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Abstract
Semi-Autonomous Systems (SAS) encapsulate a
stochastic decision process explicitly controlled by
both an agent and a human, in order to leverage the
distinct capabilities of each actor. Planning in SAS
must address the challenge of transferring control
quickly, safely, and smoothly back-and-forth be-
tween the agent and the human. We formally de-
fine SAS and the requirements to guarantee that
the controlling entities are always able to act com-
petently. We then consider applying the model to
Semi-Autonomous VEhicles (SAVE), using a hi-
erarchical approach in which micro-level transfer-
of-control actions are governed by a high-fidelity
POMDP model. Macro-level path planning in our
hierarchical approach is performed by solving a
Stochastic Shortest Path (SSP) problem. We ana-
lyze the integrated model and show that it provides
the required guarantees. Finally, we test the SAVE
model using real-world road data from Open Street
Map (OSM) within 10 cities, showing the benefits
of the collaboration between the agent and human.

1 Introduction
Autonomous systems have been deployed in a wide variety
of applications such as space exploration [Zilberstein et al.,
2002], reservoir control [Castelletti et al., 2008], energy con-
servation [Kwak et al., 2012], and autonomous driving [Wray
and Zilberstein, 2015; Wray et al., 2015]. These systems,
however, almost universally require human intervention or
interaction at some point in order to achieve their objec-
tives (e.g., the Mars rovers), or recover from failure (e.g., the
Roomba vacuum cleaner). Within the proposed automated
planning solutions to these problems, few if any approaches
take full advantage of this collaboration. Instead, they com-
monly resort to default hard-coded behaviors instead of inte-
grating human capabilities into the planning process [Biswas
and Veloso, 2013]. Semi-Autonomous Systems (SAS) cap-
ture explicitly this collaborative process in which a human
and an agent—or any number of actors—work together to
achieve a goal, smoothly transferring control over the system
back and forth, while proactively considering each actor’s ca-
pabilities and the human’s preferences [Zilberstein, 2015].

New challenges arise in semi-autonomous systems because
the overall plan must factor the inherent uncertainty and un-
predictability associated with human behavior. We consider a
semi-autonomous driving domain where the vehicle can op-
erate autonomously only on well-mapped roads under ideal
conditions. To reach a distant destination, the vehicle may
require the human to occasionally take control. This trans-
fer of control process requires second-to-second monitoring
as various messages are conveyed to the driver. It is also
not always successful given an allotted time window and the
driver’s state (e.g., distracted). These factors must be taken
into consideration as the system is planning its long-term
route. Additionally, this process of transfer of control must
incorporate these factors to provide a measure of safety for
the system. Car companies are already developing nascent
semi-autonomous capabilities and user interfaces to support
transfer of control [Nissan Motor Company Ltd, 2016], but
research has been sparse on generalized planning models.

Previous work on semi-autonomous systems has focused
on preventing or reacting to human error [Anderson et al.,
2009], for example, automatically correcting an undesired
lane change [Jung and Kelber, 2004] or human-reactive im-
plementations of adaptive cruise control [Rajamani and Zhu,
2002]. While a long line of research exists on collaboratively
controlling a system [Connell and Viola, 1990], planning with
the explicit consideration of the human in the plan execution
cycle has been lacking [Fong et al., 2003]. No existing algo-
rithm explicitly tackles the transfer of control problem.

Our proposed collaborative multiagent framework is quite
distinct from existing approaches for collaboration such as
Shared Plans [Grosz and Kraus, 1996], Teamwork [Tambe,
1997], and Dec-POMDP [Bernstein et al., 2002]. First, a SAS
requires exactly one actor to be in control of plan execution
at any given time. Second, this fact requires explicit mech-
anisms for transferring control among the actors. Finally, a
SAS must proactively plan to leverage each actor’s capabili-
ties (or lack thereof) as it efficiently moves in the state space.

Our primary contributions are: (1) a formal definition of
a SAS and its key properties, (2) a general transfer of con-
trol model, (3) a hierarchical approach for integrating domain
action planning with transfer of control, and (4) an analysis
showing the hierarchical model is a strong SAS. Finally, we
provide semi-autonomous driving experiments for 10 cities
using real road data that show the benefits of the method.
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2 Semi-Autonomous Systems
Semi-Autonomous Systems (SAS) rely on collaboration be-
tween a human and an agent in order to achieve some goals
while maintaining a measure of safety [Zilberstein, 2015].
We consider semi-autonomy within the context of automated
planning, extending a Markov Decision Process (MDP) to
support semi-autonomy, as formally defined below.
Definition 1. A semi-autonomous system is represented by a
tuple xA, S`, A`, T`, C`, G, Ly.

