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Abstract

We study strategic games on weighted directed
graphs, where the payoff of a player is defined as
the sum of the weights on the edges from play-
ers who chose the same strategy augmented by a
fixed non-negative bonus for picking a given strat-
egy. These games capture the idea of coordination
in the absence of globally common strategies. Prior
work shows that the problem of determining the ex-
istence of a pure Nash equilibrium for these games
is NP-complete already for graphs with all weights
equal to one and no bonuses. However, for sev-
eral classes of graphs (e.g. DAGs and cliques) pure
Nash equilibria or even strong equilibria always ex-
ist and can be found by simply following a partic-
ular improvement or coalition-improvement path,
respectively. In this paper we identify several nat-
ural classes of graphs for which a finite improve-
ment or coalition-improvement path of polynomial
length always exists, and, as a consequence, a Nash
equilibrium or strong equilibrium in them can be
found in polynomial time. We also argue that these
results are optimal in the sense that in natural gen-
eralisations of these classes of graphs, a pure Nash
equilibrium may not even exist.

1

Nash equilibrium is an important solution concept in game
theory which has been widely used to reason about strategic
interaction between rational agents. Although Nash’s theo-
rem guarantees existence of a mixed strategy Nash equilib-
rium for all finite games, pure strategy Nash equilibria need
not always exist. In many scenarios of strategic interaction,
apart from the question of existence of pure Nash equilibria,
an important concern is whether it is possible to compute an
equilibrium outcome and whether a game always converges
to one. The concept of improvement paths is therefore fun-
damental in the study of strategic games. Improvement paths
are essentially maximal paths constructed by starting at an
arbitrary joint strategy and allowing players to improve their
choice in a unilateral manner. At each stage, a single player
who did not select a best response is allowed to update his
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choice to a better strategy. By definition, every finite im-
provement path terminates in a Nash equilibrium. In a sem-
inal paper, Monderer and Shapley [1996] studied the class
of games in which every improvement path is guaranteed to
be finite, which was coined as the finite improvement prop-
erty (FIP). They showed that games with the FIP are precisely
those games to which we can associate a generalised ordinal
potential function. Thus FIP not only guarantees the exis-
tence of pure Nash equilibria but also ensures that it is pos-
sible to converge to an equilibrium outcome by performing
local search. This makes FIP a desirable property to have in
any game. An important class of games that have the FIP is
congestion games [Rosenthal, 1973]. However, the require-
ment that every improvement path is finite, turns out to be a
rather strong condition and there are very restricted classes of
games that have this property.

Young [1993] proposed weakening the finite improvement
property to ensure the existence of a finite improvement path
starting from any initial joint strategy. Games for which this
property hold are called weakly acyclic games. Thus weakly
acyclic games capture the possibility of reaching pure Nash
equilibria through unilateral deviations of players irrespective
of the starting state. Milchtaich [1996] showed that although
congestion games with player specific payoff functions do not
have the FIP, they are weakly acyclic. Weak acyclicity of a
game also ensures that certain modifications of the traditional
no-regret algorithm yields almost sure convergence to a pure
Nash equilibrium [Marden et al., 2007].

Although finite improvement path guarantees the existence
of a Nash equilibrium, it does not necessarily provide an
efficient algorithm to compute an equilibrium outcome. In
many situations, improvement paths could be exponentially
long. In fact, Fabrikant et al. [2004] showed that computing a
pure Nash equilibrium in congestion games is PLS-complete.
Even for symmetric network congestion games, where it is
known that a pure Nash equilibrium can be efficiently com-
puted [Fabrikant et al., 2004], there are classes of instances
where any best response improvement path is exponentially
long [Ackermann et al., 2006]. Thus identifying classes of
games that have finite improvement paths in which it is possi-
ble to converge to a Nash equilibrium in a polynomial number
of steps is of obvious interest.

