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Abstract
Coral reefs are valuable and fragile ecosystems
which are under threat from human activities like
coral mining. Many countries have built marine
protected areas (MPAs) and protect their ecosys-
tems through boat patrol. However, it remains a
significant challenge to efficiently patrol the MPAs
given the limited patrol resources of the protection
agency and potential destructors’ strategic actions.
In this paper, we view the problem of efficiently pa-
trolling for protecting coral reef ecosystems from a
game-theoretic perspective and propose 1) a new
Stackelberg game model to formulate the problem
of protecting MPAs, 2) two algorithms to compute
the efficient protection agency’s strategies: CLP in
which the protection agency’s strategies are com-
pactly represented as fractional flows in a network,
and CDOG which combines the techniques of com-
pactly representing defender strategies and incre-
mentally generating strategies. Experimental re-
sults show that our approach leads to significantly
better solution quality than that of previous works.

1 Introduction
Coral reefs are precious natural resources, which form some
of the world’s most productive ecosystems, providing com-
plex marine habitats that support a wide range of other or-
ganisms. However, some human activities, like coral mining,
can severely damage the coral reef ecosystems. Once coral
reefs are destroyed, it may take tens of years for them to re-
store. Therefore, many countries have built marine protected
areas (MPAs) to restrict potentially damaging activities by pa-
trolling in the MPAs [Bellwood et al., 2004]. It is a great
challenge to efficiently protect the MPAs through patrolling
since protection agencies usually have to protect a large open
water area using very limited resources (e.g., the protection
agency in the Yalongwan MPA in China protects an 85 square
kilometers area with 3 patrol boats). In addition, potential de-
structors can learn the protection agency’s strategies through
surveillance, then choose the most undetectable time and the
most covert path in the open water to arrive at a specific area
to perform illegal activities. We aim at developing efficient
patrol strategies for protecting the coral reef ecosystems.

Though the crisis faced by coral reefs has been investigated
by many researchers [Bellwood et al., 2004; Pandolfi et al.,
2003], most previous works focus on conservation planning
instead of detecting and deferring potential damage [Car-
wardine et al., 2009]. Meanwhile, there has been signifi-
cant progress on applying game theoretic approaches to secu-
rity domains like protection of infrastructures [Tambe, 2011;
Letchford and Conitzer, 2013; An et al., 2013; Yin et al.,
2014; 2015; Wang et al., 2016; Shieh et al., 2012]. In our
scenario, the interaction between the protection agency (de-
fender) and the potential destructor (attacker) can also be
modeled as a game, but previous work cannot be directly used
here due to two new challenges. First, the playfield is a large
open water area, both players’ strategies are time-dependent
paths, i.e., the defender patrols while the attacker chooses
some time to sail to his target area. Second, unlike activities
such as igniting a bomb which can be done quickly, damag-
ing activities at an MPA (e.g., coral mining) only succeed if
they last for a relatively long time. Most previous works as-
sume that at most one player takes paths [Fang et al., 2015;
Basilico et al., 2009], or that time is irrelevant [Jain et al.,
2013] and attack can be done immediately [Gan et al., 2015].
For previous works that considered attack duration, they ei-
ther consider time duration of attacks as external parame-
ters but not part of the attacker’s strategy [Alpern et al.,
2011], or have different goals from us [Yin et al., 2012;
Bosansk et al., 2015]. The two new challenges make the strat-
egy spaces of the players larger and more complicated, which
leads to great challenge in computation.

