Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

Controlling Growing Tasks with Heterogeneous Agents

James Parker and Maria Gini
University of Minnesota
jparker@cs.umn.edu and gini@cs.umn.edu

Abstract

We propose solutions for assignment of physical
tasks to heterogeneous agents when the costs of the
tasks change over time. We assume tasks have a
natural growth rate which is counteracted by the
work applied by the agents. As the future cost of
a task depends on the agents allocation, reason-
ing must be both spatial and temporal to effectively
minimize the growth so tasks can be completed. We
present optimal solutions for two general classes of
growth functions and heuristic solutions for other
cases. Empirical results are given in RoboCup Res-
cue for agents with different capabilities.

1 Introduction

Wide area surveillance, search and rescue, transportation, and
exploration all benefit from efficient task allocation methods.
For example, transportation costs can be minimized by plan-
ning distribution routes [Toth and Vigo, 2002]. We extend
task allocation to cover problems where the costs for com-
pleting tasks change over time. In these situations, the tasks
growth is similar to their reduction due to agents work. This
adds a strong temporal component that requires a high degree
of coordinated effort between agents. Areas of application
include containment of forest fires, minimization of damage
from an invasive species, resource allocation for fighting epi-
demics, and search and rescue [Kruijff ez al., 2012].

Task growth over time is most interesting when agents need
to coordinate their efforts to finish a single task. For this rea-
son, we primarily focus on cases where multiple agents are
needed to complete a task. If too few agents are assigned to
a task, the task cost will grow towards infinity. If the growth
rate of a task surpasses the reduction that all agents combined
can provide, then that task can no longer be completed. Our
goal is to minimize the total growth of tasks before all tasks
are completed.

This paper starts with the problem framework and algo-
rithms in [Parker and Gini, 2014]. The main contributions
of this paper are: (1) a novel formulation for heterogeneous
agents; (2) proofs of optimal solutions for a relaxed version
of the problem with zero travel time for two families of task
growth functions; (3) a heterogeneous agent version of the
Latest Finishing First algorithm (LFF) for cases when travel

461

times are prohibitively large and agents are not reallocated;
(4) a heterogeneous agent version of the Real-Time Latest
Finishing First algorithm (RT-LFF) for cases where travel
times are non-prohibitive; (5) experimental modeling and re-
sults in the RoboCup Rescue Agent Simulator [Kitano and
Tadokoro, 2001].

2 Related Work

Multi-agent task allocation typically assumes that each task
has a known and fixed cost. A few studies address tasks where
the task costs are uncertain (e.g. [Mills-Tettey ef al., 2007,
Nam and Shell, 2015]), but not where task costs change over
time according to some cost function. Other methods for
adapting to dynamic environments with localized communi-
cation (i.e., [Léauté and Faltings, 2011; Atlas and Decker,
2010]), assume costs change in a stochastic way. In our work,
tasks are assumed to have a known trend and we exploit this
knowledge to optimize the allocation. The work of [Zhang
and Parker, 2013] considers general coalition formation with
instantaneous assignment. We consider a less general prob-
lem domain, but are able to find the optimal solutions for
them. We also provide solutions for non-instantaneous as-
signments. Robust optimization is another way to frame this
problem [Beyer and Sendhoff, 2007], but our problem model
often does not have a closed form solution.

Tasks with decreasing rewards over time are considered in
[Amador er al., 2014]. Their algorithm encourages agents
to arrive to tasks quickly. If tasks are not finished quickly,
other tasks might get a higher priority. In our case, if a task
is neglected, the growth makes the task impossible to finish.
The disparity between an impossible task versus a low utility
task makes our problems not directly comparable.

Work in multi-agent task allocation with temporal con-
straints is also relevant [Nunes ef al., 2012; Gombolay et al.,
2013]. Problems when tasks can be completed only with mul-
tiple agents are addressed by many (i.e., [Zheng and Koenig,
2008; Ramchurn et al., 2010]), but all assume task costs are
fixed and known. Hard deadlines, or time windows, are tem-
poral constraints where tasks have to be completed within a
specified start and end time. Melvin et al. [2007] describe
efficient auction based methods when time windows and re-
wards for task completion are known, but assume disjoint
time windows to create a total ordering of the tasks. We can-
not assume disjoint time windows.

3 Problem Definition

Our problem is to assign heterogeneous agents to tasks which
have a cost that grows over time. We make no assumptions
on the spatial locations of agents or tasks other than an agent
must be at a task’s location in order to work on that task.
Tasks do not require multiple agents, but multiple agents de-
crease completion time. Since task costs grow over time, if
too few agents are allocated to a task the cost will continue to
grow and the task might become impossible to complete. We
assume the task growth is known or can be estimated.

