
Trembling Hand Equilibria of Plurality Voting
Svetlana Obraztsova

Hebrew University of Jerusalem
Israel

Zinovi Rabinovich
Mobileye Vision Technologies Ltd.

Israel

Edith Elkind
University of Oxford

United Kingdom

Maria Polukarov
University of Southampton

United Kingdom

Nicholas R. Jennings
Imperial College
United Kingdom

Abstract
Trembling hand (TH) equilibria were introduced by
Selten in 1975. Intuitively, these are Nash equi-
libria that remain stable when players assume that
there is a small probability that other players will
choose off-equilibrium strategies. This concept is
useful for equilibrium refinement, i.e., selecting the
most plausible Nash equilibria when the set of all
Nash equilibria can be very large, as is the case, for
instance, for Plurality voting with strategic voters.
In this paper, we analyze TH equilibria of Plurality
voting. We provide an efficient algorithm for com-
puting a TH best response and establish many use-
ful properties of TH equilibria in Plurality voting
games. On the negative side, we provide an exam-
ple of a Plurality voting game with no TH equilib-
ria, and show that it is NP-hard to check whether
a given Plurality voting game admits a TH equilib-
rium where a specific candidate is among the elec-
tion winners.

1 Introduction
Plurality voting is a simple and popular method for aggregat-
ing preferences of multiple stakeholders over a set of avail-
able choices. It involves each stakeholder, or voter, declar-
ing his most preferred alternative; the winner is then selected
among the most popular alternatives using a tie-breaking rule.
Due to its simplicity, Plurality voting is particularly suscep-
tible to manipulation by dishonest voters: indeed, one can
easily figure out if he may benefit from voting for an alterna-
tive other than his true top choice [Bartholdi, III et al., 1989].
Thus, when analyzing the outcomes of Plurality voting, it is
imperative to take strategic considerations into account. This
can be accomplished by viewing voting as a strategic game,
and focusing on outcomes that are identified by classic solu-
tion concepts (e.g., Nash equilibria) or arise as a result of a
natural iterative process (e.g., best response dynamics).

Both approaches have been considered in the literature,
going back as far as the pioneering work of Farquhar-
son [1969] (other important contributions include [Moulin,
1979; Dhillon and Lockwood., 2004; Myerson and Weber,
1993]), and have recently received a lot of attention from the

computational social choice community (see [Desmedt and
Elkind, 2010; Xia and Conitzer, 2010; Thompson et al., 2013;
Obraztsova et al., 2013; Meir et al., 2014; Elkind et al.,
2015] for the analysis of Nash equilibria and their refine-
ments and [Meir et al., 2010; Reijngoud and Endriss, 2012;
Reyhani and Wilson, 2012; Grandi et al., 2013; Rabinovich
et al., 2015] for an investigation of best response dynamics).
In particular, it has been observed early on that Plurality vot-
ing games have many undesirable Nash equilibria: e.g., in
elections with at least 3 voters it is a Nash equilibrium for
all voters to vote for the same candidate, even if none of
them likes him. For this reason, much of the subsequent
work focused on equilibrium refinements, i.e., sets of Nash
equilibria that satisfy additional constraints, or, more broadly,
outcomes that are stable when we place additional assump-
tions on voters’ utilities. Two examples of the latter approach
are Plurality voting games with lazy voters [Borgers, 2004;
Desmedt and Elkind, 2010; Elkind et al., 2015], where voters
prefer to abstain when they are not pivotal (see e.g. [Kolovos
and Harris, 2005] for motivation), or with truth-biased vot-
ers, where voters prefer to vote truthfully when they are
not pivotal [Dutta and Laslier, 2010; Dutta and Sen, 2012;
Thompson et al., 2013; Obraztsova et al., 2013; Elkind et al.,
2015]. Both approaches eliminate many of the undesirable
Nash equilibria; however, it is not clear if either assumption
(or their combination) can be used to capture all real-life Plu-
rality voting scenarios where voters may strategize.

The goal of our paper is to extend this line of work to
a classic equilibrium refinement known as Trembling Hand
Equilibrium (THE). This concept was introduced by Sel-
ten [1975], and has received a considerable amount of at-
tention in the game-theoretic literature (see [Mas-Colell et
al., 1995] for basic definitions and [van Damme, 1991] for a
comprehensive treatment). It is based on the idea that, when
choosing his strategy, a player assumes that other players’
hands may tremble, and with a small probability they would
choose a strategy at random instead of playing their best re-
sponse. In the context of voting, this corresponds to voters be-
ing confused by the design of the ballot or to errors during the
vote counting procedure (such mistakes are well documented
in the popular press, see the discussion in [Xia, 2012]). How-
ever, to the best of our knowledge, very little is known about
trembling hand equilibria of Plurality voting.
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Specifically, Messner and Polborn [2002; 2011] were the
first to investigate the impact of small errors on voters’ equi-
librium behavior. However, they combine the trembling hand
approach with another tweak of the model, which enables the
voters to coordinate their behavior. Thus, their results (which
include a characterization of the associated class of equilibria
for three candidates, and a proof that a variant of Duverger’s
law holds in this setting) are not directly applicable if one
aims to understand the impact of the trembling hand refine-
ment per se. Other authors who consider THEs in voting fo-
cus on dynamic games [Acemoglu et al., 2009], incomplete
information scenarios [Jackson and Tan, 2013] or multiwin-
ner elections [Obraztsova et al., 2015], and only the latter
paper explicitly addresses the associated algorithmic issues.

