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Abstract
The Distributed Breakout Algorithm (DBA) is a lo-
cal search algorithm that was originally designed
to solve DisCSPs and DisMaxCSPs. Extending
it to general-valued DCOPs requires three design
choices: manner of modifying base costs (mul-
tiplicative weights or additive penalties); defini-
tion of constraint violation (non-zero cost, non-
minimum cost, and maximum cost); and scope of
modifying cost tables during breakout (entry, row,
column, or table).
We propose Generalized DBA (GDBA) to span the
24 combinations in the three dimensions. In our
theoretical analysis we prove that some variants
of GDBA are equivalent for certain problems, and
prove that other variants may find suboptimal solu-
tions even on tree topologies where DBA is com-
plete. Our extensive empirical evaluation on var-
ious benchmarks shows that in practice, GDBA
is capable of finding solutions of equal or sig-
nificantly lower cost than alternative heuristic ap-
proaches (including DSA).

1 Introduction
Distributed constraint satisfaction and optimization problems
(DisCSPs and DCOPs) are common frameworks for repre-
senting multiagent coordination problems that are distributed
by nature, such as target tracking in sensor networks [Zhang
et al., 2005] and scheduling meetings in offices [Maheswaran
et al., 2004b]. Because they are NP-hard, considerable re-
search effort has been devoted to developing incomplete al-
gorithms for finding good solutions quickly [Yokoo and Hi-
rayama, 1996; Maheswaran et al., 2004a; Zhang et al., 2005;
Basharu et al., 2005; Farinelli et al., 2008; Smith and Mailler,
2010]. Local search algorithms, e.g., DSA [Zhang et al.,
2005] and MGM [Maheswaran et al., 2004a], are simple in-
complete algorithms with a naturally distributed structure.
Although they commonly offer no (or little) quality guar-
antees, they were empirically found to produce high quality
solutions [Yokoo and Hirayama, 1996; Maheswaran et al.,
2004a; Zhang et al., 2005; Zivan et al., 2014]

The Distributed Breakout Algorithm (DBA) is one such
local search algorithm, originally proposed to solve DisC-

SPs [Yokoo and Hirayama, 1996]. Agents in DBA associate
weights with constraints and employ greedy local search to
reduce the weighted sum of violated constraints. Agents try
to escape local minima via a breakout mechanism that in-
creases these weights.

DCOPs generalize DisCSPs by replacing hard constraints
with cost functions that factor a global objective function. Ini-
tial attempts to adapt DBA to DCOPs focused on minimizing
the number of constraint violations in over-constrained DisC-
SPs (also known as DisMaxCSPs) [Hirayama and Yokoo,
1997; Wittenburg and Zhang, 2003]. DBA was subsequently
used with more general-valued DCOPs (i.e., problems in
which a violated constraint incurs a numeric cost) [Zhang
et al., 2005], but the details of this adaptation were omitted.
This is unfortunate, because many details of DBA become
unclear with general-valued cost functions. In DisCSP an as-
signment can either violate or satisfy a constraint. What does
it mean for a general-valued DCOP constraint to be violated,
when each combination of assignments incurs some cost? In
DisCSP the weight of a constraint is increased by one. For a
DCOP should this be interpreted as an increment to the con-
straint cost (e.g., increasing a base cost of 3 to 4, then to 5,
etc.) or as an increment to a multiplicative factor of the con-
straint cost (e.g., increasing a base cost of 3 to 6, then to 9,
etc.)? In DisCSP a constraint is a single joint assignment to
a set of variables, and the scope of the weight increase is ex-
actly that single joint assignment. In DCOP, constraints are
arbitrary functions from joint assignments to costs, so what
set of joint assignments should be affected by an increase?

In this paper we make three major contributions. First, we
formalize the three design choices required to adapt DBA to
general-valued DCOPs: the manner of computing effective
costs based on true costs and modifiers (i.e., the “weights”
of the original DBA), the definition of constraint violation,
and the scope of changes to the modifiers during breakouts.
For each choice we consider alternatives that are consistent
with the original DBA: three definitions, two manners, and
four scopes, resulting in a space of 24 variants parameterized
along three dimensions. We propose the Generalized Dis-
tributed Breakout Algorithm (GDBA) to span this space.