In game theory, coordination games are often used to
model situations in which players attain maximum payoff



when agreeing on a common strategy. In this paper, we study
a simple class of coordination games in which players try to
coordinate within a certain neighbourhood. The neighbour-
hood structure is specified by a finite directed graph whose
nodes correspond to the players. Each player chooses a colour
from a set of available colours. The payoff of a player is
the sum of weights on the edges from players who choose
the same colour and a fixed bonus for picking that particu-
lar colour. These games constitute a natural class of strategic
games, which capture the following three key characteristics.
Join the crowd property: the payoff of each player weakly in-
creases when more players choose her strategy. Asymmetric
strategy sets: players may have different strategy sets. Local
dependency: the payoff of each player depends only on the
choices made by the players in its neighbourhood.

A similar model of coordination games on graphs was in-
troduced in [Apt er al., 2014] where the authors considered
undirected graphs. The transition from undirected to directed
graphs drastically changes the status of the games. For in-
stance, in the case of undirected graphs, coordination games
have the FIP. While in the directed case, Nash equilibria may
not exist. Moreover, the problem of determining the existence
of Nash equilibria is NP-complete for coordination games on
directed graphs [Apt et al., 2015]. However, if the underlying
graph is a directed acyclic graph (DAG), a complete graph or
a simple cycle, then pure Nash equilibria always exist. These
proofs can easily be adapted to show that weighted DAGs and
weighted simple cycles have finite improvement paths.
Related work. Although the class of potential games are
well studied and has been a topic of extensive research,
weakly acyclic games have received less attention. Engel-
berg and Schapira [2011] showed that certain Internet rout-
ing games are weakly acyclic. In a recent paper, Kawald
and Lenzner [2013] show that certain classes of network cre-
ation games are weakly acyclic and moreover that a specific
scheduling of players can ensure that the resulting improve-
ment path converges to a Nash equilibrium in O(nlogn)
steps. Brokkelkamp and Vries [2012] improved Milchtaich’s
result [1996] on congestion games with player specific pay-
off functions by showing that a specific scheduling of players
is sufficient to construct an improvement path that converges
to a Nash equilibrium. Unlike in the case of exact potential
games, there is no neat structural characterisation of weakly
acyclic games. Attempts in this direction have been made in
the past. Fabrikant et al. [2010] proved that the existence of
a unique (pure) Nash equilibrium in every sub-game implies
that the game is weakly acyclic. A comprehensive classifica-
tion of weakly acyclic games in terms of schedulers is done
in [Apt and Simon, 2012]. Finally Milchtaich [2013] showed
that every finite extensive-form game of perfect information
is weakly acyclic.

The model of coordination games are related to various
well-studied classes of games. Coordination games on graphs
are polymatrix games [Janovskaya, 1968]. In these games,
the payoff for each player is the sum of the payoffs from the
individual two player games he plays with every other player
separately. Hoefer [2007] studied clustering games that are
also polymatrix games based on undirected graphs. How-
ever, in this setup each player has the same set of strategies
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Graph Class
weighted DAGs

weighted simple cycles
with 2 bonuses

open chains of cycles
closed chains of cycles

weighted open chains of
cycles

weighted closed chains of
cycles

partition-cycles O(n(n — k)) [Thm. 16]
partition-cycles+bonuses O(kn(n — k)) [Thm. 18]
weighted partition-cycles Nash equilibrium may not exist [Ex. 17]

improvement path c-improvement path
O(n) [Apt et al., 20151 O(n) [Apt et al., 2015]
O(n) [Thm. 5] O(n) [Thm. 7]

O(nm?) [Thm. 9]
O(nm?) [Thm. 11]
O(nm?) [Thm. 10]

O(nm?) [Thm. 13]
O(nm?) [Thm. 13]
7

Nash equilibrium may not exist [Ex. 12]

7
7

Table 1: An upper bound on the length of the shortest
improvement and c-improvement path for a given class of
graphs. All edges are unweighted and there are no bonuses
unless the name of the class says otherwise. For simple cycles
and chains of cycles we assume that each cycle has n nodes
and the number of cycles in the chain is m. For partition-
cycles, n is the total number of nodes and 1 < k < n is the
number of nodes in the top part of the cycle (set V).

and it can be shown that these games have the FIP. A model
that does not assume all strategies to be the same, but is still
based on undirected graphs, was shown to have the FIP in
[Rahn and Schéfer, 2015]. When the graph is undirected and
complete, coordination games on graphs are special cases of
the monotone increasing congestion games that were studied
in [Rozenfeld and Tennenholtz, 2006].