Against this background, in this paper we analyze the clas-
sic trembling hand equilibria of Plurality voting games. We
establish many useful properties of players’ trembling hand
(TH) best responses and THE. In particular, we characterize
games that admit an outcome where some candidate is unan-
imously supported in a THE. Our analysis enables us to de-
velop a polynomial-time algorithm for computing one’s TH
best response, and construct THE for a wide range of voters’
preferences. On the negative side, we provide an example of
a Plurality election that admits no THE, and show that it is
NP-hard to check if a given game admits a THE that assigns
a positive probability of winning to a given candidate.

2 Model and Preliminaries
We begin by introducing the notation that will be used
throughout the paper. We then define Plurality voting games
and trembling hand equilibria of these games.

Plurality voting games. There is a set V = {v1, v2, . . . , vn}
of n voters, who aim to elect a winner from a set C =

{c1, c2, . . . , cm} of m alternatives, or candidates. Each voter
v 2 V has a preference order >

v

over C, which is a strict
total order (a complete, transitive and anti-symmetric binary
relation). We write x >

v

y to express that voter v prefers
candidate x to candidate y; we extend this notation to subsets
of candidates C0 ✓ C by writing x >

v

C0 whenever x >

v

y

for all y 2 C0.
In Plurality voting, each voter v 2 V submits a vote, or

ballot, b
v

2 C. A ballot profile of a subset S ✓ V of voters
is a vector of ballots b

S

= (b

v

)

v2S

, one for each voter in S.
When S = V, we drop the subscript S, and simply write b.
For each v 2 V we write b�v

to denote the ballot profile ob-
tained from b by removing the ballot of voter v, and we write
(b

0
v

,b�v

) to denote the ballot profile obtained by adding a
ballot b0

v

of voter v to the profile b�v

of the remaining voters.
Consider a subset of voters S ✓ V. The plurality score of a

candidate c 2 C in a ballot profile b
S

is given by sc(c;b
S

) =

|{v 2 S | b
v

= c}|. Let sw(b
S

) = max

c2C sc(c;b
S

) be the
highest score observed in b

S

. The winning set under b
S

is
the set of alternatives with the highest score:

W (b
S

) = {c 2 C | sc(c;b
S

) = s

w

(b
S

)}.

The unique Plurality winner under b is chosen from W (b)
using a tie-breaking rule. In this paper, we consider ran-
domized tie-breaking: the winner is chosen uniformly at ran-

dom from W (b). It will also be useful to set s

⇤
(b

S

) =

max

c2C\W (bS) sc(c;bS

) and consider the set of runners-up

C⇤
(b

S

) = {c 2 C | sc(c;b
S

) = s

⇤
(b

S

)}.
Further, we define the following sets of candidates:

C+
(b

S

) = {c 2 C | sc(c;b
S

) > 0},
C0

(b
S

) = {c 2 C | sc(c;b
S

) = s

⇤
(b

S

)� 1},
C00

(b
S

) = {c 2 C | sc(c;b
S

) = s

⇤
(b

S

)� 2}.
Let c⇤(v;b�v

) (respectively, c0(v;b�v

) and c

00
(v;b�v

)) be
voter v’s most preferred candidate in C⇤

(b�v

) (respectively,
in C0

(b�v

) and in C00
(b�v

)), i.e.,
c

⇤
(v;b�v

) >

v

C⇤
(b�v

) \ {c⇤(v;b�v

)},
c

0
(v;b�v

) >

v

C0
(b�v

) \ {c0(v;b�v

)},
c

00
(v;b�v

) >

v

C00
(b�v

) \ {c00(v;b�v

)}.
Since the winner is chosen from W (b) uniformly at

random, to discuss voters’ strategic behavior, we have to
be able to reason about voters’ preferences over lotteries.
To deal with this issue, we follow the approach used in
a number of recent papers [Desmedt and Elkind, 2010;
Boutilier et al., 2012; Filos-Ratsikas and Miltersen, 2014;
Obraztsova et al., 2011] and assume that each voter is en-
dowed with a utility function �

v

: C ! N, which assigns a
utility to each candidate in C; we require that �

v

(c) > �

v

(c

0
)

whenever c >

v

c

0 (this means that a voter’s preference order
is fully described by his utility function). Now, for each voter
v 2 V the utility that he derives from a winning set W (b

S

) is
his expected utility when the winner is chosen from W (b

S

)

uniformly at random, i.e.,
1

|W (b
S

)|
X

c2W (bS)