This paper makes four key contributions. First, we propose
a defender-attacker Stackelberg game model to formulate the
problem of protecting MPAs, in which both game players take
time-dependent paths, and payoffs of players are affected by
the time duration of the attack. Second, we propose a com-
pact linear program to solve the game, in which we compactly
represent defender strategies as fractional flows on graphs to
reduce the number of variables in the game. To further scale
up the algorithm, our third contribution is a compact-strategy
double-oracle algorithm on graphs (CDOG) which combines
the techniques of compactly representing defender strategies
and incrementally generating strategies. Finally, extensive
experimental results show that our algorithms lead to signifi-
cantly better solution quality than that of other algorithms in
the literature and CDOG scales up well.
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2 Motivating Scenario
Figure 1(a) shows the landscape of the Great Barrier Reef
Marine Park in Australia. There is an authority (defender) re-
sponsible for the protection of the park, with offices located
on the coast, shown as red stars in Figure 1(a). The defender,
can divide the MPA into several zones to design patrol strate-
gies. Figure 1(b) shows an example division. The defender
can stay at a zone or take a path among zones. Each zone
is a potential attack target. The effect of damaging differ-
ent zones can be different and time-dependent. The attacker
enters the park at some time, takes a path to his target zone
and determines how long to perform activities at this zone.
Both agents may be limited to start and finish the path at
certain zones, e.g., office locations, peripheral zones in the
park (zones except 6 in Figure 1(b)). Strategic attackers can
observe the defender’s patrol strategies, then act considering
both defender’s strategies and attractiveness of zones. Since
performing activities at a zone needs time-consuming prepa-
ration (e.g., equipment setup), we assume that the attacker
targets a single zone. We did not consider how the attacker
escapes after attacking since the coral reefs are damaged any-
way after the attack. In addition, before the attacker finishes
the attack, he needs to look for a location and operate the
equipment, which can make him suspicious; while after the
attack, he can easily camouflage himself and flee fast, which
makes it difficult to catch him.

(a) Landscape and offices (b) Example division

Figure 1: The Great Barrier Reef Marine Park

3 Model
We model the problem as a Stackelberg game [Tambe, 2011],
where the defender commits to a randomized strategy first,
then the attacker conducts surveillance and chooses the op-
timal strategy to respond to the defender’s strategy. We first
construct a transition graph with a timeline. Denote an MPA
as a collection of n zones Z = {1, 2, · · · , n}. We evenly dis-
cretize a day as a sequence of ⌧ time points t = ht1, · · · , t⌧ i
with interval �. Assume that the time needed to travel be-
tween two adjacent zones is a multiplier of � (this assumption
holds as long as � is small enough). Assume that the defender
and the attacker travel at the same speed and they only move
at time points tk 2 t. Let D = hdij 2 {1, 2, · · · }i with dij
representing that the time needed to move from zone i to ad-
jacent zone j is dij · �. To represent players’ strategies, we
construct a directed transition graph G = hV,Ei where a ver-
tex v = hi, tki corresponds to zone i and time tk. There is an
edge e = hv = hi, tki, v0 = hj, tk0ii if one of the following
two conditions holds:

1. j = i, k0 = k + 1. We call such edges stay edges.
2. i and j are adjacent zones and k0 = k + dij . We call

such edges moving edges.
Consider a simple MPA graph in Figure 2(a) which in-

cludes 3 zones. Let t = ht1, t2, t3i and dij = 1, 8i, j 2
{1, 2, 3}, i 6= j. We can get a transition graph in Figure 2(b).
The edge between h1, t1i and h1, t2i indicates that the de-
fender can patrol in zone 1 and the attacker can perform ac-
tivities in zone 1 during (t1, t2). An edge connecting h1, t1i
and h2, t2i indicates that if a player moves from zone 1 at time
t1, he will arrive at zone 2 at time t2.

(a) Divided MPA (b) Transition graph

Figure 2: MPA graph and transition graph

Defender strategies. Assume that the defender has m
resources, i.e., m patrol boats, and each resource can keep
patrolling for time duration ✓�. Let Zd ⇢ Z be zones
that the defender can start and end her patrol1. Since the
patrol can start at any time before t⌧�✓, we add a collec-
tion of virtual source vertices to the transition graph, i.e.,
S = hS1, S2, · · · , S⌧�✓i. For Sk 2 S, we add an edge from
Sk to vertex hi, tki(8i 2 Zd

). Similarly, we add a collection
of virtual terminal vertices T = hT1, T2, · · · , T⌧�✓i such that
8Tk 2 T , there is an edge from vertex hi, tk+✓i(8i 2 Zd

) to
Tk. Therefore, a patrol strategy Pr of a resource r is a flow
from Sk to Tk. A pure strategy of the defender is a set of m
‘patrol strategy flows’, i.e., P = {Pr : r 2 {1, · · · ,m}}.
A mixed strategy of the defender is a distribution over pure
strategies, i.e., x = hxP i where xP represents the probability
of P being used.