Our contributions. In this paper, we identify some natural
classes of polymatrix games based on the coordination game
model, which even though do not have the FIP (cf. Example
4 in [Apt et al., 2015]), are weakly acyclic. We also show
that for these games a finite improvement path of polynomial
length can be constructed in a uniform manner. Thus not only
do these games have pure Nash equilibria, but they can also
be efficiently computed by local search.

We start by analysing coordination games on simple cy-
cles. Even in this simple setting, improvement paths of infi-
nite length may exist. However, we show that there always
exists a finite improvement path of polynomial length. We
then extend the setting of simple cycles in two directions.
First we consider chains of simple cycles where we show that
polynomial length improvement paths exist. We then con-
sider simple cycles with cross-edges and show the existence
of polynomial length improvement paths. We also demon-
strate that these results are optimal in the sense that most nat-
ural generalisations of these structures may result in games in
which a Nash equilibrium may not even exists. Most of our
constructions involve a common proof technique: we identify
a specific scheduling of players using which, starting at an ar-
bitrary initial joint strategy, we can reach a joint strategy in
which at most two players are not playing their best response.
We argue that such a joint strategy can then be updated to
converge to a Nash equilibrium. We also identify a structural
condition on coalitional deviation once a Nash equilibrium is
attained. This property is then used to show the existence of
a finite “coalitional” improvement path which terminates in



a strong equilibrium. Our results also imply an almost sure
convergence, although not necessarily in a polynomial num-
ber of steps, to a Nash equilibrium when the order of devi-
ations is random, but “fair”. Fairness requires that for any
deviation, there is a fixed nonzero lower bound on the prob-
ability of it taking place from any state of the game where it
can be taken, which implies that the same holds for any fi-
nite sequence of deviations. A Nash equilibrium is reached
almost surely with such a random order, because when start-
ing at any state we either follow a finite improvement path to
a Nash equilibrium with a nonzero chance or that path stops
in another state from where we can follow another finite im-
provement path. As this process continues forever, almost
surely one such finite improvement path will succeed.

Table 1 summarises most of our results. All the missing
proofs can be found in [Simon and Wojtczak, 2016].

2 Preliminaries

A strategic game G = (S1,...,Sn, p1,...,pn) Withn > 1
players, consists of a non-empty set .S; of strategies and a
payoff function p; : S1 x --- x S, — R, for each player 3.
We denote S x - - - xS, by S, call each element s € S ajoint
strategy and abbreviate the sequence (s;),; to s_;. We also
write (s;,s_;) instead of s. We call a strategy s; of player
i a best response to a joint strategy s_; if for all s} € S,
Pi(Si, s—i) > pi(s), s_i).

A coalition is a non-empty subset K := {kq,...,kp} C
N. Given a joint strategy s we abbreviate the sequence
(Skys- - -5 Sk, ) of strategies to sx and Sk, X --- X S, to
Sk. We also write (sk, s_k ) instead of s. If there is a strat-
egy x such that s; = z for all players : € K, we also write
(K, s_k) instead of s.