We denote the set of heterogeneous agents by A
{a1,...,a4)} and the set of tasks by B = {b1,...,bp|}
The set of active agent assignments is denoted by N?
{nf,...,n{p }, where n is the set of agents from A that are
currently working on task b; at time ¢, without counting any
of the agents which are in transit at time ¢. An agent can only
work on one task ata time, son} C Aand Vi # j,niNn’ = 0.
All agents and tasks have a spatial location. The travel time
for agent a, TT (a, z,y), between two locations, = and y, is
assumed to be computable.

Each agent a provides the amount of work w, per time
unit when the agent is at a task location. An agent traveling
to a task does not provide any work. Every task b; € B has
a cost defined with the following recurrence relation [Parker
and Gini, 2014]:

Z Waq,

ft+1 — ft +h
aEnz

ey

where f} starts at some initial cost f° and h; : R~g — R+ is
a monotonically increasing function. We use Euler’s method
as the growth rate depends on both the agents and task size,
which is similar to solving a differential equation. It has been
shown that thejewglobal truncation error of the Taylor series is
no more than 242+ (e?s ~* — 1), where M is the upper bound
on the derlvatlve of Afl and L is the Lipschitz constant on
the interval [to, ¢ ;] with a step size of AT [Atkinson, 2008].
Here we treat f} as a sequence due to the use of discrete time
steps, but it could be treated as a continuous function if that
is a better model for the domain (Sec. 4.1).

If at some time ¢ the cost of task b;, namely ff, reaches
or goes below zero, we denote this time as ct; for the task
completion time. Thus, when f} is non-positive, h;(f}) is
set to zero and agents cannot be assigned to this task, namely
Int] = 0 when t > ct;. When each task has f} < 0, the prob-
lem is considered solved. When h;(f}) > Za@nﬁ w, this

means f} is strictly monotonically increasing, which means
the task is growing faster than the assigned agents can reduce
it. If more agents are not assigned at a later time, the task will
never be completed and we say ct; = oo.

The goal is to complete all tasks with as little growth as
possible. This is different from [Parker and Gini, 2014],
which only considers the time when the last task is finished.
In forest fires, this would correspond to minimizing the num-
ber of trees burnt, rather than how quickly the fire is put out.
Formally, our goal is to minimize the sum of the accumulated
growth cost, RR¢,, across all tasks:

min Z Rey,, where Ry, = Z h(f})

b;eB t<ct;

@)

462

4 Task Growth Functions

We first examine the case when travel time is instantaneous
and consider various types of task growth functions, h;(x)
from (1), along with their optimal allocation. For simplic-
ity we assume all tasks have the same growth function h(x),
specifically: Vi h;(x) = h(x). These relaxations are purely
used to develop the theoretical formulation of this problem.
The algorithms in this paper do not rely on these assumptions.

The travel time relaxation might seem to trivialize the prob-
lem, but the optimal solutions to the relaxed problems provide
an intuition on desirable types of allocations. For example,
consider one agent and two tasks b; and b such that f? < fg,
namely b is initially larger than b;. Since h(z) is defined to
be monotonically increasing, b, grows faster than b;. If the
agent tries to do b; first, bs will grow even larger, which will
in turn increase the rate of growth, and make it even harder to
tackle by later. However, if the agent starts on by then it will
take a longer time to finish b5, and this will give b; more time
to grow and become harder to complete. As we will show in
the next few sections, the key to decide how to allocate agents
to tasks is the second derivative of the growth function h(x).

As in [Parker and Gini, 2014], we minimize the regret
> b,ep Bet; (2). Next we show how >, _p Rey, can be
minimized by greedily minimizing }°, 5 h(f}) at each time
step. We prove this when h(z) is linear or monotonically de-
celerating, as the monotonically accelerating case was proven
in [Parker and Gini, 2014]. In addition to the proofs, we pro-
vide an intuition on the general patterns of optimal solutions
if travel time is not zero.