Consider the example in Figure 2(b). Assume that Zd
=

{1, 3} and ✓ = 1, thus the source vertices and terminal ver-
tices can be added as is shown in Figure 3(a), i.e., S1 is
connected to h1, t1i and h3, t1i, meaning that the defender
can start the patrol from zone 1 or 3 at time t1, while T1 is
connected to h1, t2i and h3, t2i, meaning that patrols starting
from S1 should end in zone 1 or 3 at time t2. Any flow from
Sk to Tk is a feasible patrol strategy, e.g., S2 ! h1, t2i !
h3, t2i ! T2 represents that the defender patrols on the way
from zone 1 to zone 3.

Attacker strategies. Assume that the attacker can also
start at a subset of the zones Za ⇢ Z. An attacker’s strategy
includes two parts: a path in the transition graph to go to his
target zone, and how long he attacks at the target zone. We
assume that the attack duration is a multiplier of � (this holds
when � is small enough) and denote an attacker’s strategy as
Y = hHY , AY i, where HY is a path leading to his target ver-
tex hi, tki and AY is a path consisting of l adjacent stay edges,
representing that the attacker performs activity at zone i from

1Our model can be easily expanded to handle cases in which the
defender starts from and finishes at different sets of zones.
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(a) Defender strategies (b) Attacker strategies

Figure 3: Strategies as paths in the transition graph

time tk to time tk+l. Consider the previous 3-zones example.
Assume that Za

= {1}. Figure 3(b) shows a feasible attacker
strategy where the attacker enters the MPA from zone 1 at
t1, arrives at his target zone 2 at t2, then attacks zone 2 till
t3. As previous work in security games, we restrict attacker
strategies to pure strategies [Kiekintveld et al., 2009].

Utilities and equilibrium. We assume that each stay edge
e = hhi, tki, hi, tk+1ii in the transition graph has a value of
Ve, representing the attacker’s payoff of succesfuly perform-
ing activities in zone i during time (tk, tk+1). If an attacker
successfully plays strategy Y = hHY , AY i, he gains a utility
of U(Y ) =

P
e2AY

Ve, while the defender gets a utility of
�U(Y ). If the attacker is detected by the defender, he fails
and both agents get a utility of 0. The attacker may be de-
tected by the defender if their strategies share same edges.
Specifically, if their paths share a stay edge, the attacker may
be detected when he is staying at some zone; if their paths
share a moving edge, the attacker may be detected when he
is moving from one zone to another. Naturally, the defender
may not be able to perform detection every time she meets a
boat which could be a potential attacker. To describe the prob-
ability that the defender detects a boat, we make the following
two assumptions, which are realistic enough to describe most
real world scenarios.
Assumption 1. If the defender and the attacker first meet on
edge e, the probability that the defender detects the attacker,
i.e., the detecting factor of edge e, is fe 2 [0, 1].

The next assumption is about the probability that the de-
fender detects the attacker after they meet for the first time.
Since patrol areas are usually somewhere prone to be mali-
ciously damaged but not popular travel sites, a boat appearing
in such areas frequently is very suspicious. Therefore, if the
defender has met a boat for many times on her way before she
arrives at edge e, then the boat seems more suspicious than a
boat which is seen for the first time on edge e, thus should be
detected with a higher probability than fe.
Assumption 2. Assume that the defender and the attacker
have been on same edges e1, e2, · · · , ek�1

2 and the attacker
has not been detected. If they meet on edge ek, the probability
that the defender detects the attacker is min{1, fek

1�
Pk�1

i=1 fei
}.