• A is a set of actors (controlling entities).

• S` “SˆA is a set of factored states: a standard state
set S and the current controlling actor A.

• A` “AˆA is a set of factored actions: a standard ac-
tion set A and the next desired actor A.

• T` :S`ˆA` Ñ4|S`| is a transition function, com-
prised of a state transition Ta :SˆAÑ4|S| for
each actor a P A, and control transfer function
⇢ :S`ˆAÑ4|A|.

• C` :S`ˆA` ÑR` is a cost function.

• GÑS` is a set of goal states.

• LÑS` is a set of live states, such that for actor capa-
bility function  :S Ñ 2

A, L“ txs,ay P S`|a P  psqu.

The actors A of the system describe controlling entities,
which include at a minimum a human � and an autonomous
agent ⌫; we focus in this paper on situations involving these
specific two actors. The states must record who is in con-
trol at any given time, and the actions must record intentions
to switch control to new actors. In SAS, we cannot always
assume that transfer of the control has a flawless execution.
Hence our T` (Definition 4) is factored into two components:
Ta and ⇢ (Definitions 2 and 3).
Definition 2. An actor state transition function, denoted
Ta :SˆAÑ4|S|, describes how an actor a P A can operate
in the world when in control (n-simplex 4n).

Definition 3. A control transfer function, denoted
⇢ :S`ˆAÑ4|A|, describes the result of attempting to
transfer control from the current actor in a given state.

Definition 4. The SAS state transition function for
s` “ xs,ay, a` “ xa, ây, and s1

` “ xs1,a1y is:

T`ps`, a`, s1
`q “

$
&

%

Taps, a, s1q, if a“â“a1

Taps, a, s1q⇢ps`, â,a1q, if a‰â p1q
0, otherwise

In Equation 1, the first component corresponds to keep-
ing the current actor, which simply follows the actor’s state
transition. The second component describes the actor still in
control but seeking to switch to a different actor at the next
state. The third component indicates that it is impossible to
take control from an actor without the desire to transfer.

We develop a hierarchical approach to transfer control that
treats each decision of the high-level planning process as a
macro-action or an option [Sutton et al., 1999], which in-
volves micro-actions to support the successful transfer of con-
trol. This hierarchical design seems particularly suited for our

target domain of semi-autonomous driving. Here, we per-
form path planning on large, world-scale roads in time scales
of minutes or hours. Transfer of control, however, requires
much more care, and is done in time scales of seconds. If we
were to path plan with transfer of control at full detail every-
where along the route, the state spaces would be astronomi-
cally large. For example, for the smallest problem instance
in our experiments (Pittsburgh), this would blow up the state
space by a factor of 387, resulting in a POMDP with approx-
imately 7.6ˆ 10

4 states. Instead, we take advantage of the
fact that transfer of control is a generic process that depends
on a handful of context variables such as the time remaining
to complete the transfer and some general driving conditions
(e.g., transferring control on a straight road, turns, low-speed,
and high-speed). Apart from that, the way in which the trans-
fer of control is performed is largely independent of the re-
maining route and destination. This enables us to generalize
the transfer process, and model it as a compact state transition
at the higher level following ⇢ in the form of an option.

Following Zilberstein [2015], a SAS of type I (SAS-I)
does not explicitly model the human in the execution loop,
whereas a SAS of type II (SAS-II) does. Thus, we have pre-
sented a SAS-II as we explicitly model the human within our
set of actors (� P A). We proceed with additional properties.

Within a SAS, we define two types of histories. Defini-
tion 5 formalizes the meaning of any trajectory over states
and actions, given the limits of the stochastic state transition.
Definition 5. A realizable history is a sequence of the form
~ “ xs0`, a0`, . . . , s``y such that for all si`, ai`, and si`1

` ,
T`psi`, ai`, si`1

` q ° 0. The set of all realizable histories
starting at s0` P S` with horizon ` P N is denoted ¯Hps0`, `q.