�

v

(c);

we denote this quantity by u

v

(b
S

).
The setting described above induces a normal-form game

� = hV,C, (u

v

)

v2Vi, where V is the set of players, the
set of strategies available to each player is given by C, and
the utility function of each player at a strategy profile b is
given by u

v

(b). Games of this form are called Plurality vot-
ing games. A strategy profile b is a Nash Equilibrium (NE)
of a game � if for each player v 2 V and each ballot b0

v

2 C
it holds that u

v

(b) � u

v

(b

0
v

,b�v

).
Trembling hand equilibrium (THE) The notion of trem-
bling hand equilibrium goes back to Selten [1975]. Intu-
itively, it allows for a small probability that, instead of playing
his chosen strategy, a player errs and chooses a random one.
We consider a popular implementation of this idea, where, for
a given small value " > 0, a player with m strategies available
to him plays strategically with probability 1 � m", and with
probability m" he chooses a strategy uniformly at random.

More formally, fix a trembling hand (TH) probability " >

0. For each voter v, we distinguish between his intended bal-
lot b

v

and his actual ballot eb
v

. A voter selects his intended
ballot b

v

. Then, the probability that v’s actual ballot is some
e
b

v

2 C, termed the ballot TH probability, is given by

P

"

(

e
b

v

| b
v

) =

(
1� (m� 1)" if eb

v

= b

v

,

" otherwise.
(1)
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This definition can be extended to subsets of voters: for a
subset S ✓ V of voters, the joint ballot TH probability given
the intended ballot profile b

S

is given by

P

"

(

eb
S

| b
S

) =

Y

v2S

P

"

(

e
b

v

| b
v

). (2)

Notice that voter v’s ballot TH probability defines a fully
mixed strategy for v. We will denote this mixed strategy by
b

"

v

. Moreover, given a set of voters S ✓ V, we will denote
their mixed strategy profile (b"

v

)

v2S

by b"

S

; we will refer to b

"

v

and b"

S

as the TH ballot and the joint TH ballot, respectively.
Now, suppose that the intended joint ballot of players in

V \ {v} is b�v

. When deciding on his intended ballot, a
voter realizes that other voters’ hands may tremble and as-
sumes that these trembles are independent from each other,
but ignores the possibility that his own hand may tremble as
well. Thus, v calculates his utility from submitting a ballot b

v

against b�v

as follows:
e
U

"

v

(b

v

,b�v

) =

X

eb�v2Cn�1

u

v

(b

v

,

eb�v

)P

"

(

eb�v

| b�v

). (3)

We refer to this quantity as the "-TH utility of voter v. We are
now ready to define the notions of "-TH best response, TH
best response and TH equilibrium.
Definition 1. Given an " with 0 < " < 1, we say
that a ballot b is an "-TH best response ("-TH-BR) of
voter v to the intended ballot b�v

of the other voters if
b 2 argmax

b

0 e
U

"

v

(b

0
,b�v

). We say that b is a TH best re-
sponse (TH-BR) of voter v to b�v

if there exists an "0 with
0 < "0 < 1 such that b is an "-TH best response to b�v

for
all " with 0 < " < "0. A joint ballot b is a TH equilibrium
(THE) if for each v 2 V the ballot b

v

is a TH-BR to b�v

.
Example 1. Let C = {a, b}, V = {u, v, w} and assume
that each voter z 2 V has �

z

(a) = 1, �
z

(b) = 0. Then
both (a, a, a) and (b, b, b) are Nash equilibria of the respective
Plurality voting game, simply because no individual player
can change the winning set by modifying his vote. However,
(b, b, b) is not a THE of this game. Indeed, consider some "

with 0 < " < 1 and a voter v. The joint TH ballot of the
remaining voters assigns probability (1 � ")

2 to (a, a); the
ballot profiles (a, b) and (b, a) occur with probability "(1�")

each, and the ballot profile (b, b) occurs with probability "

2.
Thus, if voter v changes his strategy from b to a, he increases
his "-TH utility by 2"(1 � ") > 0: whenever W (b�v

) =

{a, b} (which happens with probability 2"(1� ")), switching
from b to a increases his utility by 1, and if W (b�v

) = {a}
or W (b�v

) = {b}, the outcome does not depend on his vote.
It will be convenient to rewrite the expression for "-TH

utility by grouping the terms according to how many voters’
hands have trembled. Formally, for every possible value of
the parameter ⌘ we define the set of ⌘-tremblings as follows.
Definition 2. Given a set of voters S ✓ V and two ballot pro-
files b0

S

, b00
S

, let d(b0
S

,b00
S

) = |{v 2 S | b0
v

6= b

00
v

}| denote the
Hamming distance between these two ballot profiles. Given
an intended ballot profile b

S

for S and a parameter ⌘ with
0  ⌘  |S|, we say that a ballot eb

S

is an ⌘-trembling for
b
S

if d(eb
S

,b
S

) = ⌘. We denote the set of all ⌘-tremblings
for b

S

by B(b
S

, ⌘).