4.1 Linear

When %h(x) = 0, h(x) is linear. In this case the recur-
rence relation in (1) has a closed form solution. If we write
it =fvp ffq— Za@, wq, wWhere n! is assumed
to be constant for the duration of the projection, then this has
a closed form solution of f! = K; + L; - (p+ 1). Here K;
and L; are constants determined by the initial conditions of
f} and the number of agents assigned. We can solve for the
initial conditions and get':

q— Zaén,’; Wa
p

)-(p+1)*

If we let the step size shrink to zero (along with p and w),
we get the well known continuous exponential function:

1
! '(Zwa)"'_D'ep'ta

p aent

+(f+

q— Z nt Wa
I fwaen; @ (3)
p

“4)

where again D is an integration constant and it will be neg-
ative if the agents are completing the task faster than it is
growing, namely D < 0 if and only if Zaent we >p- [, as

D=f0— 117 . (ZaEnf wq). We let ¢ = 0 for continuity of the

derivative when a task finishes.
We show that >~ _p h(f}) is minimized by any assign-
ment of all agents, as it is a constant. Thus >, 5 Ret, is

Tfp=0,then ff = f0 + (¢ — et Wa) L.

also a constant. The proof will be direct and can be intu-
itively thought of as using the linearity to merge all tasks into
a single meta-task, which is the direct sum of each individual
tasks. Since there is a single task all agents will be assigned
to it at every time step. This will allow us to derive an explicit

formula for both 3, 5 Rer, and 37, g h(f}).

Theorem 1. If the travel time is zero, all agents are assigned
to an active task, and h(x) is linear, then 3, _p Rey, and
> v, M, 1) are constants and are directly computable for
any assignment.

Proof. First we will directly show that >, _ h(f{) is a con-
stant via direct proof. Since h(x) is linear, Speph(ff) =
h(>>y,cp ff)- Summing over i in (3), we get:

D H=-Z+Q_ 1+ 2) (1),
b;eB 7
where Z = 2(q - |B| = 35,4 wa) since - cpd = d- |B|

and D) cp Y acnt Wa = D ,c4 Wa AS EVETy agents is as-
signed to a task. As no assumptions were made about the in-
dividual assignments 7}, we can conclude that 3, 5 h(f{)
is a constant at time ¢ for any assignment, namely:

2 wat) S+ a|Bl= D wa)o(

acA acA

-(|1B]—1)— (p+1)*

Since this is constant, it is also a minimum for all assign-

ments. As Zb €eB Ctz = Zt<mdx(ct) Zb €B (Zt) and

> p.ep h(ff) is aconstant, it follows that 3, R, is also
a constant. O

When the task growth function is linear, the benefit for do-
ing a task is no longer determined by the size of that task, but
instead by the size of the sum of all tasks. In cases with non-
instantaneous travel time, we want to increase the amount
of time agents spend working, as it does not matter which
task they are working on. The cost of tasks still grows expo-
nentially, so a poor initial allocation of agents is worse than
poor allocations near completion. This does not quite reduce
the problem to finding a minimum distance solution, but this
would be close to optimal.

One can also easily determine whether all tasks can be
completed or not with zero travel time. If h(}, (5 fi) >
> aca Wq then the problem is no longer solvable, otherwise
all tasks can be completed. With zero travel time, this condi-
tion needs to be checked only once to determine the outcome.
If there is travel time, the right hand side of the equation is an
overestimate, but it can still be evaluated at every time step to
determine if the problem is no longer solvable.

4.2 Monotonic Deceleration

The next case we analyze is when %h(z) < 0, and is not
necessarily constant. h(x) is still required to be monotoni-
cally increasing, so f} is Q(x) and O(e®). For this family of
functions, the rate of change in growth is faster for smaller
tasks. So while larger tasks still grow faster than smaller
tasks, reducing smaller tasks will shrink their future growth
more than for larger tasks. This is the opposite of the case

463

when agc h(a:) > 0, where task growth has a positive feed-
back loop.

To prove that minimizing the growth of all functions at
every time step is the optimal solution, we examine a pair
of tasks and show by contradiction that the optimal solution
must assign all agents to the smallest task. Since the pairs of
tasks are general, this reasoning can be applied to all pairs.

Theorem 2. If the travel time is zero, all agents are assigned
2

L h(z) <0, then > b, e Bet; is mini-

mized by greedily reducing 3, p h(f}) at every step, which

is done by assigning all agents to the smallest task.

to an active task and

Proof. Suppose we have two tasks b; and by, where without
a loss of generality f2 < f9. First we show that minimizing
> e M(f}) is achieved by assigning all agents to by. We
want to assign an agent to the tasks in order to decrease the
overall growth as much as possible, namely

argmin h(ff —w,) — h(f}).

b,eB

If we divide by —w,, a constant, we would want to maximize
h(f}—wa)—h(f})

m— . This is a rough approximation of the deriva-
tive, and since h(x) is decelerating, %h(x) is maximized for
small f}. As each agent is assigned to by, f! will shrink more
and cause 7 9 1(z) to become even larger. Thus > e h(ff)
is minimized by assigning all agents to b1 An exceptlon to
this is if b; completes, then h(f}) = Z-h(f{) = 0, so re-
maining agents will go to bs.