Second, we establish theoretical properties of GDBA. We
establish equivalences between some variants on important
classes of problems. We also prove limitations of GDBA
on general-valued DCOPs. Although DBA is complete and
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sound on graph coloring DisCSPs with tree topologies, we
prove that DCOPs defined on the same topologies may not be
solved optimally by some variants of GDBA.

Our third contribution is an extensive empirical analysis of
GDBA on three classes of DCOPs: random graphs with un-
structured cost functions, weighted graph coloring, and meet-
ing scheduling. Our results show that GDBA finds equal or
better solutions than state-of-the-art competitors, in contrast
to previous reported results [Zhang et al., 2005].

2 Distributed Satisfaction and Optimization
DisCSPs and DCOPs have agents A = {A1, . . . , Am

}; vari-

ables X = {X1, . . . , Xn

} where each variable uniquely
belongs to (is held by) one of the agents; finite domains

D = {D1, . . . , Dm

} where D
i

specifies the values that X
i

can take; and constraints describing relationships between
variables. We make the standard assumption that each agent
controls exactly one variable (n = m), and hence we use
the terms “agent” and “variable” interchangeably. We further
adopt a common assumption that all constraints are binary,
involving only two agents. The undirected constraint graph

has vertices X and an edge (X
i

, X
j

) if and only if X
i

and
X

j

are constrained. Two variables are neighbors if they are
adjacent in the constraint graph, and N

i

denotes the set of
neighbors of X

i

. Each agent has exclusive control over the
value assignment of its variable, and knowledge only of its
neighbors and the constraints it has with its neighbors.

The set of constraints in a DisCSP is C. Each constraint
C

l

2 C between X
l1 and X

l2 is a pair of values C
l

2
D

l1 ⇥ D
l2 representing a no-good, i.e., a disallowed com-

bination of values for X
l1 and X

l2. If an assignment takes
the values disallowed by a constraint, it is said to violate that
constraint. The agents’ goal is to choose a full assignment
x = (x1, . . . , xn

) 2 D1 ⇥ · · · ⇥ D
n

such that no constraint
is violated. DisMaxCSP generalizes DisCSP to minimize the
number of violated constraints.

The set of constraints in a DCOP is F . Unlike the no-good
representation of DisCSP constraints, each DCOP constraint
F
ij

2 F is a function F
ij

: D
i

⇥D
j

! Z�0 mapping pairs of
values of the constrained variables to costs. Constraints are
symmetric so F

ij

and F
ji

are alternate names for the same
constraint. The agents’ objective is to choose a full assign-
ment x = (x1, . . . , xn

) 2 D1 ⇥ · · · ⇥ D
n

minimizing the
total cost F (x) =

P
Fij2F F

ij

(x
i

, x
j

).
We refer to the DCOP binary constraints as two-

dimensional tables with rows and columns indexed by values
in the domains of the two constrained variables. We adopt
the convention that when referring to a table F

ij

from the
perspective of a specific agent i, the values in D

i

always in-
dex the rows. Thus, the tables from the perspectives of i and
j for a constraint F

ij

2 F are transposes of each other.
We assume that the tables are not uniform (otherwise they

can simply be ignored by the agents).

3 Distributed Breakout Algorithm (DBA)
DBA is a synchronous local search algorithm designed for
DisCSPs. Agents in DBA collectively maintain a full as-
signment x with each agent keeping a current value for its

Algorithm 1: GDBA
1 Initialize cost modifiers to 0
2 Choose random value x

i

2 D

i

3 Send x

i

to all neighbors
4 while termination condition not met do
5 Receive x

j

from all neighbors
6 x

0
i

 argmin

d2Di\{xi}

X

j2Ni

EFFCOST(d, j, x
j

)

7 �

i

 
X

j2Ni

EFFCOST(x0
i

, j, x

j

) � EFFCOST(x
i

, j, x

j

)

8 Send �

i

to all neighbors
9 Receive �

j

from all neighbors
10 if �

i

> 0 then
11 if �

i

is best improvement then
12 v

i

 x

0
i

13 else if no neighbor can improve then
14 foreach j 2 N

i

do
15 if ISVIOLATED(x

i

, j, x

j

) then
16 INCREASEMOD(x

i

, j, x

j

)
17 Send x

i

to all neighbors
18 Assign best x

i

to X

i

Figure 1: Generalized DBA executed by A
i

.

variable. Each agent also maintains a weight, initially 1, for
each constraint it is involved in. The agents greedily update
x in every iteration to minimize the sum of weights of vi-
olated constraints. Each agent calculates the maximal im-
provement in the sum of weights that it can achieve by uni-
laterally changing its assignment, then coordinates with its
neighbors to ensure that only the agent with the greatest im-
provement (subject to deterministic tie-breaking) in its neigh-
borhood is allowed to change its value.