Next, we define a more constrained history with respect to
a specific policy in Definition 6. A policy ⇡ :S` ÑA` is a
mapping from factored states to factored actions.
Definition 6. Given policy ⇡, a policy realizable history, is a
realizable history ~ such that @i, ai` “⇡psi`q. We denote the
set of all policy realizable histories starting at state s0` P S`
with horizon ` P N as ¯H

⇡

ps0`, `q.
Given a policy ⇡, the agent incurs a cost per time step given

by C` :S`ˆA` ÑR` as it tries to reach a goal state from
G Ñ S`. A policy is optimal if it minimizes the expected
cost over time, also called the value of a state V` :S` ÑR.
For initial state s0 P S`, the optimal policy ⇡˚ minimizes:

V`ps0q “ E
” 8ÿ

t“0

Ct

`pst,⇡˚pstqq|s0
ı

(2)

Given an initial state, this defines a Stochastic Shortest Path
(SSP) MDP. Bellman’s optimality equation for state s is:

V`psq “ min

aPA`
tC`ps, aq `

ÿ

s

1PS`

T`ps, a, s1qV`ps1qu (3)

Following Bertsekas and Tsitsiklis [1991], this equation pro-
duces an optimal policy ⇡˚ under two assumptions. First,
a proper policy must exist that can reach a goal with prob-
ability 1 from s. Second, all improper policies must incur
infinite cost at states that cannot reach a goal with probabil-
ity 1. Such SSPs can be solved using search methods such as
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LAO* [Hansen and Zilberstein, 2001] as well as conventional
value iteration.

So far we have described a concrete model that explicitly
represents the current actor (controlling entity) and the dy-
namics for attempting to transfer control among actors. We
now introduce actor capability constraints for SAS, which
specify limits on the abilities of actors to control the system
under certain conditions, through the function in Definition 7.
Definition 7. An actor capability function (ACF)  :S Ñ 2

A

maps states to the actors capable of acting in that state.
For example, in the semi-autonomous driving domain, the

autonomous agent may not be able to drive on every road, but
only on well-mapped roads or under certain weather condi-
tions. Thus, the planner must incorporate the limited capa-
bilities of the autonomous agent, as well as the uncertainty
regarding transfer of control between the human and agent,
in order to construct a route from a starting location to a des-
tination. Definition 8 formalizes the notion of live state in
which an actor can control the system.
Definition 8. Live states L“ txs,ay P S`|a P  psqu are
states which satisfy the ACF  .

Live states are states in which the system is considered ac-
tive or safe, because the controlling entity can act there. Def-
inition 9 states constraints that must be satisfied for all SAS.
Definition 9. The live state constraints for SAS are:

1. G Ñ L
2. @s` R L, @a` P A`, @s1

` P L, T`ps`, a`, s1
`q “ 0

Unlike general dead ends [Kolobov et al., 2012], which
are states from which the goal becomes unreachable, our live
state constraints form a particular structured type of dead end
that is easier to analyze (largely because these conditions are
explicitly captured by L). In fact, we will show that our semi-
autonomous vehicle formulation produces policies that guar-
antee avoidance of non-live states. In general, this requires
us to prove that the given transfer of control model produces
a ⇢ that never enters a non-live state. This key mechanism is
described in the following section. We now formalize this.

Our objective is to characterize policies and systems in
terms of their ability to maintain live state. Definitions 10, 11,
and 12 present three key properties of policies.
Definition 10. A policy ⇡ is strong if for all s0` P L and
` P N, and for all ~ P ¯H

⇡

ps0`, `q and i P t0, . . . , `u, si` P L.
Definition 11. A policy ⇡ is conditionally strong if there ex-
ists an s0` P L and ` P N, such that for all ~ P ¯H

⇡

ps0`, `q and
i P t0, . . . , `u, si` P L.
Definition 12. A policy ⇡ is weak if it is not strong or condi-
tionally strong.

Next, we extend these terms from policies to an entire SAS.
A SAS is said to be strong (conditionally strong) if there ex-
ists a strong (conditionally strong) policy ⇡˚ that is optimal.
Otherwise, the SAS is said to be weak.

