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Abstract

This paper studies a decision-making problem
for heterogeneous multi-agent systems with safety
density constraints. An individual agent’s decision-
making problem is modeled by the standard
Markov Decision Process (MDP) formulation.
However, an important special case occurs when
the MDP states may have limited capacities, hence
upper bounds on the expected number of agents
in each state are imposed. We refer to these up-
per bound constraints as “safety” constraints. If
agents follow unconstrained policies (policies that
do not impose the safety constraints), the safety
constraints might be violated. In this paper, we de-
vise algorithms that provide safe decision-making
policies. The set of safe decision policies can be
shown to be convex, and hence the policy synthe-
sis is tractable via reliable and fast Interior Point
Method (IPM) algorithms. We evaluate the effec-
tiveness of proposed algorithms first using a simple
MDP, and then using a dynamic traffic assignment
problem. The numerical results demonstrate that
safe decision-making algorithms in this paper sig-
nificantly outperform other baselines.

1 Introduction

Autonomous multi-agent systems present many challenges
in terms of intelligent decision-making algorithms. A dis-
tributed algorithm is often more practical and robust than
a centralized algorithm. Agents in a distributed decision-
making architecture are often self-interested, i.e., they opti-
mize decisions based on local conditions, with limited con-
sideration of global performance and constraints. Therefore,
it is challenging to achieve certain global objectives in a dis-
tributed multi-agent system. Here we study a particular type
of global constraint: safety density/capacity constraints, i.e.,
the expected number of agents in each state must not vio-
late a prescribed upper bound given for that state. Such a
global objective challenges traditional algorithms based on
Markov Decision Process (MDP) models, such as reinforce-
ment learning (RL) methods. When some states have high
reward but low capacity, self-interested agents are likely to
violate capacity constraints by cluttering in these states. The

546

distributed decision-making algorithm should avoid such vio-
lations without leveraging on a complex inter-agent commu-
nication infrastructure, which is the main challenge addressed
here.

We first introduce the Safety Constrained MDP (SC-MDP)
problem [Arapostathis et al., 2003; Acikmese et al., 2015;
El Chamie et al., 2016] and extend the problem formulation
from a single agent case to a heterogeneous multi-agent sys-
tem case, which is the main contribution of this paper. We
propose several algorithms that provide safe decision-making
policies to ensure the satisfaction of global safety constraints
while maximizing the performance of the overall system. Our
second contribution is the successful demonstration of the
proposed algorithms for decision-making on a well-known
Dynamic Traffic Assignment (DTA) problem [Peeta and Zil-
iaskopoulos, 2001; Hausknecht ez al., 2011]. These decision-
making algorithms have the following features: 1). The re-
sulting decision-making policies can be implemented in a
fully distributed manner and do not require a centralized con-
troller. 2). Communicating/broadcasting each agent’s state
is not required but can be used as feedback to enhance per-
formance. 3). The resulting safe decision-making policy is
randomized and non-stationary. Randomization is the key
to remove centralization and communication: agents do not
negotiate about whether to transition to a state or not, but
rather make statistically independent decisions. The overall
system can collectively achieve the desired prescribed behav-
ior. 4). The policy is the same for each agent. Randomization
hence also ensures fairness: no agent has higher priority. 5).
Decision-making policies can be obtained via solving Linear
Programming (LP) problems, and policy synthesis is there-
fore numerically tractable.

2 Related Work

Constraints in MDPs have been utilized to handle multiple
objectives, where policies are computed to maximize one of
the objectives while guaranteeing that the other objective val-
ues lie within a desired range [Altman, 1999]. Hard con-
straints can also be imposed by the underlying physical en-
vironment (the process model) [Arapostathis et al., 2003;
Hsu et al., 2006; Demir et al., 2014; Acikmese et al., 20151,
which must be explicitly accounted for in decision policy
synthesis. Unlike unconstrained cases, the constraints in
MDPs usually cause the optimal policies to be random-



ized rather than deterministic policies [Nain and Ross, 1986;
Altman and Shwartz, 1991]. Some recent applications of con-
strained MDPs include path planning for robotics [Feyzabadi
and Carpin, 2014], flight control [Balachandran and Atkins,
2015], and chance-constrained optimal control [Ono et al.,
2013; Blackmore et al., 2010]. [El Chamie et al., 2016]
presents an SC-MDP algorithm to address a general class
of safety constraints on the state probability density func-
tion (pdf). This approach guarantees the satisfaction of safety
constraints not only asymptotically but also during the tran-
sition to the steady-state, which classical approaches that are
based on state-action frequencies [Altman, 1999] fail to guar-
antee.

An important application of the SC-MDP algorithm is
to the Dynamic Traffic Assignment (DTA) problem [Peeta
and Ziliaskopoulos, 2001], which we choose as our exam-
ple problem to demonstrate the effectiveness of the proposed
algorithms. Earlier research utilizing Markov processes in
modeling traffic density evolution and optimal assignment in-
clude [Hazelton and Watling, 2004; Watling and Cantarella,
2015]. A survey of using multi-agent reinforcement learn-
ing in traffic control can be found at [Bazzan, 2009]. DTA is
chosen as the key example problem because it is a real-world
problem with many challenging constraints and objectives.

3 Method

3.1 Preliminaries

Consider a finite-horizon MDP for a single agent, defined by
the tuple {H, S, A, 7, R¢, v}, where

e H =1{0,---,T},T € Nis the time horizon. t € H is
called a time step.

e S={1,---,n},s; €S is the state at time step .
e A={1,---,p}, a; € Ais the action at time step ¢.
e 7, € R™™ js the transition matrix for action a,

Ta(8'y8) = P(s¢41 = §'|s¢ = s,a: = a).