Given two joint strategies s’ and s and a coalition K, we
say that s’ is a deviation of the players in K from s if K =

{i € N | s; # s.}. We denote this by s—>s'. If in addition
pi(s’) > pi(s) holds for all ¢ € K, we say that the deviation
s’ from s is profitable. Further, we say that a coalition K can
profitably deviate from s if there exists a profitable deviation
of the players in K from s. Next, we call a joint strategy
s a k-equilibrium, where k € {1,...,n}, if no coalition of
at most k players can profitably deviate from s. Using this
definition, a Nash equilibrium is a 1-equilibrium and a strong
equilibrium, see [Aumann, 1959], is an n-equilibrium.

A coalitional improvement path, in short a c-improvement
path, is a maximal sequence p = (s',s2,...) of joint strate-
gies such that for every k£ > 1 there is a coalition K such
that s* is a profitable deviation of the players in K from
sk=1. If p is finite then by last(p) we denote the last el-
ement of the sequence. Clearly, if a c-improvement path
is finite, its last element is a strong equilibrium. We say
that G is c-weakly acyclic if for every joint strategy there
exists a finite c-improvement path that starts at it. Note
that games that are c-weakly acyclic game have a strong
equilibrium. We call a c-improvement path an improve-
ment path if each deviating coalition consists of one player.
The notion of a game being weakly acyclic [Young, 1993;
Milchtaich, 19961, is then defined by referring to improve-
ment paths instead of c-improvement paths.
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3 Coordination games on directed graphs

We now define the class of games we are interested in. Fix a
finite set of colours M. A weighted directed graph (G, w) is
a structure where G = (V, E) is a graph without self loops
over the vertices V' = {1,...,n} and w is a function that
associates with each edge e € E, a non-negative weight we.
We say that a node j is a neighbour of the node ¢ if there is
an edge 7 — ¢ in G. Let N; denote the set of all neighbours
of node i in the graph G. A colour assignment is a func-
tion C' : V — 2M which assigns to each node of G a finite
non-empty set of colours. We also introduce the concept of a
bonus, which is a function /3 that to each node 7 and a colour
¢ € M assigns a natural number §(4,c). Note that bonuses
can be modelled by incoming edges from fixed colour source
nodes, i.e. nodes with no incoming edges and only one colour
available to them. When stating our results, bonuses are as-
sumed to be not present, unless we explicitly state that they
are allowed. Bonuses are extensively used in our proofs be-
cause a coordination game restricted to a given subgraph can
be viewed as a coordination game with bonuses induced by
the remaining nodes of the graph.

Given a weighted graph (G, w), a colour assignment C' and
a bonus function f a strategic game G(G, w, C, () is defined
as follows: the players are the nodes, the set of strategies of
player (node) i is the set of colours C'(%) the payoff function
p?(s) = ZjEN,i,si:s]- Wj—i + /6(17 Si)'

So each node simultaneously chooses a colour and the pay-
off to the node is the sum of the weights of the edges from
its neighbours that chose its colour augmented by the bonus
to the node from choosing the colour. We call these games
coordination games on directed graphs, from now on just
coordination games. When the weights of all the edges are
1, we obtain a coordination game whose underlying graph
is unweighted. In this case, we simply drop the function
w from the description of the game. Similarly if all the
bonuses are 0 then we obtain a coordination game without
bonuses. Likewise, to denote this game we omit the function
B. In a coordination game without bonuses where the under-
lying graph is unweighted, each payoff function is defined by
pi(s) == [{j € Ni | si = s5}|.

Finally, given a directed graph GG and a set of nodes K, we
denote by G[K] the subgraph of G induced by K.

We now show a structural property of a coalition deviation
from a Nash equilibrium in our coordination games. This will
be used later to prove c-weak acyclicity for a class of games
based on their weak acyclicity. Note that this cannot be done
for all classes of graphs, because there exist a coordination
game on undirected graph which is weakly acyclic, but has
no strong equilibrium [Apt er al., 2014].

Lemma 2 Any profitable coalition deviation from a Nash
equilibrium includes a unicoloured directed simple cycle.