3 Transfer of Control
Transfer of Control (TOC) is the critical method that enables
effective and safe transference of the controlling entity within

the stochastic decision-making process. TOC both to and
from a human requires the optimal selection of various mes-
sages (e.g., visual or auditory) in order to prompt the human
to reengage and ensure smooth transference. Each message
type presents a trade-off between the efficacy of alerting the
human to the agent’s intention and the human’s amiable per-
ception of the agent (e.g., aggregated annoyance). For ex-
ample, a continuous alarm is effective but undesirable, and
a blinking light is not as effective but more favorable. Ad-
ditionally, the system receives noisy observations of the hu-
man’s state of engagement due to the limited sensing capa-
bilities available. Thus, it instead must make decisions based
on a belief regarding the engagement level. Finally, this is
a time-sensitive sequential optimization problem due to the
limited time window in which control may be transferred. For
example, in semi-autonomous driving, the vehicle may not
be able to operate on insufficiently mapped roads and must
seamlessly relinquish control before reaching these roads. We
model this process using a POMDP. First, we formally define
the TOC problem, then POMDPs, and finally construct the
POMDP model of TOC.

3.1 The Transfer of Control Problem
The Transfer of Control (TOC) Problem is a tuple
xH,M,O, T ,P

h

,P
c

,P
o

, Cy. H is a set of human states. M
is a set of available messages to inform the user of the desire
to transfer control. The absence of a message is indicated by
H P M (i.e., no operation or ‘NOP’) and is always available.
O is the set of observations made by sensors, which provide
partial information about the human’s state. T “ t1, . . . , ⌧u
is a set of limited time steps for the transfer of control to com-
plete (e.g., ⌧ seconds). P

h

:HˆMˆT Ñ4|H| is the prob-
ability of the human state transitioning from h to h1 given
message m was sent t time steps ago, such that we have
P
h

ph,m, t, h1q ”Prph1 |h,m, tq. P
c

:HˆMÑ4|T | is the
probability that control will be transferred given the human
state h and that message m was sent t time steps ago. If
control is transferred, then the process terminates; the agent
knows when this occurs. P

o

:HÑ4|O| is the probability
of making a sensor observation o given the human state is
h, such that P

o

ph, oq ”Prpo|hq. C :HˆMˆT ÑR` is the
cost of sending message m given human state h and t time
steps since sending the last message (i.e., Cph,m, tq). The
agent can always abort, ending the transfer attempt.

The human has a true hidden state h P H. This changes
over time as the agent selects a message m

t

P M for each
t P T , forming sequence m “ xm1, . . . ,m⌧

y. The objective
is to minimize the total sum of message costs; however, failing
to transfer control without safely aborting should strictly be
avoided. Thus, the agent must also decide when to abort.

Importantly, control can be transferred either way in this
model. That is, it captures requesting control to be both taken
from and given to the agent. Furthermore, different TOC
problems may be defined, each encoding a different environ-
ment or scenario in which control must be transferred. For
example, a vehicle taking control on a highway turn, or a hu-
man taking control on a quiet suburban road, are both differ-
ent transfer of control instances.
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3.2 Background on POMDPs
A Partially Observable Markov Decision Process
(POMDP) is defined by a tuple x ¯S, ¯A, ¯⌦, ¯T , ¯O, ¯Ry [Kael-
bling et al., 1998]. ¯S is a set of n states. ¯A is a set of m
actions. ¯

⌦ is a set of z observations. ¯T :

¯Sˆ ¯AÑ4|S̄| is a
state transition function such that ¯T ps, a, s1q ”Prps1|s, aq.
¯O :

¯Aˆ ¯S Ñ4|⌦̄| is an observation function such that
¯Opa, s1,!q ”Prp!|a, s1q. ¯R :

¯Sˆ ¯AÑR is a reward func-
tion denoted ¯Rps, aq. Actions are performed at each time
step, up to the horizon ` P N, discounting the reward ob-
tained by � P p0, 1q. The agent, however, must select actions
without knowing the true state of the system. Instead, it
maintains a belief over the true state b P 4n, or a collection
of r beliefs ¯B Ñ 4n (standard n-simplex). Given belief b,
action a, and subsequent observation !, for each state s1, the
belief updates (normalizing constant ⌘ “ Prp!|b, aq´1) via:
b1ps1q “ ⌘ ¯Opa, s1,!q ∞

sPS̄ ¯T ps, a, s1qbpsq.
The goal is to find a policy ⇡ : ¯B Ñ ¯A that maximizes the

expected reward over time, i.e., value function ¯V :