The probability shown in Assumption 2 ranges in [fek , 1],
which satisfies the intuition that more suspicious boat should
be detected with a higher probability. Based on Assump-
tion 2, if the defender’s strategy and the attacker’s strat-

2The subscripts are indexes of edges in the players’ path.

egy share same edges e1, e2, · · · , ek�1, ek, let Fk�1 rep-
resent the probability that the attacker is detected on any
edge in e1, · · · , ek�1, then the total probability that the at-
tacker is detected given the defender strategy is Fk�1 + (1�
Fk�1)min{1, fek

1�
Pk�1

i=1 fei
}. Note that when k = 2, F1 =

fe1 . Simple recursion results in that given a patrol strategy
Pr of a resource r and an attacker strategy Y , assume that the
overlapping edges of Pr and Y are Pr\Y = he1, e2, · · · , eki,
then the probability that the attacker is detected by this re-
source is min{1,

Pk
i=1 fek}.

We also assume that when several security resources and
the attacker are at the same edge, the security resources can
cooperate with each other to come up with a detection prob-
ability which is the sum of their respective detection proba-
bility capped by 1.3 Therefore, given a pure strategy of the
defender P = {Pr} and a pure strategy of the attacker Y , the
overall detection probability for the attacker is:

dp(P, Y ) = min{1,
Xm

r=1

X
e2Pr\Y

fe}. (1)

Based on Eq.(1), given a pair of strategies hP, Y i, the
expected utility of the attacker is Ua

(P, Y ) = (1 �
dp(P, Y ))U(Y ). Given a mixed strategy x = hxP i of the
defender and a pure strategy Y of the attacker, the attacker’s
expected utility is Ua

(x, Y ) =

P
P xPUa

(P, Y ), while the
expected utility of the defender is Ud

(x, Y ) = �Ua
(x, Y ).

Our goal is to compute the Stackelberg equilibrium of the
game, hence the optimal strategy for the defender. Given the
zero sum assumption, the Stackelberg equilibrium is equiv-
alent to maximizing the defender’s utility when the attacker
responds the best. Technically, let X, Y be the defender’s
and attacker’s strategy space respectively. Let the attacker’s
optimal response function be f(x) = {Y 2 Y}. A pair of
strategies (x, Y ) form an equilibrium if they satisfy the fol-
lowing:

Ua
(x, f(x)) � Ua

(x, Y 0
), 8Y 0 2 Y,

Ud
(x, f(x)) � Ud

(x

0, f(x0
)), 8x0 2 X.

4 CLP Based on Compact Representation
The number of defender’s pure strategies increases exponen-
tially as the game size increases. To address this challenge,
we compactly represent mixed patrol strategies by marginal
coverage ce on edges e in the transition graph G, i.e., the ex-
pected number of patrollers that will be on the edges. Given
a mixed strategy x, we have

ce =
X

P
xPP (e), 8e 2 G, (2)

where P (e) represents the number of patrols in pure strat-
egy P which go through edge e. Therefore, based on Eq.(2),
given a mixed strategy x and its corresponding coverage vec-
tor c = hce : e 2 Ei, and given a pure strategy Y of the

3If the security resources work independently, the overall detec-
tion probability will be higher than that is computed by Eq. (1). In
this case, the defender strategies computed based on Eq. (1) will
lead to a utility which is a lower bound of the defender.
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attacker, the expected attacker utility can be represented as

Ua
(c, Y ) = (1�min{1,

X
e2Y

cefe})U(Y ). (3)