Every ⌘-trembling for V \ {v} occurs with the same prob-
ability, namely, ⇣(", ⌘) = (1� (m� 1)")

n�1�⌘

"

⌘ . Conse-
quently, we can rewrite the expression for "-TH utility as a
sum of n terms, where each term corresponds to a fixed value
of ⌘. Specifically, we define

e
U

"

v

(b

v

,b�v

; ⌘) =

X

eb�v2B(b�v,⌘)

u

v

(b

v

,

eb�v

)⇣(", ⌘), (4)

and obtain e
U

"

v

(b

v

,b�v

) =

n�1P
⌘=0

e
U

"

v

(b

v

,b�v

; ⌘). (5)

We will now define a class of utility functions that will play
an important role in our analysis.
Definition 3. A utility function �

v

: C ! N of a voter v 2 V
is ordinary if the following two conditions hold:

(1) for each triple of distinct candidates a, b, c 2 C and
each k with 0  k  n+m we have

(m+ n� k)(�

v

(a)� �

v

(b)) 6= �

v

(b) + �

v

(c);

(2) for each pair of distinct candidates a, b 2 C, each subset
C0 ✓ C \ {a, b} and each k with 0  k  n we have

P
c2C0 �

v

(c)� �

v

(a) 6= (m+ n� k)(�

v

(b)� �

v

(a)).

Some of the results in this paper require that all voters have
ordinary utilities. This restriction is needed for technical rea-
sons: it ensures that, when comparing two available strate-
gies, a voter can make his decision by considering the small-
est number of trembles that change the outcome (see, e.g.,
the proof of Theorem 1). Note that almost all utility func-
tions are ordinary, in the following sense: if we were to draw
voters’ utilities for each candidate uniformly at random from
a real interval [a, b], then all utility functions would be ordi-
nary with probability 1. Moreover, for every utility function
� : C ! N we can find a constant � 2 N such that the utility
function �

0
: C ! N given by �

0
(c) = �(c) + � for each

c 2 C is ordinary. Thus, we believe that results for voters
with ordinary utilities provide useful intuition for the general
case; nevertheless, getting rid of this restriction is an impor-
tant direction for future work.

3 Best Response Calculation
In this section we will explain how voter v can compute his
TH best response given the intended ballot profile b�v

of
other voters. We start by observing that if v can identify a
vote that improves the outcome from his perspective (com-
pared to the outcome at b�v

), then he should simply ignore
the possibility of trembles and submit his best response to the
intended ballot profile.
Proposition 1. Consider a voter v 2 V and a ballot profile
b�v

of the remaining voters. If there exists a ballot b0
v

2 C
such that u

v

(b

0
v

,b�v

) > u

v

(b�v

) then a ballot b is a TH
best response of voter v to b�v

if and only if u
v

(b,b�v

) �
u

v

(b

0
,b�v

) for all b0 2 C.

We omit the formal proof of this result due to space con-
straints; intuitively, Proposition 1 holds because for small "
the intended ballot profile is much more likely than all other
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ballot profiles taken together, so v can ignore the ‘second-
order effects’ of his vote. Note that we can easily check
whether v and b�v

satisfy the conditions of Proposition 1,
by trying all m = |C| possible votes. Moreover, these condi-
tions are satisfied whenever |W (b�v

)| > 1, as v can change
the outcome in his favor by voting for his most preferred can-
didate in W (b�v

). Thus, from now on we will focus on the
case where W (b�v

) = {w} for some w 2 C.
Proposition 2. Suppose that for some voter v and for
some ballot profile b�v

of the remaining voters we have
|W (b�v

)| = 1, and let c be a TH best response of v to b�v

.
Then s(c) � s

⇤
(b�v

)� 2.

Proof. Fix a voter v 2 V, a candidate w 2 C and a ballot
b�v

such that W (b�v

) = {w}. Let sw = s

w

(b�v

), s⇤ =

s

⇤
(b�v

), c⇤ = c

⇤
(v;b�v

), c0 = c

0
(v;b�v

). Fix a candidate
c with s(c) < s

⇤ � 2. To show that c is not among v’s TH
best responses to b�v

, we consider two cases.

Case I: c

⇤
>

v

w

c

⇤
>

v

w

c

⇤
>

v

w In this case, we show that for all suf-
ficiently small " > 0 the quantity � =

e
U

"

v

(c

⇤
,b�v

) �
e
U

"

v

(c,b�v

) is positive, i.e., the "-TH utility that v derives
from voting for c⇤ is higher than his "-TH utility from voting
for c. The argument depends on the parity of sw � s

⇤.

s

w � s

⇤
s

w � s

⇤
s

w � s

⇤ is odd.
Let ⌘⇤ = (s

w � s

⇤ � 1)/2. Then � = T1 + T2 + T3, where

T1 =

⌘

⇤�1X

⌘=0

e
U

"

v

(c

⇤
,b�v

; ⌘)� e
U

"

v

(c,b�v

; ⌘),

T2 =

e
U

"

v

(c

⇤
,b�v

; ⌘

⇤
)� e

U

"

v

(c,b�v

; ⌘

⇤
),

T3 =

n�1X

⌘=⌘

⇤+1

e
U

"

v

(c

⇤
,b�v

; ⌘)� e
U

"

v

(c,b�v

; ⌘).