¯B ÑR.
This function is piecewise linear and convex [Kaelbling et
al., 1998], so we use a set of ↵-vectors �“ t↵1, . . . ,↵r

u with
each vector ↵

i

“ r↵
i

ps1q, . . . ,↵
i

ps
n

qsT . Each ↵
i

ps
j

q denotes
the value of state s

j

P S. The optimal value (resulting in an
optimal policy ⇡̄˚) at time t for belief b is:

¯V tpbq “ max

aPĀ

ÿ

sPS̄
bpsq ¯Rps, aq `

ÿ

!P⌦̄
max

↵P�t´1

ÿ

sPS̄
bpsq ¯V t

sa!↵

(4)
with ¯V t

sa!↵

“ �
∞

s

1PS̄ ¯Opa, s1,!q ¯T ps, a, s1q↵ps1q.

3.3 Transfer of Control POMDP Formulation
We model the control transfer problem as a POMDP called
a TOC POMDP. The state space is ¯S “ T ˆHˆMˆT Y E
with a set of ‘end result’ states E “ t‘,a,mu denoting ‘suc-
cess,’ ‘failure,’ and ‘aborted,’ respectively. Each state cap-
tures the time remaining, current human state, the previous
message sent, and how long it has been since that message
was sent, as well as the outcome of the transfer of control.
The action space ¯A“M Y tmu is the messages to send
and the ‘abort’ action (denoted m). The observation space
¯

⌦“O Y E represents the observations, and lets the model
know the end result, as per the problem definition. The state
transition function needs to encapsulate the notions of human
state, as well as the success or failure of transferring control.
We break this into two scenarios.

The first scenario examines transitions only among non-
end result states such that s, s1RE , with state factors denoted
s“ xt, h,m, t

m

y and s1 “ xt1, h1,m1, t1
m

y. This scenario has
two non-zero cases each with the same probability. In both,
control has not successfully transferred yet, so we always up-
date the human state and count down the timer (via constraint
t1“t´1 • 0). The first case encodes the effect of sending a
message from MztHu. The second case encodes the effect
of a ‘NOP’ message H. Formally, for any s, a, and s1:

T̄ ps, a, s1q “
$
&

%

P̄ if aRtm,Hu^m1“a^t1
m“0 p5q

P̄ if a“H^m1“m^t1
m“minttm`1, ⌧u

0 otherwise

with ¯P “ p1´P
c

ph,m, t
m

qqP
h

ph,m, t
m

, h1q above.

The second scenario examines transitions to an end re-
sult state: successor s1 P E . This scenario has four non-zero
cases. The first case is simply the absorbing states E . The
second case is immediate termination via the abort action m.
The third case captures the ever-possible chance of success-
ful control transfer (‘). The fourth case handles a failure (a)
transition by running out of time. Thus, for a state s, action
a, and successor s1 we have:

T̄ ps, a, s1q “

$
’’’&

’’’%

1 if s“s1PE p6q
1 if sRE^a“s1“m
Pcph,m, tmq if sRE^a‰ m ^s1“‘
1´Pcph,m, tmq if sRE^t“0^a‰m^s1“a
0 otherwise

with s“ xt, h,m, t
m

y above provided sRE .
The observation transition function only needs to model

two components. First, the agent always has perfect knowl-
edge of the final outcome state. Second, the agent makes
noisy observations from sensors which hint at the true hu-
man state (e.g., a face or eye tracker in a vehicle). Formally,
for action a, successor state s1, and observation !:

¯Opa, s1,!q “
#

1 if !“s1PE
P
o

ph1,!q if s1RE^!PO
0 otherwise

(7)

with states s1 “ xt1, h1,m1, t1
m

y above provided s1 R E .
The reward function has four components. First, there are

costs associated with all normal messages, as defined by the
TOC problem. Second, an arbitrarily small ✏ ° 0 cost is given
for a NOP H. Third, there is a large penalty for unnecessary
aborting. Fourth, failure repeatedly incurs the maximal cost.
Thus, for state s and action a:

¯Rps, aq “

$
’’’&

’’’%

´Cph,m, t
m

q if sRE^aRtH,mu
´✏ if sRE^a“H
´C˚ if sRE^a“ m ^t°0

´C˚ if s“a
0 otherwise

(8)

with s“ xt, h,m, t
m

y and a non-success penalty C˚ (e.g., let
C˚ “ `C

max

with C
max

“ max

h,m,tm Cph,m, t
m

q).
Within a TOC POMDP, the end result terminal states are

fully observable, as well as each state factor except for the
true human state H. Thus, all beliefs, including initial belief
b0, only contain uncertainty regarding these human states.