4 Simple cycles

In this section we focus on the case when the game graph is
a directed simple cycle. Despite the simplicity of this model
the problems we consider are already nontrivial for such a
basic graph structure. We first restate a result from [Apt er



Example 1 ([Apt et al., 2015]) Consider the directed graph
and the colour assignment depicted in Figure 1. Take the
Jjoint strategy s that consists of the underlined strategies.
Then the payoffs are as follows: 0 for the nodes 1, 7, 8§ and 9;
1 for the nodes 2, 4, 5, 6; and 2 for the node 3. Note that the
above joint strategy is not a Nash equilibrium. For example,
node 1 can profitably deviate to colour a. O

g)w}
{a,b}
{a,b}

{b,c} {a,c}

“Oed G

Figure 1: A directed graph with a colour assignment.

{b}

al., 2015] where unweighted graphs are considered. To fix
the notation, let the graphbe 1 — 2 — ... - n — 1. For
1€{2,...,n}hiol=i—1l,and161=n.

Theorem 3 ([Apt et al., 2015]) Every coordination game
with bonuses on an unweighted simple cycle has a c-
improvement path of length O(n).

We would like to extend this result to weighted graphs with
bonuses. However as the following example demonstrates, if
in a simple cycle, we allow non-trivial weights on at least
three edges and associate bonuses with at least three nodes
then there are coordination games that need not even have a
Nash equilibrium.

Example 4 Consider the simple cycle on three nodes 1, 2
and 3 in which all the edges have weight 2. Let C(1) =
{a,b}, C(2) = {a,c} and C(3) = {b,c}. Let the bonus be
defined as B(1,a) = (2,¢) = B(3,b) = 1 and equal to 0
otherwise. The structure essentially corresponds to the one
shown in Figure 1. The resulting coordination game does not
have a Nash equilibrium. Below we list all the joint strategies
and we underline a strategy that is not a best response to the
choice of other players: (a,a,b), (a,a,c), (a,c,b), (a,c,c),
(b,a.b). (b,a,c)., (b,c,b) and (b, c,c).

We show here that this counterexample is essentially min-
imal, i.e. if only two nodes have bonuses or only two edges
have weights then the coordination game is weakly acyclic.

Theorem 5 Every coordination game on a weighted simple
cycle in which at most two nodes have bonuses has an im-
provement path of length O(n).

Proof sketch. Assume without loss of generality that the
nodes with bonuses are 1 and £ € N. Let s be an arbitrary
joint strategy. We proceed in rounds following the cyclic or-
der 1,...,n and let players switch to any of their best re-
sponses. Suppose the resulting joint strategy at the end of
the first round, s’, is not a Nash equilibrium. Then, it is be-
cause s is not a best response to s’ ;. We start the second
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round. Suppose player 1 updates his strategy to the colour
¢ = s, (the argument when ¢ # s, is very similar). We can
argue that the only colour that is propagated till node % in the
second round is s/,. If the best response of player k is also s/,
then we reach a Nash equilibrium in at most two rounds. Oth-
erwise, let the best response of player k be & € C(k). Let t
be the joint strategy after the sequence of updates by players
k+1,...,n. Suppose t is not a Nash equilibrium (note that
t, = c¥) and a third round is needed. If player 1 updates
his strategy to t,, then the colour c* is propagated to nodes
2,...,k — 1 and a Nash equilibrium is reached. Otherwise,
the best response of 1 to t_; is some ¢! € C(1). In this case,
we can argue that ¢! is the only colour which is propagated in
the third round, resulting in a finite improvement path. (|

Theorem 6 Every coordination game on a simple cycle with
bonuses where at most two edges have non-trivial weights
(i.e. weights greater than 1) has an improvement path of
length O(n).

The above results are optimal due to Example 4. We can
also show that if a game played on a simple cycle is weakly
acyclic, then it is c-weakly acyclic.

Theorem 7 In a coordination game played on a weighted
simple cycle with bonuses, any finite improvement path can
be extended to a finite c-improvement path just by adding one
profitable coalition deviation step at the end of it.