First, let us analyze T1. Note that

s

w � ⌘

⇤
=

s

w

+ s

⇤
+ 1

2

, s

⇤
+ ⌘

⇤
=

s

w

+ s

⇤ � 1

2

.

For every ⌘  ⌘

⇤ � 1 and every ballot profile
eb�v

2 B(b�v

, ⌘) we have sc(w; (c

⇤
,

eb�v

)) > s

w � ⌘

⇤,
sc(w; (c,

eb�v

)) > s

w�⌘

⇤, whereas for every x 2 C\{w} we
have sc(x; (c

⇤
,

eb�v

)) < s

⇤
+ ⌘

⇤, sc(x; (c, eb�v

)) < s

⇤
+ ⌘

⇤.
Thus, W (c

⇤
,

eb�v

) = W (c,

eb�v

) = {w}, and hence T1 = 0.
Next, consider T3. Since for each x 2 C we have

e
U

"

v

(x,b�v

; ⌘) = g

x

⇣(", ⌘), where g

x

does not depend on
", we can bound the absolute value of T3 as |T3|  ↵"

⌘

⇤+1,
where ↵ > 0 does not depend on ".

Now, consider T2. There is a ballot eb�v

2 B(b�v

, ⌘

⇤
)

where exactly ⌘

⇤ voters err by voting for c

⇤ instead of w.
We have sc(w;

eb�v

) = (s

w

+ s

⇤
+ 1)/2, sc(c⇤; eb�v

) =

(s

w

+ s

⇤ � 1)/2, so W (c,

eb�v

) = {w}, W (c

⇤
,

eb�v

) =

{w, c⇤}. For every other ballot bb�v

2 B(b�v

, ⌘

⇤
) it holds

that W (c,

bb�v

) = W (c

⇤
,

bb�v

) = {w}. The probability that
eb�v

occurs under the mixed strategy profile b"

�v

is ⇣(", ⌘⇤).

For " < 1/(2m � 2) we have ⇣(", ⌘

⇤
) > "

⌘

⇤
/2

n. Thus,
T2 � �"

⌘

⇤
for some � > 0 that does not depend on ". If "

is sufficiently small, we have ↵"

⌘

⇤+1
< �"

⌘

⇤
, meaning that

for such values of " the quantity T1+T2+T3 is positive, and
hence c cannot be v’s "-TH best response to b�v

.
s

w � s

⇤
s

w � s

⇤
s

w � s

⇤ is even.
The argument for this case is similar. We set ⌘⇤ = (s

w �
s

⇤
)/2, and represent � as a sum of three terms, correspond-

ing to ⌘ = 0, . . . , ⌘

⇤ � 1, ⌘ = ⌘

⇤, and ⌘ = ⌘

⇤
+1, . . . , n� 1.

We show that the first term is 0, since in every ⌘-trembling
with ⌘ < ⌘

⇤ candidate w is the unique winner no matter how
v votes. Also, the absolute value of the third term can be
bounded by ↵"

⌘

⇤+1 for some positive constant ↵. Thus, we
can focus on analyzing e

U

"

v

(c

⇤
,b�v

; ⌘

⇤
)� e

U

"

v

(c,b�v

; ⌘

⇤
).

Just as in the previous case, we observe that B(b�v

, ⌘

⇤
)

contains a ballot eb�v

where exactly ⌘

⇤ voters err by voting
for c

⇤ instead of w. For this ballot we have W (c,

eb�v

) =

{w, c⇤}, W (c

⇤
,

eb�v

) = {c⇤}. For all other ballots bb�v

2
B(b�v

, ⌘

⇤
) we have W (c,

bb�v

) ✓ {w, x} for some x 2 C⇤\
{c⇤} and either W (c

⇤
,

bb�v

) = W (c,

bb�v

) or W (c

⇤
,

bb�v

) =

W (c,

bb�v

) [ {c⇤}; as c

⇤
>

v

C

⇤ \ {c⇤} and c

⇤
>

v

w, this
means that voting for c⇤ is never worse than voting for c. The
probability of eb�v

under the mixed strategy profile b"

�v

is at
least "⌘

⇤
/2

n for sufficiently small ", so the gain in expected
utility that v can obtain by switching his vote from c to c

⇤ is
at least �"⌘

⇤
for some � > 0 that does not depend on ". As

in the previous case, this establishes our claim.

Case II: w >

v

c

⇤
w >

v

c

⇤
w >

v

c

⇤ The argument for this case is somewhat
more complicated. We establish that c is not an "-TH best
response to b�v

for all sufficiently small " by proving that
either w or c0 is a more profitable strategy for small ". If sw�
s

⇤ is even, we focus on ⌘-tremblings with ⌘ = (s

w � s

⇤
)/2

and show that w is more profitable than c, and for odd s

w�s

⇤,
we look at ⌘-tremblings with ⌘ = (s

w � s

⇤
+ 1)/2 and show

that v’s most preferred candidate in {w, c0} is more profitable
than c. We omit the details due to space constraints.