To escape local minima, DBA modifies its objective func-
tion by increasing some of the weights. Detecting true local
minima requires the full assignment x, which is not generally
known to a single agent, so agents instead detect a weaker
condition, quasi-local minima, that can be computed using
only information about their neighbors.
Definition 1 A

i

is in a quasi-local minimum (QLM) if nei-
ther it nor any of its neighbors can unilaterally change to an
assignment resulting in lower effective cost.
When an agent detects that it is in a QLM, it performs a
breakout by increasing the weights of all violated constraints,
eventually causing it to choose a new value. Neighboring
agents will not necessarily be in QLMs at the same time,
and hence one neighbor may break out while the other does
not. This may lead to agents having different weights for the
same constraint. (A later revision to DBA disallowed this [Hi-
rayama and Yokoo, 2005], but we follow the original descrip-
tion [Yokoo and Hirayama, 1996].)

4 Generalized DBA (GDBA)
DBA was originally designed for solving DisCSPs but the
general structure of the algorithm is compatible with DCOPs.
In fact, agents in DBA implicitly try to solve a DisMaxCSP,
searching for an assignment with cost 0. GDBA (pseudocode
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Name Description

M Multiplicative manner.
A Additive manner.

NZ Non-zero constraint violation.
NM Non-minimum constraint violation.
MX Maximum constraint violation.

E Entry scope.
C Column scope.
R Row scope.
T Table scope.

Table 1: Summary of the design alternatives for GDBA.

in Figure 1) extends DBA to DCOPs with general constraint
costs, where the original description may be interpreted in
multiple ways, all of which are equivalent on DisMaxCSPs.

Each agent A
i

uses a modifier function M
ij

: D
i

⇥D
j

!
Z�0 for each constraint F

ij

, analogous to the weights in
DBA. As with weights, these modifiers are increased dur-
ing breakout. The modifiers combine with the base costs of
the DCOP constraints to yield local effective cost functions

(EFFCOST), which generalize the sum of weights in DBA.
They are initialized to 0 in line 1 and increased by INCREASE-
MOD. A synchronous step is defined by every agent receiving
messages from all of its neighbors. Each iteration requires
one step (lines 5 – 8) to calculate the best local improvement
�

i

based on the values received from neighbors, and another
step (lines 9 – 17) to decide if A

i

can change its assignment.
If A

i

detects a QLM, it performs the breakout process de-
scribed in lines 14 – 16.

Detecting an optimal solution in a DCOP is generally in-
tractable (unless P=NP) and so the search continues even if
the optimal solution has been encountered. We assume an
upper limit on the number of iterations as the termination con-
dition (line 4), as it is simple and predictable. GDBA can also
use a method like the Anytime Local Search framework [Zi-
van et al., 2014] to cache the best solution found during the
search and assign it upon termination (line 18). Without such
a method, the solution reported is the assignment held by the
agents following the last iteration of the algorithm.

GDBA has the same time and space complexity of DBA.
Each agent A

i

requires O(|N
i

| · |D
i

|) time in each step and
O(|N

i

|·|D
i

|·max

j2Ni |Dj

|) space total. (Note that all agents
execute each step in parallel.)

To complete the design of GDBA we next define the three
subroutines EFFCOST, ISVIOLATED, and INCREASEMOD
that implement the design alternatives summarized in Table 1.

Manner of cost increase defines how base costs and modi-
fiers are combined to yield effective costs and is implemented
in EFFCOST. We consider two manners. The first, M, uses
modifiers as multiplicative factors to the base costs (line 20).
This amplifies inherent differences in the base constraints, al-
lowing for faster modification of the cost landscape while pre-
serving some of the underlying problem structure. The sec-
ond, A, uses modifiers as additive penalties to the base costs
(line 21), allowing for finer-grained but slower modification
of the cost landscape, and a risk of erasing inherent cost dif-

ferences, resulting in an ill-fitting objective function.