Next we represent Zb cp Ret; between by and by as
Ty + Ty + ATy + ATy, where T is the growth accumu-
lated for completing b; with all agents assigned to it ini-
tially and AT; is accumulated growth from not assigning all
agents. That is AT; = 0 if all agents are allocated to b; and
Ti = e, D ft) where |nf| = |A| until b; is completed.
By definition, assigning all agents to by until it is completed
will eliminate A7} and increase AT, as much as possible.
Suppose there exists some smaller Ebi e Fet; denoted by

hats with AT} # 0. This implies that AT} + ATy < AT,
however this means that agents can reduce the growth of by
faster than b;. This is a contradiction with what we have
shown earlier, since h(x) is decelerating and f} < fi.

For |B| > 2, we can compare all possible pairs of tasks.
Since f < fJ implies all agents should be allocated to b;
over b;, we can conclude that all agents should be allocated

to argmin f?, until this task finishes. We will then remove
b;eB

the finished task from B and search for the next smallest task

and repeat the process. If there is a tie for smallest, either one

can be picked and assigned to the first available agent. After

the first agent is assigned, that task will be smaller and the tie

is broken. O

For this family of functions, the optimal solution is fairly
intuitive. Since h(z) is decelerating, smaller tasks have a
much larger relative increase in size. Additionally, agents can
reduce smaller task more than larger tasks, as i (z) is mono-
tonically increasing. This creates a positive feedback loop of
incentives for agents to work on the smaller task. We can find

70

50 " e Tk ® e |

50 -

40

Cost

30 -

20

N\

0 20

10

0

40 60 80 100

Time
Figure 1: Optimal solution when TT(a,z,y) = 0, f) =
10, £9 = 60, |A| = 65, w = 0.01201, h(z) = 0.05 - \/2.

whether all tasks can be completed for a monotonically de-
celerating function by repeatedly estimating the time to com-
plete the smallest undone task, then projecting the growth of
all the remaining tasks. If at some point the projection of the
remaining task b; at time ¢ satisfies h(f}) > >, 4 Wa, then
the problem is not solvable.

Figure 1 shows an example of an optimal zero travel time
solution, where all the agents are assigned to task 1 until it is
completed. The important aspect is that it took under 20 time
steps to complete 10 units of work on task 1 and during this
time task 2 only increased about 6 units. Task 2 then took
over 132 time steps to do 66 units of cost.

5 Heterogeneous agents

Each heterogeneous agent a has a work amount w,, that the
agent can apply to a task. The size of a work unit can be the
greatest common divisor of all the agents’ work amounts. We
place no restrictions on the travel speed of agents, but this im-
pacts how long an agent is not working on a task, thus is not
in any n!. Solutions to the allocation problem depend criti-
cally on travel time. We have provided (Section 4) optimal
solutions for specific classes of growth functions when travel
time is zero. We are now ready to consider cases when travel
time is prohibitively large, hence agents are allocated at the
beginning and never reallocated, and cases where travel time
is non zero but not prohibitively large, hence reallocation of
agents might be useful.

First we solve a variation of the Variable-Sized Bin-
Packing-Problem [Correia et al., 2008; Wischer ef al., 2007]
once to find an initial solution when travel times are pro-
hibitively large. Then we present an incremental heuristic for
reassigning agents when travel time is not prohibitive.

5.1 Heterogeneous LFF

We modified the LFF algorithm [Parker and Gini, 2014] to
handle heterogeneous agents. LFF is a centralized heuris-
tic algorithm, which produces stable assignments. LFF is a
one-shot algorithm which generates an optimal solution when
reassigning agents to a new task is prohibitively expensive.
An example domain for which these conditions hold is re-
mote forest fires, where a small team of firefighters deploy

464

input : Agents A and tasks B
output: Real assignments W

fori «+ 1to |B| do
| set W =00
end

. 2aca Wa
totalUnits 1 work unit amount

for i < 1 to totalUnits do
chosen <— argmax; W
Assign 1 work unit to chosen
Recompute ct posepn Via simulation.

Recompute W7, ... as R, ... in(2)
end
Solve for W and I for all tasks by mixed-integer linear
program

for a not assigned in I do
Assign largest a to next largest W — W;
Update I and W
end
Algorithm 1: Heterogeneous LFF (HLFF)

via parachute close to the fire. This initial deployment has a
fairly uniform cost, as reaching any drop point takes a similar
amount of fuel. However, once on ground it is infeasible for
the firefighters to traverse the terrain quickly to get to another
section of the fire.