Corollary 8 Every coordination game on a weighted sim-
ple cycle in which at most two nodes have bonuses (or with
bonuses but in which at most two edges have non-trivial
weights) has a c-improvement path of length O(n).

5 Sequence of simple cycles

Next we look at the graph structure which consists of a chain
of m > 2 simple cycles. Formally, for j € {1,2,...,m},
let C; be the cycle 19 — 27 ... — nJ — 19, For simplicity,
we assume that all the cycles have the same number of nodes.
The results that we show hold for arbitrary cycles as long as
each cycle has at least 3 nodes. An open chain of cycles, N/
is the structure in which for all j € {1,...,m — 1} we have
19 = k7% for some k € {2,...,n}. In other words, it is a
chain of m cycles. First, we have the following result.

Theorem 9 Every coordination game on an unweighted
open chain of cycles has an improvement path of length
O(nm?).

We say that an open chain of cycles is weighted if at least
one of the component cycle has an edge with non-trivial
weights (i.e. an edge with weight at least 2).

Theorem 10 Every coordination game on a weighted open
chain of cycles has an improvement path of length O(nm?).

Proof sketch. The idea is to view the weighted open chain of
cycles as a sequence of weighted simple cycles with bonuses.
The crucial observation is that at most two nodes in each cycle
have bonuses. We can then apply Theorem 5 to construct a
finite improvement path for each cycle and argue that these
paths can be composed in a specific manner. O



{b} (?

{b,c}

a\e
% {a,c}

{e}

Figure 2: A weighted closed chain of cycles.

If we allow both weights and bonuses in the underlying
graph which constitutes an open chain of cycles, then it fol-
lows from Example 4 that there are coordination games that
do not have a Nash equilibrium.

Closed chain of cycles. As earlier, let C; be the cycle
VU — 2., 5 nl - Uforj e {1,...,m}. Consider
the structure in which for all j € {1,...,m — 1}, we have
1 = kI*! for some k € {2,...n} and 1™ = k'. In other
words, instead of having a chain of simple cycles, we now
have a “cycle” of simple cycles. We can argue that if these
simple cycles are unweighted then the coordination game
whose underlying graph is such a structure remains weakly
acyclic. However, if we allow the simple cycles to have non-
trivial weights then the resulting game need not have a Nash
equilibrium as demonstrated in Example 12.

Theorem 11 Every coordination game on an unweighted

closed chain of cycles has an improvement path of length
O(nm?).

Example 12 Consider the coordination game with the un-
derlying graph given in Figure 2. Here, the nodes 4, 5, and
6 have a unique strategy. From Example 4, it follows that the
game does not have a Nash equilibrium. U

As in the case of simple cycles, we can show that un-
weighted closed chains of cycles and open chains of cycles
are c-weakly acyclic. This implies the existence of strong
equilibria on such graph structures.

Theorem 13 Every coordination game on an unweighted
closed (resp. open) chain of cycles has a c-improvement path
of length O(nm?).

6 Simple cycles with cross-edges

In this section we consider coordination games whose un-
derlying graph forms simple cycles along with some addi-
tional “non-cyclic” edges between nodes. We say that the
graph G = (V, E) is a simple cycle with cross-edges if V' =
{1,2,...,n} and the edge set E can be partitioned into two
sets E. and E, suchthat E, = {i = i@ 1|i € {1,...n}}
and £, = FE \ E.. In other words, E. contains all the cyclic
edges and [, all the additional cross-edges in G.

The results in the previous section show that simple cycles
are quite robust in maintaining weak acyclicity. Even with
weighted edges and chains of simple cycles, the resulting co-
ordination games remain weakly acyclic. In this section, we
first show that if we allow arbitrary (unweighted) cross-edges,
then there are games that may not have a Nash equilibrium
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Figure 3: A partition-cycle.

(Example 14). We then identify a restricted class of cycles
with cross-edges for which the game is weakly acyclic.