4 Application to Semi-Autonomous Driving
The TOC formulation as a POMDP enables us to incorpo-
rate semi-autonomy into stochastic path planning problems.
Again, our main motivation is the semi-autonomous driving
domain. Route decisions are made at intersections of roads;
however, only well-mapped main roads are capable of auton-
omy. While the driver can drive on any road, the longer, unin-
teresting, boring highways are assumed to be roads in which
the human prefers autonomy, meaning that control should be
transferred to the vehicle. All costs are proportional to the
time spent on the road. The uncertainty stems from the trans-
fer of control, also decided at road intersections. We first
formally define the problem, then describe the full model of
a specific SAS called a Semi-Autonomous VEhicle (SAVE).
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4.1 Problem Definition
The Semi-Autonomous VEhicle (SAVE) Problem begins
with a strongly connected weighted directed graph xV,E,wy.
V is a set of vertices forming intersections. E Ñ V ˆV is a
set of pairs of vertices (intersections) defining edges which
form roads. w :E ÑR` defines a positive weight for each
edge (road) which captures the time spent on the road. There
are initial and goal vertices v0, vg P V .

Additionally, the system may be driven by the human or
the agent (vehicle) itself; however, given the allotted time be-
tween each vertex (intersection), there is uncertainty if con-
trol transfer will be successful. This micro-level behavior
is modeled using TOC POMDPs. (These may be solved
offline for different scenarios, as described in the previous
section.) We label edges (roads) E

c

Ñ E as autonomy-
capable, meaning the set of roads in which the vehicle is
capable of driving autonomously. Similarly, E

p

Ñ E
c

are
autonomy-preferred roads in which the human prefers au-
tonomous driving. Thus, at each intersection the agent must
decide if control should be maintained or transferred as well
as which road to take next, in order to minimize the sum of
traversed weights (travel time). If control transfer is required,
fails to succeed, but the agent aborted, then the system is as-
sumed to safely pause at the vertex, i.e., the vehicle safely
pulls over to the side of the road. Otherwise, the SAS will
enter an unsafe state in which the vehicle is in control but
cannot drive on the road; this should be avoided at all costs.

4.2 Semi-Autonomous Vehicle Formulation
A Semi-Autonomous VEhicle (SAVE) is a SAS with
xA, S`, A`, T`, C`, G, Ly. Actors A“ t�, ⌫,�u encode the
current controlling agent of the vehicle: either the human
�, the vehicle itself ⌫, or no active actor as it safely waits
on the side of the road �. S` “V ˆA have standard states
V corresponding to the vertices (intersections) of the map.
A` “DˆA is the action set with D denoting the possi-
ble directions (roads) to take at a vertex (intersection) (e.g.,
D “ t–, Ò,Ñu). This notation is commonly overloaded such
that A`psq returns the set of actions available at state s. Let
✓ :V ˆD ÑV map a vertex (intersection) and an action (di-
rection) to the subsequent vertex following E. Additionally,
we assume: (1) the map is expanded to include a ‘failure’ ab-
sorbing vertex vf P V , with ✓pvf , dq “ vf for all d P D, and
(2) the goal is also absorbing with ✓pvg, dq “ vg for all d P D.

The state transition function T` follows Equation 1, and
introduces the uncertainty from our TOC POMDP’s transfer
of control process given by ⇢. First, for the human actor �,
the actor transition function T

�

simply follows the map. Next,
for vehicle actor ⌫, the actor transition function T

⌫

ensures
that: (1) autonomy-capable states follow the path, and (2)
non-autonomy-capable states enter the absorbing vertex vf .
Finally, for the safely parked vehicle �, the actor transition
function T

�

always self-loop since it is on the side of the road.
We now define the control transfer function ⇢. Formally,

for s“ xv,ay P S` with action xd, ây P A`psq, the al-
lotted travel time is ⌧ “ twpxv, ✓pv, dqyqu. We have a par-
ticular TOC POMDP given the intersection v, current con-
trolling actor a, and desired successor actor â from optimal
SAVE policy ⇡˚psq “ xd, ây. We assume the TOC POMDP’s