LFF works by assigning agents one at a time to the task
which currently finishes last. This is repeated until there are
no more agents left to assign. In our problem we are con-
cerned with cost and not with finish time, so we prioritize
assignments to the task which has the largest accumulated
growth, b* = argmax, R, Instead of assigning a whole
agent, we assign a single work unit to b* and recompute the
new value of R.,., as detailed in Alg. 1. Often minimizing
the finish time also minimizes R.;,., but we chose the latter
to be consistent with the theoretical proofs.

When all work units have been assigned to the ideal as-
signment W*, we compute a real work assignment, I; ;, of
agent a; to task b; and the corresponding work amounts wg,
for task W;. To do this, we solve a mixed integer linear pro-
gram for the Variable-Sized Bin-Packing-Problem as follows
[Correia et al., 2008]:

max), . Wi, subject to:

(a) VbjEB: EaieAwai'Ii7.j_Wj:O
(b) VCLZ' € A: ijEB Ii,j S 1

() VbjeB: 0<W;<W;f

(d Vi,j5: I;; € {0,1}

where the first line is the optimization objective, i.e. maxi-
mize the amount of work units packed into each task. w, is
the work amount of agent a, and I; ; is an indicator variable
signifying agent a; is assigned to task b;. W; is the amount
of work assigned to task b; and W is the ideal amount of
work for task b;. (a) specifies agent assignment to tasks, (b)
ensures that agents are only assigned to a single task, and (c)
specifies that tasks cannot receive more work than their ideal
amount. This mixed integer linear program only needs to be
solved once per simulation. It can solve for 300 agents and 2
tasks in under 0.2 seconds.

Since an agent has to be assigned in full to a task, at times
some tasks cannot receive the ideal amount of work. This
means some agents will not have an assignment (i.e. some a;
might have ije g 1i,; = 0). After the mixed-integer linear
program runs, we assign tasks to agents that are not assigned.
This takes O(]A|) time and is done by repeatedly assigning
the unassigned agent with the largest number of work units to
the task with the largest difference between the ideal and the
current work unit amount. If there are insufficient agents to
finish all tasks, some tasks will not receive enough work.

5.2 Heterogeneous RT-LFF

While HLFF maximizes an agent’s work to travel time ratio,
the assignments are not optimal if agents can relocate to dif-
ferent tasks. HLFF is also a one-shot assignment, which can
be detrimental if new tasks can appear or the growth model
is inaccurate. Parker and Gini [2014] proposed a heuristic al-
gorithm, RT-LFF, to reassign agents as needed. We extend
RT-LFF to Heterogeneous RT-LFF (HRT-LFF).

RT-LFF compares each pair of tasks (b;,b;). If ct; <
ct; even after transferring an agent from b; to b;, then this
transfer happens. This can only decrease the overall fin-
ish time across all tasks. This heuristic is conservative. To
see why, let the completion times change from ct; and ct;
to ct; and ct} respectively after the transfer. It is possible
that ct; < ctj < ctj < ct;. This is a better solution as
max(ct;, ct;) > max(ct;, ct}), yet using the heuristic task b;
will not give up an agent.

In the original formulation, the agent to transfer was simply
the closest one to the other task. With heterogeneous agents,
the order in which agents are checked for transfer can lead to
significant differences in the accumulated cost. If two agents
have identical work amounts, then the faster one is always
the better one to transfer. Thus, there is no reason to consider
transferring slow agents unless there are no more faster ones.

Using these observations, we considered the following
strategies for the HRT-LFF heuristic: (1) agents with the
highest speed, (2) agents with the lowest work amount, and
(3) agents with the highest speed to work ratio. A weighted
combination of these three strategies might work better for
specific problems, but (3) worked the best on average on
tested problems.

Empirical results showed that there was not a significant
difference between checking just the highest speed to work
ratio agent compared to checking all agents in decreasing
speed to work ratio order. Thus only a single agent is checked
in Alg. 2. We check all pairs of tasks to see if any transfer is
possible, but the order in which the pairs are checked has an
effect on the outcome. Tasks compared earlier are more likely
to get an agent transfered to them than tasks compared later.
When a new task appears, it should try to get an agent from all
other tasks first. Since our goal is to minimize Zbie g Ret;s
we sort task pairs (b;, b;) based on the difference Ret;, — Re, -
The largest differences are tested first for possible transfers,
until the difference is non-positive, in which case a transfer
will never happen and the loop ends. As we need to keep
track of the best agent to pick, this increases the run time
from O(| B?|) in RT-LFF to O(B?In A) in the heterogeneous
case.