Example 14 Consider the graph G' which we obtain by
adding the following edges to the graph in Figure 1: 6 — 7,
4 — 8and 5 — 9. Thus G' defines a simple cycle:
1-4—-8—-2—-5—-9—>3—6—7—1along
with the cross-edges represented in Figure 1 (the nodes in G’
can be easily renamed if required to form the cyclic order-
ingl — 2...8 — 9). Note that in the resulting graph G,
for any joint strategy, the payoff for node 7 is always 0 since
C(7) and C(6) are disjoint. Same holds for node 8 and node
9. Also, note that the best response for nodes 4, 5 and 6 is to
always select the same strategy as nodes 1, 2 and 3 respec-
tively. Therefore, to show that the game does not have a Nash
equilibrium, it suffices to consider the strategies of nodes 1, 2
and 3. We can denote this by the triple (s1, $a, 3). The joint
strategies are then the same as those listed in Example 4. It
follows that the game does not have a Nash equilibrium. [

Partition-cycle. Let G = (V,E) be a simple cycle with
cross-edges where £ = E. U E,. We call G a partition-
cycle if (V, E.) forms a simple cycle and the vertex set V' can
be partitioned into two sets Vi and Vg such that Vo, Vg # ()
and the following conditions are satisfied: £, C Vr x Vp,
E.N(Vy x Vp) forms apathin (V, E.) and E. N (Vg x Vp)
forms a path in (V, E.).

Example 15 The directed graph in Figure 3 is an example
of a partition-cycle. One possible partition of the vertex set
would be Vp = {1,2,3,4,5} and Vg = {6,7,8}. The edge
set E. consists of the edges 1 — 2,2 — 3,...,8 — 1
whereas E, = {1 — 6,2 — 6,3 - 8,4 — 7}. a

We first show that every coordination game whose underly-
ing graph is an unweighted partition cycle is weakly acyclic.
For the sake of simplicity, we fix the following notation. The
partition-cycle is givenby G = (V, E) where V = {1,...n},
Vr = {1,2,...,k}and Vg = {k+ 1,k +2,...,n}. If
E, = ( then we get a simple cycle without cross-edges
on n nodes. Fori € Vg, ¢ € C(i) and a joint strategy
s, let S(i,¢,8) = {j € Vp | j — dands; = c}. We
also define the set MC(i,s) = {c € C(i) | |S(i,¢c,s)| >
|S(i,c,s)| forall¢ € C(i)}. Given a player ¢ and a joint
strategy of the other players s_; let BR(i, s_;) denote the set
of best responses of player i to s_;.

Theorem 16 Every coordination game without bonuses on
an unweighted partition-cycle has an improvement path of
length O(n(n — k)).

Proof sketch. Consider an initial joint strategy s°. We con-
struct a finite improvement path starting in s° as follows. We



proceed around the cycle and consider the players 1,2,...,n
in that order. For each player ¢, in turn, for the corresponding
joint strategy s, if s; is not a best response to s_;, we update
it to a best response respecting the following property:

(P1) If s;o1 € BR(i,s_;) and there exists a ¢ € MC(i, s)
such that p;(c,s—;) = pi(sio1,5—;) then player 4
switches to ¢ (clearly, in this casec € BR(i,5_;)).

Let s' be the resulting joint strategy at the end of the first
round. It follows that the players 2,...,n are playing their
best response in s!. If s' is a Nash equilibrium then the im-
provement path is constructed. If not then the only player
who is not playing its best response is player 1. This implies

that s., # s0. Let I; be the least mdex in VB = {k—i— 1,...n}
such that for all j € {ly,...,n}, s/ #s) ands] =s, . Let
X ={l,l1 +1,...,n}. NotethatX +* ) since n € X We

repeatedly let players update to their best response strategies
in the cyclic order in multiple rounds. We can argue that in
each round | X | strictly increases. By definition, | X| < |Vp|
and therefore the improvement path constructed in this man-
ner eventually terminates in a Nash equilibrium. O