Function EFFCOST(x
i

, j, x
j

)
19 switch manner do
20 case M: do return F

ij

(x

i

, x

j

) · [M
ij

(x

i

, x

j

) + 1]

21 case A: do return F

ij

(x

i

, x

j

) +M

ij

(x

i

, x

j

)

Constraint violation is defined in ISVIOLATED. We con-
sider three possible definitions for constraint violations based
on the base costs of the constraints. The use of base costs
rather than effective costs is consistent with DBA, which only
uses the presence, not the weight, of a no-good for determin-
ing constraint violation. It also helps to keep the cost land-
scape closer to the true objective, because only “bad” (i.e.,
violated) constraints are modified in breakouts. The three
definitions are progressively more restrictive in defining vi-
olation, leading to less exploration but greater chance of con-
vergence.

Function ISVIOLATED(x
i

, j, x
j

)
22 c EFFCOST(x

i

, j, x

j

)
23 switch violation definition do
24 case NZ: do return c > 0

25 case NM: do return c > min

d12Di,d22Dj

F

ij

(d1, d2)

26 case MX: do return c = max

d12Di,d22Dj

F

ij

(d1, d2)

A constraint is NZ-violated if it has a non-zero cost in an
assignment (line 24). Some constraints may not have 0 cost
for any assignment and hence will always be NZ-violated;
although this will prevent convergence, it allows for more ex-
ploration that may result in better solutions. A constraint is
NM-violated if its cost under the current assignment is non-

minimum over all joint assignments (line 25), this is less ex-
plorative than NZ but more likely to converge because for
every constraint there is always a joint assignment that does
not NZ-violate it. Finally, a constraint is MX-violated if it
takes the maximum cost over all possible joint assignments
(line 26). Breakouts will only occur when an agent is trapped
by its neighbors in its worst assignment; for other cases,
GDBA with MX is not explorative and relies solely on greedy
hill climbing for improvement. For every constraint there is
always a joint assignment that does not MX-violate it.

Scope of cost increase specifies the elements in M that
are incremented when the breakout is performed for a vio-
lated constraint. We consider four scopes named for the di-
mension in the table M that is altered and implemented in
INCREASEMOD. In DBA, the weight of a single no-good is
incremented. The analogue in GDBA is to increment the sin-
gle entry corresponding violated no-good; we call this the E

scope. This is a very fine-grained modification that results
in slower evolution of the cost landscape but more accurately
captures the local minima, because an agent must actually be
trapped in a QLM to modify the cost of a joint assignment.
The C scope affects the costs in a column: all values in the
domain of X

i

given the neighbor’s current value. With M
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Figure 2: Counter-example to completeness of GDBA with
maximum constraint violations.

manner this scales the relative importance of violated con-
straints for the agent’s current value; as the agent is trapped
in its current value, this eventually allows it to escape. (We
prove in Proposition 3 that it is not very interesting for A.) The
R scope affects the costs in a row: all entries for the current
value of X

i

for all value assignments of the neighbor. This
is similar to a value penalty in DisPeL [Basharu et al., 2005],
trying to move the agent away from a value because it previ-
ously led to a QLM, even if the current context is different.
Finally, the T scope affects the cost in the whole table: all en-
tries in the modifier for a violated constraint are incremented,
effectively making the constraint more important to A

i

rela-
tive to its other constraints. T modifies the cost landscape the
fastest and most drastically of all scopes.

Function INCREASEMOD(x
i

, j, x
j

)
27 switch scope do
28 case E: do Increment C

ij

(x

i

, x

j

)

29 case C: do for d 2 D

i

do Increment C
ij

(d, x

j

)

30 case R: do for d 2 D

j

do Increment C
ij

(x

i

, d)

31 case T: do
32 for d1 2 D

i

, d2 2 D

j

do Increment C
ij

(d1, d2)

5 Theoretical Results
We identify specific variants of GDBA with triples (manner,
definition, scope) specifying the three dimensions. Because
there are two manners, three violation definitions, and four
scopes, there are a total of 24 GDBA variants. However, in
this section we show that some of these may be equivalent for
some classes of problems, i.e., in all iterations they compute
the same effective costs and hence send the same messages
and select the same assignments. When a dimension is re-
stricted to a subset of the possible implementations, we rep-
resent it as a set in the triple notation. For example, (M, {NZ,
NM}, E) is DBA with M manner, E scope, and either NZ or
NM constraint violation. If a dimension may take any value,
we represent it with “*”. For example, (*, NZ, E) means DBA
with NZ constraint violation, E scope, and any manner.