465

input : Agents A, tasks B, current task assignments
output: New assignments

for every pair of tasks: b; # b; do
a* argmax, e, m

ct¥ «+ simulate task with n! — a* active agents

tA —t+ TT(G,*, bi, b])

ct} < simulate task with n§ active agents from ¢ to ¢
and n} U a* agents onwards

Compute Rct; and ch

if Reir < Rer- then
| Assigna* fromb; to b

end

end
Algorithm 2: Heterogeneous RT-LFF (HRT-LFF)

6 Results

For our experiments, we use the RoboCup Rescue simula-
tor, which was designed for urban search and rescue after an
earthquake. The environment is very large with upward of
100 agents. The simulator uses different types of agents, but
for this work we focus only on agents that can extinguish fires
(i.e. firetrucks) through the use of the RMASBench simulator
extension [Kleiner et al., 2013].

Fires are the main hazard in RoboCup Rescue. Buildings
heat up and catch on fire based on how many other nearby
buildings are on fire. This creates a positive feedback loop,
which causes mores fires to grow more rapidly. Screenshots
of the simulator are in Figure 2 and Figure 3. Red dots repre-
sent fire trucks, dark gray polygons are buildings while light
gray polygons are roads. Buildings on fire are yellow, orange
and red in increasing intensity and temperature. If a building
burns too long and is destroyed, it will turn black. When a
building is extinguished, it becomes blue or purple.

In the RoboCup Rescue simulator, individual buildings
heat up and catch fire. Since buildings eventually burn out or
re-ignite, instead of modeling fires in individual buildings we
model fires in clusters of buildings. A cluster is considered
a single task, where the cost is the number of buildings on
fire in the cluster. We do this clustering using bottom-up hier-
archical clustering with the Euclidean distance as the metric
and the minimum distance between all pairs linkage criteria.
If the distance between the closest pair of clusters is over 50
meters in the simulation, then the clustering would cease and
the clusters left would be the tasks.

An exponential function has been shown to be a good es-
timate for the number of buildings on fire in this domain
[Parker and Gini, 2014], thus we approximate task costs by
(4). To estimate p, we allowed buildings to burn unhindered
for 100 simulation steps in 20 different tests. and we used
exponential regression to find the best fit with the data.

The work rate, w,, was empirically derived for three
classes of agent: agents who could use their full hose capac-
ity, agents who could only use only 50% of it, and agents who
could only use 10% of it. A fixed small number of fires were
repeatedly extinguished in 70 tests for each type of agent.
Putting fiO , D» nﬁ and ct; into (4), we can solve for w,.

Figure 2: HRT-LFF in VC
3 ending with 69% of build-
ings intact.

Figure 3: RT-LFF in VC 3
ending with 59% of build-
ings intact.

Table 1: Percent of buildings intact at the end of simulation
on different versions of Virtual City and Paris maps

Map || HRT-LFF | RTLFF | ALLONONE | UNIFORM
plolplolpl] o lpu]o
VC 1 ||33.34[8.97[31.73]7.77|30.64] 9.42 [22.77] 7.10
VC2 (8171 0.6 |81.38(0.74|81.58| 0.58 |81.10| 0.83
VC3 (65.35)9.9059.24(7.31|40.24| 12.12 |55.71| 9.85
VC4 |75.25)2.50(75.34(2.32|74.87| 1.75 |74.74] 2.57
VC5 [33.52|4.48(24.23(3.13[24.20| 234 [23.55] 2.20
Paris 1]88.70| 3.58 |87.84(3.40(85.28| 4.78 |85.40 4.02
Paris 2|45.12| 8.67 |42.16|7.91(35.54| 9.82 |26.40| 12.00
Paris 3(68.39| 3.57 [67.95(4.74(64.23| 535 |64.43| 4.52
Paris 4|91.78| 0.35 91.53(0.42|91.70 0.39 |91.39| 0.45
Paris 5/85.89| 3.26 |83.77|3.23|74.43| 8.07 [79.19] 5.06

To compare HRT-LFF against other algorithms, we modi-
fied both the original LFF and RT-LFF to consider accumu-
lated growth cost instead of finishing time. We call this mod-

ified algorithms LFF and RT-LFF, respectively. HRT-LFF
starts with the solution to the mixed integer linear program,

while RT-LFF starts with an initial assignment produced by

LFF. RT-LFF checks pairs of agents in order of their set
identification (a; before as, etc.). The UNIFORM strategy
simply calculates the total work by agents as) _ , w, and
solves the Variable-Sized Bin-Packing-Problem to evenly di-
vide the work amount between all not finished tasks. The
ALLONONE strategy assigns all the agents to task b; until it
is completed, then assigns all the agents to by and so on.