Our problem now lies in computing the marginal cover-
age which corresponds to the optimal mixed strategy of the
defender. First, we need to construct marginal coverages cor-
responding to feasible mixed strategies. One challenge of the
construction lies in that a mixed defender strategy consists
of pure strategies starting from different time points. Yin et
al. [2012] have proven that the problem can be solved by con-
structing an extended version EG of the transition graph G,
and considering the marginal coverage as the sum of several
flows on EG. Technically, EG is composed of multiple re-
stricted copies of G (i.e., subgraphs of G), corresponding to
different possible starting time points for the defender. For
the copy corresponding to starting time points tk, we only
keep the subgraph Gk on vertices hSk, Tk, v = hi, tk0i : i 2
Z, k0 2 {k, · · · , k+✓}i. Therefore, any defender patrol strat-
egy starting at tk can be represented as an Sk � Tk flow in
subgraph Gk. Let zk(e) represent the expected number of
patrollers on edge e which come from patrol strategies start-
ing at time point tk (zk(e) � 0). Let �(e) represent the set of
subgraphs which include edge e. Let ce =

P
k:Gk2�(e) zk(e).

Yin et al. [2012] show that if zk(e) satisfies conservation of
flow, a defender mixed strategy which leads to the same util-
ity as corresponding c = hce : e 2 Gi can be constructed in
polynomial time. Now we present a compact linear program
CLP to compute the optimal marginal coverage.

CLP(G,Y) : maxc,z U (4)

U  �(1�min{1,
X

e2Y
cefe})U(Y ), 8Y 2 Y (5)

ce =
X

k:Gk2�(e)
zk(e), 8e 2 G (6)

X
hv0,vi2Gk

zk(hv0, vi) =
X

hv,v00i2Gk

zk(hv, v00i), 8Gk (7)
X

Sk2S

X
i2Zd

zk(hSk, hi, tkii) = m (8)
X

Tk2T

X
i2Zd

zk(hhi, tk+✓i, Tki) = m (9)

Constraint (7) enforces conservation of flow, which is
clearly satisfied by any mixed patrol strategy. Constraints (8)
and (9) bound the total flow entering and exiting the transition
graph by m, the number of patrollers. Constraint (5) indicates
that the attacker will best respond by choosing the strategy
Y which leads to the best utility, or equivalently, the least
utility for the defender �(1 � min{1,

P
e2Y cefe})U(Y ).

This is an overestimate of the defender’s utility since the
expression 1 � min{1,

P
e2Y cefe} is an overestimate of

the probability that the attacker is detected. This is be-
cause min{1,

P
e2Y cefe} only caps the expectation (over

its pure strategies) of the detection probability at 1, but al-
lows a pure strategy P = hPri in its support to achievePm

r=1

P
e2Pr\Y fe > 1, whereas according to Eq.(1), the

detection probability of each pure strategy should be at most
1. As a result, the solution of this LP provides an upper bound
of the optimal defender utility. Fortunately, once we generate

Algorithm 1: CDOG
1 Initialize with a subgraph G0 of G and a subset Y0 ⇢ Y;
2 repeat
3 (c,y) CLP(G0,Y0);
4 P  DO(y), Y  AO(c) ;
5 G0  G0 [ {P},Y0  Y0 [ {Y };
6 until G0 and Y0 are not expanded;
7 return (c,y)

the patrols from the marginals we are able to compute the ac-
tual best-response utilities of the attacker. Our experiments
show that the differences between the actual utilities and the
upper-bounds given by the LP formulation are small.

5 CDOG Algorithm
The number of constraints in Eq.(5), being the same as the
number of attacker strategies, increases exponentially with
the game size. This leads to the poor scalability of the
LP formulation. To deal with the scalability issue, we pro-
pose CDOG, a compact-strategy double-oracle algorithm on
graphs. CDOG is based on the widely used double oracle
framework (e.g., [Jain et al., 2011]). The main idea is to find
an equivalent small-size sub-game to avoid solving the orig-
inal exponentially large game. Specifically, the framework
starts from solving a sub-game involving only a very small
subset of each player’s pure strategy set. The solution ob-
tained, being an equilibrium of the sub-game, is not neces-
sarily an equilibrium of the original game since the players
may have incentive to deviate by choosing strategies not in
the current sub strategy sets. Thus the framework expands
the players’ strategy sets based on the current equilibrium
and gets a larger sub-game. The process is repeated until
no player can benefit from expanding their strategy sets. It
usually ends with a sub-game with reasonable (instead of ex-
ponential) size, and the final solution is provably also an equi-
librium to the original game (McMahan et al. 2003).

