, we have shown that by relaxing the strict ex-post IR
constraint, we can gain a lot in efficiency. Thus, if a small rate
of ex-post IR violations is acceptable, then we recommend us-
ing one of our new payment rules for a combinatorial auction
domain with uncertain availabilities of goods.
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