Table 1 shows the percent of intact buildings for 5 varia-
tions of the Virtual City (VC) and Paris map, where each con-
figuration was run 5 times with the average being displayed.
Note that a higher percent of buildings intact is desirable,
which satisfies our goal of a low accumulated cost. Since
h(zx) and w, are only approximations, we cannot compute the
optimal solution in this case. Each configuration ranged be-
tween 2-4 100% capability agents, 5-8 50% capability agents
and 10-20 10% capability agents. Each map was seeded with
2-4 initial fires and we let 30 simulation time steps pass be-
fore agents could move. This ensured that fires were of a
moderate size when agents started.

466

HRT-LFF can reason about heterogeneous agents, thus it

scores better on average than RT-LFF. Both algorithms try to
maintain a balanced stable assignment, thus typically their as-
signments are similar. UNIFORM and especially ALLONONE
suffer from assignment thrashing in this domain. Even after
a building cluster has been extinguished, some buildings are
still hot. This can cause small fires to restart a few time steps
after the task seems to be completed. Both UNIFORM and
ALLONONE will send more agents than needed for this small
task, which can cause a substantial increase in travel time. For
this reason, ALLONONE does especially poor when there are
4 separate tasks, as each fire could start again a few times and
cause all the agents to turn around and go back. Even if UNI-
FORM does not send all the agents back, it still sends more

than necessary. HRT-LFF and RT-LFF in this case only send
one agent back, as they can reason that this will be enough.
HRT-LFF can reason with finer granularity and thus sends
back one or two 10% capability agents, leaving the rest to
work on other tasks.

Some results, such as VC 5, are poor across all algorithms.
This indicates more the hardness of the configuration rather
than the efficiency of the algorithms. The opposite case is
in Paris 4, where the configuration is too easy and all algo-
rithms score identically. Despite these extreme cases, the re-
sults show the efficiency of the algorithms in general.

As noted in [Parker et al., 2014], the bimodal distribu-
tion of the results makes it difficult to infer statistical signifi-
cance. For this reason we apply the non-parametric Wilcoxon
signed-rank test instead of the normal t-test. HRT-LFF out-
performs the other algorithms on all maps except VC 4,
which has _the smallest difference in score between HRT-
LFF and RT-LFF. Thus HRT-LFF has a p-value of 0.005063
when compared against ALLONONE or UNIFORM. HRT-

LFF compared against RT-LFF has a p-value of 0.006911.
Thus HRT-LFF is better than the other algorithms by a statis-
tically significant amount.

7 Conclusions and Future Work

We proposed the first solution for assigning heterogeneous
agents to tasks whose costs grow over time. Two algorithms
were presented, one which assumes prohibitive travel times
and does not reallocate agents, the other which accounts for
travel time and inaccuracies in the prediction model. The per-
formance of the latter algorithm was analyzed in a complex
simulation environment, where the growth function had to be
estimated. Optimal solutions were proven in a travel time
relaxation of our core problem. In the future we intend to ex-
tend our work to a decentralized solution. We are also inter-
ested in studying the performance of algorithms when there
is noise or errors in the growth function.

Acknowledgments: Partial support for this work is acknowl-
edged from the National Science Foundation under grant NSF
1IP-1439728 and the Graduate School of the University of
Minnesota.

References

[Amador et al., 2014] Sofia Amador, Steven Okamoto, and
Roie Zivan. Dynamic multi-agent task allocation with spa-
tial and temporal constraints. In Proc. Nat’l Conf. on Arti-
ficial Intelligence, pages 1384-1390, 2014.

[Atkinson, 2008] Kendall E Atkinson. An introduction to nu-
merical analysis. John Wiley & Sons, 2008.

[Atlas and Decker, 2010] James Atlas and Keith Decker. Co-
ordination for uncertain outcomes using distributed neigh-
bor exchange. In Int’l Conf. on Autonomous Agents and
Multi-Agent Systems, pages 1047-1054, 2010.

[Beyer and Sendhoff, 2007] Hans-Georg Beyer and Bern-
hard Sendhoff. Robust optimization—a comprehensive sur-
vey. Computer methods in applied mechanics and engi-
neering, 196(33):3190-3218, 2007.

[Correia et al., 2008] Isabel Correia, Luis Gouveia, and
Francisco Saldanha-da Gama. Solving the variable size
bin packing problem with discretized formulations. Com-
puters & Operations Research, 35(6):2103-2113, 2008.