5.1 Equivalences
We start with DCOPs with binary-valued constraints:

Proposition 1 If for all F
ij

2 F the set {F
ij

(d1, d2) | d1 2
D

i

, d2 2 D
j

} = {0, 1}, then (*, *, E) are equivalent.

Proof: The equivalence of the three violation definitions fol-
lows directly from the assumption that all constraints have
minimum cost of 0 and maximum cost of 1.

Equivalence of manners is shown by induction on the num-
ber of iterations. We show that M

ij

(d1, d2) is the same under
both M and A for all M

ij

and d1 2 D
i

, d2 2 D
j

and that
the effective costs are the same. In the first iteration all M

ij

are initialized as zero and so the effective cost is F
ij

for both
manners and the base case is proven.

Assume next that the M
ij

and effective costs are the same
for both manners on iteration t. Thus the same value will be
chosen for time t+1 and the same constraints will be broken
out of at time t if A

i

is in a QLM. Hence on iteration t + 1,
M

ij

(x
i

, x
j

) will be the same for both manners. There are
now two cases. If F

ij

(x
i

, x
j

) = 1 then the effective cost is
M

ij

(x
i

, x
j

) + 1 under both manners. If F
ij

(x
i

, x
j

) = 0 then
M

ij

(x
i

, x
j

) = 0 because the scope is E and F
ij

(x
i

, x
j

) is not
a violation. Thus under both manners the effective cost is 0
and equivalence is proven. ⇤

Corollary 1 DBA is (*, *, E) on DisCSPs and DisMaxCSPs

where every constraint can be satisfied and violated.

Proposition 2 With M manner and a fixed violation defini-

tion V 2 {NZ,NM,MX}, the variants (M, V, {E, C, R}) are

equivalent on graph coloring problems.

Proof: In graph coloring, base costs F
ij

(x
i

, x
j

) > 0 if and
only if x

i

= x
j

, and so because of the M manner, the effective
cost will also be non-zero if and only if x

i

= x
j

. This means
that modifiers are irrelevant except for M

ij

(d
i

, d
i

) for d
i

2
D

i

. Constraint F
ij

can only be violated (under any definition)
when x

i

= x
j

, and for the scopes E, C, and R, M
ij

(d
i

, d
i

) is
only incremented when x

i

= x
j

= d
i

. Thus they are all
equivalent.

Note that (M, V, T) is not equivalent to these, since for d
i

2
D

i

, the modifier M
ij

(d
i

, d
i

) can also be incremented when
x1 = x2 = d2 6= d

i

. ⇤
The next proposition shows that breakouts do not change

the behavior of agents in some variants of GDBA.

Proposition 3 (A,*,{C, T}) is equivalent to MGM, i.e., as if

no breakouts are performed at all.

Proof: We consider a variable X
i

that is in a QLM and show
that it does not change the choice of assignment after break-
out. Let J be the set of j such that F

ij

are currently violated,
so that the breakout increments M

ij

(x
i

, x
j

) for all j 2 J . De-
note the effective cost before and after breakout as EFFCOST

t

and EFFCOST
t+1, respectively. Then note that because we

are in C or T scope,

EFFCOST
t+1(d, j, xj

) =

⇢
EFFCOST

t

(d, j, x

j

) + 1 j 2 J

EFFCOST
t

(d, j, x

j

) otherwise.

Line 6 of Algorithm 1 computes the best alternative after
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breakout:

argmin

d2Di\{xi}

X

j2Ni

EFFCOST
t+1(d, j, xj

)

= argmin

d2Di\{xi}

0

@| J | +
X

j2Ni

EFFCOST
t

(d, j, x
j

)

1

A

= argmin

d2Di\{xi}

X

j2Ni

EFFCOST
t

(d, j, x
j

).

where the |J | term is dropped because it does not affect the
minimization. This is the same best alternative considered
before the breakout, and hence the breakout does not change
the agent’s behavior. ⇤

5.2 Limitations
We next show that GDBA may not optimally solve problems
that can be solved by DBA when formulated as DisCSPs.
Proposition 4 (*, MX, *) is not guaranteed to find optimal

solutions, even when the constraint graph has a tree topology.

Proof: Consider the DCOP in Figure 2 where every variable
has domain {1, 2}. Note that there are two optimal solutions
of cost 0 in which adjacent variables take alternating values.