By inspecting the proof of Proposition 2, one can observe
that if x >

v

y and sc(x;b�v

) = sc(y;b�v

) then y cannot
be v’s TH best response to b�v

. Combining this observation
with Propositions 1 and 2, we discover the following feature
of TH best responses.
Corollary 1. A ballot b

v

can be a TH best response to an
intended ballot profile b�v

of the other voters only if for some
set Z 2 {W (b�v

),C⇤
(b�v

),C0
(b�v

),C0
(b�v

)} we have
b

v

2 Z and b

v

>

v

Z \ {b
v

}.
We will now leverage Corollary 1 to derive a polynomial-

time algorithm for computing a TH best response of a given
voter v. Importantly, the input to this algorithm is v’s utility
function and the other voters’ ballots; in particular, to com-
pute his best response, v does not need to know the utility
functions of other voters.
Theorem 1. Given a voter v 2 V with an ordinary utility
function �

v

and a ballot profile b�v

of the remaining voters,
we can find in polynomial time a TH-BR of v to b�v

.
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Proof. Fix a voter v and a ballot profile b�v

. By Propo-
sition 1 we can efficiently compute a TH best response if
|W (b�v

)| > 1, so from now we will assume that W (b�v

) =

{w} for some w 2 C. Let c⇤ = c

⇤
(v;b�v

), c0 = c

0
(v;b�v

),
c

00
= c

00
(v;b�v

). We know that the set of v’s TH best
responses to b�v

is a subset of {w, c⇤, c0, c00}. Thus, it
suffices to compare four values—e

U

"

v

(w,b�v

), e
U

"

v

(c

⇤
,b�v

),
e
U

"

v

(c

0
,b�v

) and e
U

"

v

(c

00
,b�v

)—for sufficiently small ".
Suppose that sw � s

⇤ is even and let ⌘⇤ = (s

w � s

⇤
)/2

(when s

w�s

⇤ is odd the analysis is similar, and we omit it due
to space constraints). For ⌘ < ⌘

⇤ we have W (x,

eb�v

) = {w}
for all eb�v

2 B(b�v

, ⌘) and all x 2 {w, c⇤, c0, c00}. Further,
there is a value ↵ > 0 that does not depend on " such that
|eU"

v

(x,b�v

; ⌘)| < ↵"

⌘

⇤+1 for each ⌘ � ⌘

⇤
+ 1 and each

x 2 {w, c⇤, c0, c00}. Thus, just as in the proof of Proposition 2,
we will focus on e

U

"

v

(x,b�v

; ⌘

⇤
) for x 2 {w, c⇤, c0, c00}.

Suppose first that b
v

= w. Then for every ballot profile
eb�v

2 B(b�v

, ⌘

⇤
) we have W (w,

eb�v

) = {w}.
Now, suppose that b

v

= c

⇤. We have W (c

⇤
,

eb�v

) 6= {w}
for a ballot profile eb�v

2 B(b�v

, ⌘

⇤
) if and only if one of

the following four conditions holds:

(a) exactly ⌘

⇤ voters in eb�v

err by voting for c⇤ instead of
w, in which case W (c

⇤
,

eb�v

) = {c⇤};
(b) exactly ⌘

⇤ voters in eb�v

err by voting for some x 2 C⇤\
{c⇤} instead of w, in which case W (c

⇤
,

eb�v

) = {x,w};
(c) exactly ⌘

⇤ � 1 voters in eb�v

err by voting for c

⇤ in-
stead of w, and there is one voter u 2 V \ {v} with
b

u

= w, eb
u

= y for some y 62 {w, c⇤}, in which case
W (c

⇤
,

eb�v

) = {c⇤, w};
(d) exactly ⌘

⇤ � 1 voters in eb�v

err by voting for c

⇤ in-
stead of w, and there is one voter u 2 V \ {v} with
b

u

= z, eb
u

= c

⇤ for some z 62 {w, c⇤}, in which case
W (c

⇤
,

eb�v

) = {c⇤, w}.
Let P

a

, P
b

, P
c

, and P

d

be the probability that a ballot profile
selected according to b"

�v

satisfies condition (a), (b), (c), or
(d), respectively, and let P

t

= P

a

+ P

b

+ P

c

+ P

d

. We have

P

a

=

 
s

w

⌘

⇤

!
⇣(", ⌘⇤);

P

b

= (|C⇤|� 1)

 
s

w

⌘

⇤

!
⇣(", ⌘⇤);

P

c

=

 
s

w

⌘

⇤

!
· ⌘⇤ · (m� 2)⇣(", ⌘⇤);

P

d

=

 
s

w

⌘

⇤ � 1

!
· (n� 1� s

w � s

⇤) · ⇣(", ⌘⇤).