T “ t1, . . . , ⌧u has units in seconds without loss of general-
ity. Given the solved TOC POMDP, we would like to com-
pute the expected result from transfer of control. Formally,
we sample trajectories over the unobserved true state, obser-
vations, and resultant action following the TOC POMDP’s
optimal policy. Due to the structure of the TOC POMDP, this
always results in a collapsed belief with a known end result
from E . Formally, let J “ ts1, . . . , sku be a set of k final
‘end result’ states from the TOC POMDP’s E which are de-
termined by random state-action-observation trajectories fol-
lowing the TOC POMDP.

In the case with a“�, initially the car is safely on the side
of the road. Either (1) the car remains on the side of the road,
(2) the human TOC succeeds, or (3) the human TOC fails:

⇢ps, â,a1q “

$
’’&

’’%

1, if â‰�^a1“�
1
k

∞
k

i“1rs
i

“‘s, if â“�^a1“�
1
k

∞
k

i“1rs
i

‰‘s, if â“�^a1“�
0, otherwise

(9)

with r¨s denoting Iverson brackets.
In the case with a‰�, either the human � or vehicle ⌫ is

the controlling entity. Either (1) no transfer is requested and
the actor remains the same, (2) the TOC succeeds to switch
actors, (3) the TOC fails to switch actors, or (4) the TOC is
aborted and safely pulls over to the side of the road:

⇢ps, â,a1q “

$
’’’’&

’’’’%

1, if â“a^a1“â
1
k

∞
k

i“1rs
i

“‘s, if â‰a^a1“â
1
k

∞
k

i“1rs
i

“as, if â‰a^a1“a p10q
1
k

∞
k

i“1rs
i

“ms, if â‰a^a1“�
0, otherwise

Trivially, in the limit as the number of sampled trajectories
grows kÑ8, this converges to the exact probabilities of ob-
taining each resulting actor, our desired result. This formula-
tion of the expected value with number of samples k enables
us to sample a finite number of times and obtain an approxi-
mation of ⇢ in practice.

The cost function C` simply measures the time traveling
on a road, given its length and speed limit. We assume ties
between actions are broken following the autonomy-preferred
roads in E

p

. In other words, if autonomy is preferred and the
current actor is the human �, then the next action will attempt
to transfer to the vehicle ⌫. For s“ xv,ay and a“ xd, ây:

C`ps, aq “
"

wpxv, ✓pv, dqyq, if v ‰ vg

0, otherwise (11)

The goal is G“ txvg,�yu and the initial state is
s0 “ xv0,�y. Following the problem definition, the human
is capable of acting in all states, and the vehicle can be safely
on the side of the road in any state. Thus, for a vertex v,  pvq
is t�, ⌫,�u if the road v is autonomy-capable, and t�,�u oth-
erwise. Trivially, the failure state has no actors ( pvf q “ H).
This defines L following Definition 8.

4.3 Theoretical Analysis
We now integrate all three concepts we have introduced thus
far: SAS, TOC POMDP, and SAVE, in order to show that the
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transfer of control within our stochastic path planning model
provably maintains live state guarantees. Due to space con-
straints, we only provide proof sketches.
Proposition 1. SAVE satisfies the live state constraints.

Proof (Sketch). Both cases in Definition 9 are satisfied be-
cause (1) the goal is a live state, and (2) T

�

forces all non-live
states to transition to the absorbing states at vf .

Next, we establish Lemma 1 which states that the only un-
certainty regarding the true state is over the human factor.
This fact allows the agent to know and thus act appropriately
at the final time step.
Lemma 1. Belief uncertainty within the TOC POMDP is only
over the human state factor H; all other factors are known.

Proof (Sketch). Proof by induction following the belief up-
date equation from b0. Base case is trivial. Induction step
considers the update to b1 for any a or !. Equation 5’s ¯P is
non-zero following P

c

and P
h

; all other state factors deter-
ministic (both cases). Equation 7 follows P

o

, only stochastic
over human states. Thus, b1 has uncertainty only over H.

Establishing this property allows us to prove that the TOC
POMDP never enters the failure state a in Proposition 2.
This is a critical requirement in order to prove that SAVE is a
strong SAS in Proposition 3.
Proposition 2. Following a TOC POMDP’s optimal policy
⇡˚, for any horizon `, the underlying true state s` ‰ a.