Let the starting assignment be x = (1, 2, 1, 2, 2, 1, 2) with
cost 1, and consider �

i

for each variable X
i

2 X . For X1,
changing to x0

1 = 2 incurs an increase in cost of 1 (i.e., �1 =

�1), so X1 cannot improve. For the other agents we get �2 =

�3 = �3 and �4 = �5 = �6 = �7 = �2, so no agent can
improve and every agent is in a QLM.

Every agent will try to breakout by increasing the cost of
violated constraints. However, no constraint is MX-violated:
F36 has maximum value of 2 when v3 = v6 = 2, so the
current assignment of v3 = v6 = 1 does not MX-violate
the constraint, and all other constraints have 0 cost. Thus
no modifiers are increased and all subsequent iterations of
the algorithm will maintain the suboptimal initial assignment.
Because no effective cost is ever increased, the result holds
for all manners and scopes of cost increase. ⇤

Proposition 4 highlights the importance of problem formu-
lation: the counter-example occurs precisely because GDBA
tries to solve a weighted tree coloring problem. DBA opti-
mally solves unweighted tree coloring [Zhang et al., 2005],
and by Corollary 1, so does (*, MX, *). Since trees can al-
ways be 2-colored, the optimal solution has 0 cost, and thus
the weights could have been ignored.

6 Experimental Results
We tested GDBA on both abstract and realistic benchmark
problems. Unless otherwise noted, all results reported are av-
erages over 200 independent, randomly-generated instances
with n = 200. We compared GDBA to six DCOP algo-
rithms: DSA (type C, p = 0.4 and p = 0.8; settings of p
from 0.1 to 0.9 were used and these performed best, each
on different types of problems) [Zhang et al., 2005], MGM
and MGM2 [Maheswaran et al., 2004a], Max-Sum with tie-
breaking preferences [Farinelli et al., 2008] and damping fac-
tor 0.5 [Tarlow et al., 2010], DSAN [Arshad and Silaghi,
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Figure 3: Anytime cost (a) and current cost (b) of GDBA on
unstructured problems.

2004], and ADPOP (maxDims = 2) [Petcu and Faltings,
2005]. Descriptions of these algorithms are omitted for space.

All algorithms were run for 2000 steps. For each algo-
rithm we present the average anytime result following each
step. Hence, non-monotonic algorithms (e.g., all GDBA ver-
sions and DSA) were implemented within the anytime frame-
work proposed by [Zivan et al., 2014]. In order to discuss the
different levels of exploration caused by breakouts, we also
present the cost of the current assignment following each step
of GDBA.

We first considered entirely random constraint topologies:
each pair of agents was constrained independently with prob-
ability p1 = 0.1 (experiments on denser problems yielded
generally similar results). Costs were random, with each en-
try in each table independently sampled from the discrete uni-
form distribution on [1..10]; zero was excluded to demon-
strate GDBA’s applicability to general-valued DCOPs. All
domains had 10 values.

Figure 3(a) presents the anytime costs of the best solutions
found by all GDBA variants. (M, NM, T) achieved the lowest
cost overall, outperforming all other variants within 500 steps
and continuing to slowly improve thereafter. With MX defini-
tion, E scope was best, while for the other definitions C and
T scopes were best. R scope generally found poor solutions,
except for (A, MX, R), which quickly found good solutions
but did not continue to improve.

The results presented in Figure 3(b) demonstrate that
breakouts do not always lead to better solutions. In particular,
the poor performance of R scope is explained by breakouts
causing inferior solutions to be explored, which also occurred
with E scope with NM or NZ definitions.

E scope was most effective when paired with MX defini-
tion, particularly in the (A, MX, E) configuration. Although
this led to worse solutions being explored on average (as seen
by current cost increasing with step), it also allowed GDBA to
continue to occasionally find better solutions (as seen by any-
time costs continuing to slowly decrease). This used a rela-
tively slow rate of exploration, since MX definition is the most
restrictive violation definition (and hence the fewest assign-
ments lead to breakouts) and E is the most restrictive scope
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Figure 4: Anytime costs for each step of (M, NM, T) and
competing heuristics on unstructured problems.

(and so each breakout results in the smallest modification to
the cost landscape). For T scope, exploration through break-
outs was really only useful in the (M, NM, T) configuration,
as can be seen by the lower anytime costs vs. the current
costs, but this balance between exploration and exploitation
was the most successful overall.

Similar trends were observed in the graphs presenting the
results on weighted graph coloring and meeting-scheduling.
The figures were omitted for lack of space. The (M, NM, T)
configuration dominated over all benchmarks.