[Gombolay ef al., 2013] Matthew Gombolay, Ronald
Wilcox, and Julie Shah. Fast scheduling of multi-robot
teams with temporospatial constraints. In Proc. Robotics:
Science and Systems (RSS), Berlin, Germany, June 2013.

[Kitano and Tadokoro, 2001] Hiroaki Kitano and Satoshi Ta-
dokoro. RoboCup Rescue: A grand challenge for multia-
gent and intelligent systems. Al Magazine, 22(1):39-52,
2001.

[Kleiner et al., 2013] Alexander Kleiner, Alessandro
Farinelli, Sarvapali Ramchurn, Bing Shi, Fabio Maffio-
letti, and Riccardo Reffato. RMASBench: Benchmarking
dynamic multi-agent coordination in urban search and res-

cue. In Int’l Conf. on Autonomous Agents and Multi-Agent
Systems, pages 1195-1196, 2013.

[Kruijff ef al., 2012] G.-J.M. Kruijff, V. Tretyakov, T. Lin-
der, F. Pirri, M. Gianni, P. Papadakis, M. Pizzoli, A. Sinha,
E. Pianese, S. Corrao, F. Priori, S. Febrini, and S. An-
geletti. Rescue robots at earthquake-hit Mirandola, Italy:
A field report. In IEEE Int. Symp. on Safety, Security, and
Rescue Robotics (SSRR), pages 1-8, Nov 2012.

[Léauté and Faltings, 2011] Thomas Léauté and Boi Falt-
ings. Distributed constraint optimization under stochastic
uncertainty. In Proc. Nat’l Conf. on Artificial Intelligence,
pages 68-73, 2011.

[Melvin et al., 2007] J. Melvin, P. Keskinocak, S. Koenig,
C. Tovey, and B.Y. Ozkaya. Multi-robot routing with re-
wards and disjoint time windows. In Proc. of IEEE/RSJ
Int’l Conf. on Intelligent Robots and Systems, pages 2332—
2337, Oct 2007.

[Mills-Tettey et al., 2007] G. Ayorkor Mills-Tettey, Anthony
Stentz, and M. Bernardine Dias. The dynamic hungarian
algorithm for the assignment problem with changing costs.
Technical Report CMU 7-2007, Carnegie-Mellon Univer-
sity, 2007.

467

[Nam and Shell, 2015] Changjoo Nam and Dylan A. Shell.
When to do your own thing: Analysis of cost uncertainties
in multi-robot task allocation at run-time. In Proc. IEEE
Int’l Conf. on Robotics and Automation, 2015.

[Nunes ef al., 2012] Ernesto Nunes, Maitreyi Nanjanath, and
Maria Gini. Auctioning robotic tasks with overlapping
time windows. In Int’l Conf. on Autonomous Agents and
Multi-Agent Systems, pages 1211-1212, 2012.

[Parker and Gini, 2014] James Parker and Maria Gini. Tasks
with cost growing over time and agent reallocation de-
lays. In Proc. Int’l Conf. on Autonomous Agents and Multi-
Agent Systems, pages 381-388, 2014.

[Parker ef al., 2014] James Parker, Julio Godoy, William
Groves, and Maria Gini. Issues with methods for scoring
competitors in RoboCup Rescue. In Autonomous Robots
and Multirobot Systems at AAMAS, 2014.

[Ramchurn et al., 2010] Sarvapali Ramchurn, Alessandro
Farinelli, Kathryn Macarthur, Mariya Polukarov, and Nick
Jennings. Decentralised coordination in RoboCup Rescue.
The Computer Journal, 53(9):1-15, 2010.

[Toth and Vigo, 2002] P. Toth and D. Vigo, editors. The ve-
hicle routing problem. SIAM Monographs on Discrete
Mathematics and Applications, Philadelphia, PA, 2002.

[Wischer et al., 2007] Gerhard Wischer, Heike HauBner,
and Holger Schumann. An improved typology of cutting
and packing problems. European Journal of Operational
Research, 183(3):1109-1130, 2007.

[Zhang and Parker, 2013] Yu Zhang and Lynne E. Parker.
Considering inter-task resource constraints in task alloca-

tion. Journal of Autonomous Agents and Multi-Agent Sys-
tems, 26:389-419, 2013.

[Zheng and Koenig, 2008] Xiaoming Zheng and Sven
Koenig. Reaction functions for task allocation to cooper-
ative agents. In Proc. Int’l Conf. on Autonomous Agents
and Multi-Agent Systems, pages 559-566, 2008.