Let X = P

a

�

v

(c⇤) +
P

b

|C⇤|� 1

X

x2C⇤\{c⇤}

�

v

(x) + �

v

(w)
2

+ (P
c

+ P

d

)
�

v

(c⇤) + �

v

(w)
2

,

with the convention that the second term in the left-hand side
is 0 when |C⇤| = 1. We conclude that e

U

"

v

(w,b�v

; ⌘

⇤
) >

e
U

"

v

(w,b�v

; ⌘

⇤
) if X > P

t

�

v

(w) and e
U

"

v

(w,b�v

; ⌘

⇤
) <

e
U

"

v

(w,b�v

; ⌘

⇤
) if X < P

t

�

v

(w). Further, since �
v

is an ordi-
nary utility function, we know that X 6= P

t

�

v

(w), and hence
|X � P

t

�

v

(w)| � �"

⌘

⇤
for some constant � and all suffi-

ciently small values of ✏. Since the quantities X/⇣(", ⌘

⇤
) and

P

t

�

v

(w)/⇣(", ⌘

⇤
) can be computed and compared in polyno-

mial time, this shows that v can decide between w and c

⇤ in
polynomial time. Note that v may prefer voting for w over
voting for c⇤ even if c⇤ >

v

w; this may happen, for instance,
if he finds some candidate in C⇤ \{c⇤} highly undesirable. In
a similar fashion, v can compare all other pairs of candidates
from {w, c⇤, c0c00} and select his best response.

Theorem 1 provides evidence that voters may be able to
apply TH-based reasoning when choosing their strategies; in-
deed, if computing a TH best response was intractable, it
would be hard to defend TH equilibria as a reasonable so-
lution concept for Plurality voting games.

4 Properties of Trembling Hand Equilibria
We have shown that a voter can efficiently compute his TH
best response to other voters’ intended ballot profile. We
will now establish several useful properties of trembling hand
equilibria of Plurality voting. Throughout this section, we as-
sume that all voters have ordinary utilities, and leave simpler
claims without proof due to space constraints.

We first revisit Example 1 and characterize the conditions
under which a candidate can be a unanimous winner in a
THE. Interestingly, the answer strongly depends on whether
the number of voters is even or odd.
Theorem 2. A profile b = (w, . . . , w) is a THE if and only if

• n = |V| is even and each voter v 2 V prefers w to all
other candidates, or

• n is odd and for each voter v 2 V and each candidate
a 2 C we have m�

v

(w)�
P

c2C �

v

(c) � �

v

(a)��

v

(w).

Proof. Suppose that we have |V| = 2k for some k 2 N. For
k = 1 our claim follows from Proposition 1, so assume k >

1. Suppose that a ballot profile b = (w, . . . , w) is a THE, and
assume for the sake of contradiction that some voter v 2 V
has a >

v

w for some a 2 C. In all ⌘-tremblings with ⌘ <

k � 1 candidate w wins irrespective of v’s vote, so we focus
on (k � 1)-tremblings. If v votes for w, then w is the unique
winner in all such tremblings as well. However, there is a (k�
1)-trembling eb�v

where all k�1 erring voters vote for a, and
we have W (a,

eb�v

) = {a,w}, W (a,

bb�v

) = {w} for any
other (k�1)-trembling bb�v

. As (�
v

(a)+�

v

(w))/2 > �

v

(w),
voting for w is not a TH best response for v, a contradiction.

Now, suppose that |V| = 2k+1 for some k 2 N. Consider
a voter v, and let a be his most preferred candidate. From
symmetry considerations, it is clear that v’s TH best response
to b�v

is either w or a. To compare the associated TH util-
ities, it suffices to focus on k-tremblings where all k erring
voters vote for the same candidate c

i

6= w; if v responds with
w, then w remains the unique winner, and if v responds with
a, the winning set is {w, c

i

} when a 6= c

i

and {a} otherwise.
Since all such tremblings are equally likely and voters’ utili-
ties are ordinary, w is a TH best response to b�v

if and only
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if
P

c2C\{w,a}
�v(w)+�v(c)

2 + �

v

(a)  (m � 1)�

v

(w). By
rearranging the terms, we get the required result.

Theorem 2 says that for an even number of voters a THE
outcome can be a consensus only if all voters agree on the
best candidate. For an odd number of voters, the situation is
more complicated: a candidate w can be a consensus winner
if every voter v believes that w provides a ‘substantial’ advan-
tage (namely, 1

m

(�

v

(a) � �

v

(w)), where a is v’s top choice)
over a candidate sampled uniformly at random from C.
Example 2. Let C = {c1, . . . , c5}, V = {u, v, w}. If we
have �

z

(c

i

) = i � 1 for each z 2 V and each c

i

2 C, then
(c5, c5, c5) and (c4, c4, c4) are THE (since 5 · 4� 10 � 4� 4

and 5·3�10 � 4�3), but (c3, c3, c3) is not (since 5·2�10 <

4�2). In contrast, if we have �
z

(c

i

) = i�1 for i = 1, 2, 3, 4,
�

z

(c5) = 10, for each z 2 V, then (c4, c4, c4) is not a THE.
Our next result describes THE where the winning set con-

tains at least two candidates. Interestingly, it is reminiscent
of existing characterizations of NE with non-singleton win-
ning sets for lazy voters (Theorem 2 in [Desmedt and Elkind,
2010]) and truth-biased voters (Theorem 4 in [Elkind et al.,
2015]), under randomized tie-breaking.
Theorem 3. For every trembling hand equilibrium b with
|W (b)| > 1 we have sc(c;b) > 0 if and only if c 2 W (b).