Proof (Sketch). By Lemma 1, we examine actions taken at
reachable beliefs with t “ 0, since this factor is known to the
agent. By Equation 8, the abort action m is always optimal.
By Equation 6, the failure state is unreachable following ⇡˚.
Thus, s` ‰ a.

Proposition 3. SAVE is a strong SAS.

Proof (Sketch). SAVE enters a failure vf from some v only
for T

⌫

with v R E
c

and zero time remaining (t “ 0). By
Equation 10 and  ’s definition, the only way to enter a non-
live state is for an optimal TOC POMDP policy to enter a
with ⌫ in control when v1 R E

c

. This is impossible by Propo-
sition 2, implying a SAVE optimal policy is strong (Defini-
tion 10). Thus, SAVE is a strong SAS.

5 Experiments
We present a series of trials with subsets of 10 cities’ road
data from Open Street Map (OSM). Distant start and goal ad-
dresses are selected as one would do using a Global Position-
ing System (GPS) device. All main roads with a speed limit
of 30 or greater are marked as autonomy-preferred. We com-
pare our approach with a human driver following the GPS (�),
only the autonomous car (⌫), and the collaboration between
human and vehicle (� & ⌫). We use three metrics for com-
parison. First, we check if the goal was reachable from the
initial road (G). Second, we determine the percentage of time
the vehicle drives autonomously, provided it could do so, for
roads along its route (%). Third, we record the average travel
time to compare efficiency along each of the routes (T).

� ⌫ � & ⌫
City |S| |A| G % T G % T G % T
Austin 303 12 Y 0 128 N 100 — Y 13 128
Balt. 315 12 Y 0 146 Y 100 232 Y 46 154
Boston 912 18 Y 0 136 N 100 — Y 95 140
Chic. 258 12 Y 0 99 N 100 — Y 85 142
Denver 348 15 Y 0 128 N 100 — Y 81 132
L.A. 291 12 Y 0 120 N 100 — Y 42 120
N.Y.C. 960 15 Y 0 294 N 100 — Y 54 313
Pitts. 198 12 Y 0 81 N 100 — Y 8 89
San Fr. 504 18 Y 0 151 Y 100 183 Y 80 174
Seattle 366 12 Y 0 111 Y 100 138 Y 0 111

Table 1: Results for human �, vehicle ⌫, and � & ⌫ drivers.

Figure 1: SAVE policy with TOC in Boston.

Our experiments solve the TOC POMDP with Point-Based
Value Iteration (PBVI) [Pineau et al., 2003] and the SAVE
SAS using LAO* [Hansen and Zilberstein, 2001]. Table 1
shows our results for 100 trials for each city. Figure 1 depicts
a sample collaborative policy in which the human and vehi-
cle gracefully transfer control along the route. The driver is
always able to reach the goal, but never drives autonomously,
even when the car is capable of doing so. The autonomous
vehicle always succeeds in autonomously driving, but is only
able to reach the goal in 3 of the 10 scenarios. When it does
drive autonomously, it has to take long main roads, causing
travel time to be greatly increased. Interestingly, the hu-
man and autonomous vehicle collaboration always reaches
the goal, and drives autonomously for large portions of the
route. Also, the average travel times are relatively similar be-
tween the human and collaborative scenarios. This collabora-
tive approach selects routes that properly balance main road
autonomous driving and back road human driving.

6 Conclusion
We present a hierarchical approach to the transfer of con-
trol in semi-autonomous systems, which facilitates efficient
planning for a human-agent collaboration. The hierarchical
model captures explicitly and optimizes the critical transfer
of control process using a POMDP. We show how to apply
the general framework to SAS for semi-autonomous vehicles
and demonstrate its benefits. Furthermore, we analyze the
SAS with TOC model, showing that it maintains live state
and thus is a strong SAS. The experiments show that the hi-
erarchical approach is able to leverage the capabilities of the
human and agent as it optimizes the desired objective.

Future work will include experiments with humans in a
full-scale driving simulator. We will also explore other SAS
domains such as assistive technologies (e.g., physical ther-
apy) and disaster response (e.g., search-and-rescue). Finally,
we will provide our source code to facilitate the creation of a
wide variety of strong semi-autonomous systems.
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