Example 17 Consider the partition-cycle G given in Fig-
ure 3 and suppose we add weight 2 to edges 6 — 7 and
7 — 8. The resulting game does not have a Nash equilib-
rium. Note that nodes 3, 4 and 5 have a unique strategy. Also
note that in any joint strategy s, the best response for players
1 and 2 is sg (the strategy of player 8 in s). Thus we can re-
strict attention to joint strategies s in which s1 = sy = Ss.
Let s be denoted by the triple (sg, s7,8). Below we list all
such joint strategies and underline a strategy that is not a
best response: (a,a,b), (a,0,c), (a,¢,), (a,c,), (b,a,b),
(b,a.¢), (b, c,b) and (b c,c). 0

Theorem 18 Every coordination game with bonuses on an
unweighted partition-cycle has an improvement path of
length O(kn(n — k)).

Note that Example 17 shows that with two weighted edges
between nodes in V3, it is possible to construct games which
may not have a Nash equilibrium. If the weights are only
present on edges between nodes in V- or on the cross-edges
E, then the resulting game remains weakly acyclic. If we
allow bonuses on nodes then we can add weights to the cross-
edges E,, the resulting game remains weakly acyclic. How-
ever, from Example 4 we know that if we allow both weights
and bonuses, even without cross-edges, there are graphs in
which the resulting game need not have a Nash equilibrium.

Given a partition cycle G = (Vp UVp, E.UE,), let Ep =
(Vr x V) N E.. That is, the set E7 consists of all the cyclic
edges between nodes in V.

Theorem 19 Every coordination game without bonuses on a
partition-cycle with weights on edges in Ep U E,, is weakly
acyclic.

Theorem 20 Every coordination game with bonuses on a
partition-cycle with weights on edges in E,, is weakly acyclic.

Proof sketch. Each weighted edge in E), can be converted
into a set of unweighted edges such that the resulting graph
G’ is still a partition-cycle. From every finite improvement
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Figure 4: A coordination game with trivial strong equilibria
unreachable from the given initial joint strategy.

3

path in the coordination game whose underlying graph is G’,
we can construct a finite improvement path in G. Thus by
Theorem 18, the result follows. O

7 Conclusions

We presented natural classes of graphs for which coordination
games have improvement or c-improvement paths of polyno-
mial size. We also showed that for most natural extensions of
these classes, the resulting coordination game may not even
have a Nash equilibrium. In general, local search may not be
an efficient technique to find a Nash equilibrium or a strong
equilibrium in coordination games. In fact, a coordination
game can have strong equilibria which cannot be reached
from some of its initial joint strategies. For example, the
game in Figure 4 has three trivial strong equilibria in which all
players pick the same colour. However, every improvement
or c-improvement path from the initial joint strategy (given by
the underlined strategies) is infinite. Moreover, although the
game graph is weighted, the weighted edges can be replaced
by unweighted ones by adding auxiliary nodes. Therefore,
the nonexistence of a finite improvement or c-improvement
path in coordination games even for unweighted graphs does
not imply the non-existence of Nash or strong equilibria.

In proving our results, we used various generalised po-
tential techniques, and exploited structural properties of the
classes of graphs. It would be interesting to identify a com-
mon progress measure that works for all the classes of graphs
that we consider as well as for more general ones. In partic-
ular, we conjecture that coordination games on unweighted
graphs with indegree at most two are c-weakly acyclic. Ex-
tensive computer simulations seem to support this conjecture.
This class strictly generalises the unweighted open chains
of cycles and closed chains of cycles that we showed to be
c-weakly acyclic. We also leave open the existence of fi-
nite c-improvement paths in weighted open chains of cy-
cles and partition-cycles. Although they seem likely to exist,
unicoloured simple cycles introduced by coalition deviations
from Nash equilibria can disappear when trying to reach a
new Nash equilibrium, so a detailed analysis is required.
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