Importantly, Theorem 3 generally implies that contrary to
Messner and Polborn [2002; 2011], in our setting the Du-
verger’s law does not hold, i.e., there may exist THE with
large winning sets. Even more interestingly, the example be-
low demonstrates that there may exist THE with a single win-
ner and several runners-up.
Example 3. Let C = {a, b, c} and let |V| = 14. There
are six voters with preference order abc (where we omit the
‘>’ sign for readability), four voters with preference order
bac, and another four voters with preference order cab. Each
voter assigns utility 4 to his top choice, 2 to his second choice
and 1 to his third choice. In this case, the truthful profile is
a trembling hand equilibrium, where candidate a is a unique
winner, and both b and c are runners-up.

We now focus on THE where the winning set is a singleton,
and not all voters vote for the same candidate, i.e., the set of
runners-up is non-empty. In what follows, we consider a THE
b with W (b) = {w} and set sw = s

w

(b), s⇤ = s

⇤
(b).

When the difference between the score of the winner and
the score of the runners-up is even, the voters can be parti-
tioned into three groups: the (unique) winner, the runner-up,
and the losers (candidates with no votes). Moreover, each
voter votes for his most preferred candidate among those with
positive scores.
Theorem 4. If sw � s

⇤ is even then sc(c;b) 2 {0, s⇤} for all
c 2 C \ {w}. Furthermore, b

v

>

v

C+
(b) \ {b

v

}, 8v 2 V.
When s

w�s

⇤ is odd, there may also exist some candidates
whose score is s⇤ � 1.
Theorem 5. If sw � s

⇤ is odd then sc(c;b) 2 {0, s⇤, s⇤� 1}
for all c 2 C \ {w}.

Note, however, that in the latter case a voter may fail to
vote for his most preferred candidate in C+

(b): for instance,

v may prefer a candidate c with sc(c;b) = s

⇤ � 1 to w, yet
vote for w, because it is a ‘safer’ choice.

We will now describe a large class of preference profiles
that guarantee the existence of a trembling hand equilibrium.
Theorem 6. Suppose that for a pair of candidates a, c 2 C it
holds that a strict majority of voters prefer a to c, yet at least
three voters prefer c to a. Then there exists a THE b such that
W (b) = {a}, C⇤

(b) = {c}, and C

+
(b) = {a, c}.

This result indicates that in large-scale elections we are
very likely to have at least one THE; indeed, it is likely that
any candidate can be the unique winner in some THE. How-
ever, it is possible to construct a small profile with no THE.
Example 4. Let C = {a, b, c, d, e, f} and let |V| = 9. There
are six voters with preference order abcdef , one voter with
preferences bcdaef , one voter with preferences feadcb, and
one voter with preferences cbdefa . Each voter assigns utility
100 to his top choice and utilities in the set {1, 2, 3, 4, 5} to
the remaining candidates. Note that no pair of candidates in
this election satisfies the conditions of Theorem 6. An exten-
sive case analysis shows that this profile admits no THE.

We conclude this section by showing that, even though we
now know quite a bit about the structure of trembling hand
equilibria, it may still be difficult to decide whether there is a
THE that contains a specific candidate w in its winning set.
Theorem 7. Given a candidate set C, a voter set V, a utility
function �

v

for each voter v 2 V and a distinguished candi-
date a 2 C, it is NP-hard to decide whether the associated
Plurality voting game admits a THE b with a 2 W (b).

5 Discussion and Conclusions
Our results show that trembling hand equilibria of Plural-
ity voting have many good properties. In particular, ‘silly’
Nash equilibria where all voters vote for an undesirable can-
didate are eliminated by this equilibrium refinement. Further,
THE encourage voters to coordinate on reasonable candidates
even when these candidates do not win: all candidates other
than the winners are either (almost) runners-up, or receive
no votes at all. Also, the problem of computing one’s TH
best response, while seemingly complicated, turns out to be
tractable. On the negative side, Theorem 6 shows that es-
sentially any candidate that is not a Condorcet loser may still
become a winner in a THE, i.e., the power of this equilibrium
refinement as a tool to eliminate bad equilibria is somewhat
limited. Moreover, it can ‘overshoot’, in that some games
have no THE at all (however, such cases are very rare com-
pared to other voting equilibrium refinements studied so far).

There are several open problems suggested by our work.
First, it would be desirable to remove or weaken the technical
requirement that voters’ utilities are ordinary. However, this
seems to require looking at ⌘-tremblings for several values
of ⌘ simultaneously, which complicates the analysis signifi-
cantly. Further, it would be interesting to know whether there
exists a polynomial-time algorithm for deciding whether a
given preference profile admits a THE (note that this is not
ruled out by Theorem 7). Another exciting direction, which
is enabled by the tractability result of Theorem 1, is exploring
the properties of TH best response dynamics, both theoreti-
cally and empirically.
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