A traditional double oracle framework can take a long
time to converge for large games, since sub-game is ex-
panded slowly, while once it gets large, solving a sub-game
is also very time-consuming. For example, Jain et al’s algo-
rithm [Jain et al., 2013] solves games with around 200 ver-
tices, corresponding to a 10 zones, 20 time points case in our
model, in around 9 hours. To scale it up, CDOG exploits
the graph structure of our problem, uses a subgraph of the
transition graph (instead of a pure strategy set) to character-
ize the defender’s strategy space, and solves each sub-game
through compactly representing defender strategies as cover-
age on edges in the subgraph. The main structure of CDOG
is depicted in Algorithm 1. Here Line 1 initializes the sub-
game with a random subgraph G0 of G and a random subset
Y

0 of attacker’s pure strategies. Using the LP formulation,
Line 3 computes the equilibrium of the sub-game, where de-
fender patrols on G0 and attacker plays with strategies in Y

0.
Notably, c = hcei is the solution to LP, while y is an attacker
mixed strategy over pure strategies in Y

0, which is obtained
from the dual variable associated with Constraints in Eq.(5).
Then through Lines 4–6, CDOG implements the core of dou-

534



ble oracle framework by calling two oracles—defender or-
acle (DO) and attacker oracle (AO)—to obtain the players’
best responses for expanding the sub-game. Next, we present
in detail how these two oracles are implemented.

Defender oracle. The defender’s best response is an m-
unit flow on G, which maximizes her utility against the cur-
rent attacker strategy y. DO computes a compact represen-
tation of the best response pure strategy with the following
MILP.

maxc,z

X
Y 2y

�Yi(1�min{1,
X

e2Y
cefe})U(Y ) (10)

zk(e) 2 {0, 1, · · · ,m} 8zk(e) (11)
Constraints (6)–(9). (12)

Constraint (11) ensures that the coverages on edges are in-
tegers, so that coverage vector c corresponds to a pure strat-
egy P . Constraints (6) - (9) can be directly used here since the
conservation of flow is the same for pure strategies as that for
mixed strategies in CLP. The objective of DO is to maximize
the defender’s expected utility given attacker’s mixed strat-
egy y = hYii where Yi indicates the probability that the ith

attacker pure strategy in Y

0 is used. The value of Yi comes
from the dual variable of the ith inequality corresponding to
Constraint (5) of CLP(G0,Y0

). If the pure defender strategy
corresponding to c computed by DO goes through edges not
in G0, we expand G0 by including these edges and associated
vertices.

Attacker oracle. The attacker oracle cannot be efficiently
solved by an MILP since we cannot compactly represent the
attacker strategies. AO computes the attacker’s best response
through three steps: First, for each v 2 V , we compute the
attacker’s optimal path H(v) to v. Following H(v), the at-
tacker is the least likely to be detected among all paths lead-
ing to v. Second, based on H(v), we compute the optimal
time duration for the attacker to perform activities if he starts
the activity at v. Finally, choose the vertex, path, and time
duration which together lead to the optimal attacker utility.
We now introduce the details of the three steps.

For step (1), let �(v) =
P

e2H(v) ce represent the probabil-
ity of being detected if the attacker sails through path H(v).
Apparently, if v = hi, tki and i 2 Za, then the attacker can
directly enter the transition graph at vertex v. Thus H(v) only
consists of vertex v and �(v) = 0. If i /2 Za, let ⇤(v) rep-
resent the set of vertices v0 2 G such that hv0, vi is an edge
in G, then the attacker has to arrive at some v0 and take edge
hv0, vi to arrive at vertex v. Therefore, we have

�(v) = minv02⇤(v){1, H(v0) + chv0,vifhv0,vi}. (13)

Let vpre = argminv02⇤{H(v0) + chv0,vi}, thus H(v) =

H(vpre)[hvpre, vi, and H(v) can be computed by the recur-
sive function shown in Algorithm 2. Note that to find H(v)
for all vertices, every edge in the transition graph only needs
to be visited at most once, thus the time complexity of step
(1) is O(|E|).