Figure 4 plots the average anytime costs of (M, NM, T) and
the competing algorithms at each step of execution on ran-
dom unstructured problems. All differences at step 2000 are
statistically significant for p-value < 0.01. DSA p = 0.8 per-
forms the best out of all competing algorithms, quickly find-
ing solutions of better quality on average than those found
by the others; with p = 0.4 it finds considerably worse solu-
tions. (M, NM, T) initially improves more slowly than DSA,
which is not surprising considering that agents are only al-
lowed to change values on every other step, while agents in
DSA may change their values on every step if doing so leads
to a local improvement. Despite this initial relative slowness,
within 250 steps (M, NM, T) finds better solutions than all
competing algorithms other than DSA, and within 500 steps
it surpasses even DSA and continues to improve slowly (on
average) when given more time.

We next considered coloring random graph topologies with
p1 = 0.05, d = 3, and random costs on [1..10]. Figure 5
presents the average anytime costs. Both DSA with p = 0.8
and DSAN very quickly find very good solutions (whose
costs are not significantly different), although DSA finds its
solutions slightly faster. DSA with p = 0.4 again finds much
worse solutions. (M, NM, T) again takes longer to improve its
solutions, but within 750 steps it finds solutions that are sta-
tistically better than all the competitors, including DSA. With
more time, it continues to improve.

Our final set of experiments were on meeting schedul-
ing problems using EAV representation [Maheswaran et al.,
2004b] with 200 people and 50 meetings to be scheduled in a
10-hour workday from 8:00 AM to 6:00 PM discretized into
15-minute time slots. Each meeting has a duration uniformly
distributed on [1..4] time slots, and a desired attendance uni-
formly distributed on [2..6] people; the specific individuals
are chosen uniformly at random. The required traveling time
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Figure 5: Anytime costs for each step of (M, NM, T) and
competing heuristics on weighted graph coloring problems.
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Figure 6: Anytime costs for each step of (M, NM, T) and
competing heuristics on meeting scheduling problems.

between the locations of each pair of meetings is uniformly
distributed on [1..2]. The preferences of the participants im-
pose a cost that is uniformly distributed on [1..3] for each
meeting and time. Two meetings scheduled so that common
participants do not have enough time to attend both impose
a conflict cost equal to the sum of the time slots missed by
those participants in both meetings.

Figure 6 average anytime costs. Fast convergence suggests
that breakouts are not effective in this setting, and that the
bulk of (M, NM, T)’s improvement is due to greedy local
search. Thus, it is not surprising that it behaves very simi-
larly to MGM, which is just the local search component of
DBA without a breakout mechanism. However, breakouts do
confer a very small advantage to (M, NM, T), which finds
better solutions than all other algorithms except DSAN and
DSA (with p = 0.4), at a statistically significant level of p-
value < 0.01; DSAN and DSA find solutions of exactly equal
quality, albeit more slowly. DSA with the higher value of
p = 0.8 did poorly on these problems, demonstrating that
good DSA performance relies heavily on problem-specific
parameter tuning; in contrast, (M, NM, T) performs well on
different problems without needing such tuning.

7 Conclusion and Future Work
DBA is a local search algorithm designed to solve DisCSPs
and DisMaxCSPs. Following early work comparing DSA and
DBA, the common assumption of researchers was that DSA
is superior, and therefore DSA was used for comparison in
recent studies of incomplete DCOP algorithms.

452



We demonstrate in this paper that the performance of DBA
when solving general-valued DCOPs is dependent on the de-
sign choices made. GDBA, generalizes DBA by allowing 24
combinations of 3 design choices. Our results demonstrate
that GDBA, specifically the (M, NM, T) variant, is an ef-
fective algorithm for a wide range of general-valued DCOPs.
This contrasts with DBA’s well-known limitations on DisC-
SPs and DisMaxCSPs. Many other DCOP algorithms that
originated as DisCSP algorithms may benefit from a simi-
lar rigorous study. For example, DSA-A and DSA-B differ
in their behavior only when there are violated constraints;
this invites investigation of violation definitions for DSA. (We
used DSA-C, which does not require such definition.)

DBA, as a distributed implementation of a centralized
method [Morris, 1993], is a bridge between DisCSPs and cen-
tralized CSPs. Future work should explore what other cen-
tralized approaches may be adapted to the distinct but related
DisCSP and DCOP fields.
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