For step (2), if the attacker starts to perform activity at
vertex v = hi, tki and chooses a time duration l, the total
probability of being detected depends on �(v) and the prob-
ability of being deleted when performing the activity, i.e.,

Algorithm 2: Find optimal path (c, v)
1 Input: c, v; Output: H(v), �(v));
2 if i 2 Za then H(v) = v, �(v) = 0 ;
3 else
4 ⇤(v) predecessors of v, pre �1, min 1;
5 for v0 2 ⇤(v) do
6 if H(v0) + chv0,vifhv0,vi < min then
7 min = H(v0) + chv0,vifhv0,vi, pre = v0;

8 H(pre), �(pre) Find optimal path (c, pre);
9 H(v) H(pre) [ hpre, vi, �(v) min;

◆(v, l) = min{1, 1 � �(v) �
P

j2{1,2,···l} cejfej}. Here
ej = hhi, tk+j�1i, hi, tk+jii. The value of performing the
activity is the sum of values of edges ej , i.e., `(v, l) =P

j2{1,2,···l} Vej . Thus the expected utility is U(v, l) =

(1 � ◆(v, l)) · `(v, l). Therefore, the optimal time duration
for vertex v is loptv = argmaxl2{1,··· ,⌧�k} U(v, l).

To find the optimal time duration for each vertex v =

hi, tki, we need to iterate all possible time durations for v,
i.e., {1, · · · , ⌧ � k}. Thus the time complexity of Step (2)
is O(n⌧2). The third step is to straightforwardly choose
the vertex v leading to the optimal attacker utility, i.e., v =

argmaxv02V U(v0, loptv0 ), and construct the attacker strategy
Y based on H(v) and l. If strategy Y is not in the current set
Y

0, we expand Y

0 by adding Y .

6 Experimental Evaluation
We evaluate the proposed algorithms in terms of (1) solu-
tion quality, (2) scalability, and (3) robustness. The CLP is
solved by Knitro 9.0.0. Each point in the figures is the aver-
age value over 30 sample games. We test the algorithms on
graphs based on the geology of the Great Barrier Reef Ma-
rine Park as is shown in Figure 1. Given that the MPA can
be divided differently due to different purposes [Watts et al.,
2009], in each game in the experiments, we generate an MPA
graph based on a random division of the park. We randomly
generate the time needed to move between adjacent zones,
i.e., dij , in [1, |t|

2 ], where |t| is the number of time points in
the game. Transition graphs are then constructed based on the
MPA graphs and dijs, in which each zone has |t| copies. We
randomly choose the value of each stay edge in (0, 100].

Solution quality. Solution quality of algorithms is mea-
sured by attacker utility. Given the zero sum assumption,
higher attacker utility indicates lower defender utility. We
compare our algorithms with two baseline algorithms ANP
and AND. ANP assumes that the attacker does not take paths,
but directly attacks anywhere at any time instantaneously,
which is similar as in Fang et al [2013]. AND assumes that
the attacker can take paths in the graph to arrive at a target,
but still attacks instantaneously, which is similar as in Yin
et al [2012]. The baseline algorithms are under extra assump-
tions since no previous algorithms can exactly solve our prob-
lems. We assume 3 patrollers, 9 zones and divide the timeline
into 12 points unless otherwise specified.

In Figures 4(a), 4(b) and 4(c), the y-axis indicates the at-
tacker utility, while the x-axis indicates the patrol duration of
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a defender’s resource (i.e., the value of ✓), the number of start-
ing zones for the defender, and the number of starting zones
for the attacker respectively. Since CLP and CDOG lead to
the same attacker utility, their results are represented by one
single bar. The solution quality of CLP and CDOG is signifi-
cantly better than that of ANP and AND despite the value of
the three parameters. It is unsurprising that as the patrol dura-
tion increases (Figure 4(a)) or the number of defender’s start-
ing zones increases (Figure 4(b)), the attacker utilities com-
puted by all algorithms decrease. As the number of attacker’s
starting zones increases (Figure 4(c)), ANP’s performance is
not affected since it does not consider attacker’s paths, while
other algorithms show an increasing trend in attacker utilities.

Figure 4(d) depicts the percentage of the true optimal de-
fender utility v.s. the theoretical upper bound returned by
CLP and CDOG. The x-axis indicates the maximum value
of the detecting factor fe, i.e., 0.3 indicates that fe is ran-
domly chosen in (0, 0.3]. Eq.(1) indicates that with smaller
fe, CLP and CDOG are less likely to overestimate the detec-
tion probability. Figure 4(d) shows a decreasing trend in the
percentage of the true defender utility v.s. CLP and CDOG’s
results. Fortunately, even when fe = 1, the percentage is
still around 90%, indicating that the upper bound computed
by CLP and CDOG is very close to the true utilities.
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Figure 4: Solution quality

Scalability. In Figures 5(a) and 5(b), the y-axis indicates
runtime while the x-axis respectively indicates the number of
zones and time points. In both figures, the runtime of CLP
shows a much more obvious increasing trend. Actually, CLP
cannot solve games with more than 20 targets and 20 time
points due to the RAM limit, while CDOG can solve games
with 40 targets in around 6 minutes and games with 50 time
points in less than 2 minutes. We also evaluate the runtime
of the defender oracle, attacker oracle, and CLP in CDOG
in detail. Figure 6 shows an example of the runtime of the
three parts in the CDOG algorithm, which solves a game after
10 iterations. The runtime of the CLP shows an increasing
trend. The size of the DO and the AO is barely affected by
the iteration, thus their runtime does not change much.

Robustness. We first consider observation noise of the
attacker. We add 0-mean Gaussian noise with standard de-
viations chosen randomly from U [0, 0.5] to the coverage on
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Figure 5: Scalability and robustness

each edge observed by the attacker. Figure 5(c) shows the
attacker utilities considering observation noise for the same
class of games considered in Figure 4(a). Compared with
Figure 4(a), all algorithms lead to lower attacker utilities in
Figure 5(c) since the observation noise prevents the attacker
from responding the best. CLP and CDOG still significantly
outperform ANP and AND. We also consider payoff noise of
the defender. For each stay edge in the transition graph, we
add the same Gaussian noise as the previous setting to the
defender’s knowledge on the value of the edge. Figure 5(d)
considers the class of games in Figure 4(a) with payoff un-
certainties. Compared with Figure 4(a), all algorithms lead to
higher attacker utilities in Figure 5(d) since the payoff noise
affects the defender’s judgement on the attacker’s action. The
advantage of CLP and CDOG over ANP and AND is still
significant.

 Iteration 

 1 2 3 4 5 6 7 8 9 10 

CLP 4301 5172 5637 6131 6151 6231 6332 6300 6449 6547 

DO 1626 1620 1650 1652 1648 1715 1639 1620 1640 1634 

AO 328 352 322 323 326 319 320 334 318 320 

 

Figure 6: Runtime (ms) of CLP and oracles in CDOG

7 Conclusion
This paper models the problem of patrolling MPAs to pro-
tect coral reef ecosystems as a defender-attacker Stackelberg
game, in which both players’ strategies are time-dependent
paths, and the payoffs are affected by the duration of the at-
tack. We propose a linear program (CLP) to solve the game,
in which defender strategies are compactly represented as
flows on graphs. We also propose a more scalable algorithm,
CDOG, which combines techniques of compactly represent-
ing defender strategies and incrementally generating strate-
gies. Experimental results show that our algorithms lead to
significantly better solution quality than that of baseline algo-
rithms, and the CDOG algorithm can scale up.
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