R, € R™*P is the reward matrix at t. R¢(s,a) denotes
the immediate reward of taking action « in state s at time
t. Ry € R™ is the terminal reward vector with Rr(s)
being the terminal reward for s.

e v € (0,1] is the discount factor.

A non-stationary policy for finite Horizon MDP is defined
as a sequence of randomized policy matrices mg.7—1
{mo, -+ ,mr_1}, m € R™ P, where m(s,a) = Pla; =
als; = s). Let II be the set of all admissible policy sequences,
ie.,II = {mp.r—1|m1 = 1,7 > 0} where 1 is the vector of
all ones and > is an element-wise inequality.

We now introduce several key concepts to define the SC-
MDP problem. Let x; € R™ denote the state probability den-
sity distribution function (pdf) at ¢, where x;(s) denotes the
probability of finding the agent in s at t, i.e., x;(s) = P(s; =
s). Let M; € R™ ™ be the Markov chain (MC) transition
matrix at ¢, where:

My(s',8) = Plsty1 = §'|s¢ = 5]

= acaTt(s,a)Ta(8, ).

ey
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Let t;(s) = E[ri(s,as)] = >, c4 me(s,a)Re(s,a) be the
expected immediate reward of s at ¢ given a policy m;. For
t=1T,letryr = Rp.

Let

Uy =T +~yM U1, (2)

where U, (s) denotes the value of s at ¢ under policy m.7—1,
i.e., expected accumulated discounted rewards from ¢ to T’
under policy {7y, ,mr_1} with s; = s.

For a given policy mp.r—1, the random process in-
duced by the state of the system at different time steps:
{s0,81,...,87} is a discrete-time Markov chain (DTMC)
whose state space is S. The state pdf evolves according to
the MC transition matrix

Ur =rrp

Xt+1:MtXt, tZO,,T—l

(3)
Note that M, is a linear function of 7; as shown in (1).

Performance Metric

We use the expected accumulated discounted rewards as the
performance metric for a given policy, at time-step ¢:

T—1
,U;Tt:T—l(Xt) - Z 'YiitRi(Sz’a ai,) + 'YTitRT(ST)
1=t

“)
denotes the expected accumulated discounted rewards from
t to T under policy {7, -+ ,mr_1} where x; is the state

pdf at t. Naturally, the performance metric to evaluate
{mo, -+ ymr_1} is vy ®" " (x0). Using the linearity of the

expectation operator, (4) becomes:
T
v T (%) = Z'y’*tng‘i =x; U, teH\{T} (5)
i=t

3.2 Safety Constrained MDP Problem

The unconstrained MDP optimal policy 7* is the policy that
maximizes the performance metric.

*

T 7"0:T—1(

= argmax v,
mo:7—1 €11

Xo)

7* can be solved using backward induction algorithm [Put-
erman, 1994, p. 92]. Now, we introduce Safety Constrained
MDP (SC-MDP) [El Chamie et al., 2016], which is an MDP
with the safety constraints:

x; <d,Vt € H, (6)

where < denotes the element-wise inequalities, and d €
[0,1]™ is a vector giving upper bounds on the system state
pdf. We assume d is independent of ¢. Intuitively, at any
given t, d constrains the probability of finding a single agent
in each state. Later we will show that for a multi-agent sys-
tem, d constrains the density of agents in each state.

To solve the SC-MDP policy is equivalent to solving the
following constrained optimization problem:

maximize  v*" " (%)
mo:7—1 €Il (7)
S.t. x; < d, VteH



Note that according to (3), x; = M;_1 ... M; Myx, hence
although each M; is linear in the decision variables 7;, con-
straints (6) are non-convex in general. Also directly applying
Dynamic Programming (DP) will not help in this case: if we
try to apply forward induction, i.e.,fort =0,--- ;T — 1

7ty =argmax, x; U,
x+<d

®)

Then at ¢-th iteration, according to (2), U, is unknown since it
depends on {7, - ,mr_1}. Similarly, according to (3), x¢
is unknown at ¢-th iteration of backward induction.

3.3 Multi-Agent System

The constraints in (6) give upper bounds on the probability
distribution of a single agent. We now extend the single-agent
results [El Chamie er al., 2016] to a multi-agent system using
the law of large numbers. We will show that having bounds on
the probability distribution of being in a state induces bounds
on the expected number of agents in that particular state.
Assume now that /N agents are operating in the same envi-
ronment, i.e., each agent uses the same motion decision pol-
icy obtained by solving the MDP. The probability distribution
of agent k at ¢, given by xgk)

tion: XE )( ) represents the probability of finding the agent

k in s at t. Since all N agents have identical MDP,! then
Zivzl ng) (s) describes the expected number of agents in s
att. Let c; = [ci(1), ..., c¢(n)]T denote the actual number of
agents in each state. Then, c;(s) is generally different from

, has the following interpreta-

Zgil xgk) (s), although it follows from the i.i.d. agent real-
izations that
> =5l

and from the law of large numbers we will show next that that
¢;/N — x; as N — 00,Vt € H where xg = Z,iv:l x(()k)/N
and x; follows the dynamics of the n-dimensional system (3).

The idea behind extending the probabilistic guidance of a
single agent to multi-agents using the law of large numbers
is to control the propagation of the probability vector, x;,
rather than each individual agent’s position. While, in gen-
eral, ¢; /N #x,, it will always be equal on average, and can be
made arbitrarily close to x; by making the number of agents
N sufficiently large [Demir erf al., 2015].

Consider a multi-agent system comprised of N agents.
Suppose that each agent has the following probability distri-
bution over a given domain at ¢:

X" (i) =),

Then the following result holds.

€))

=P =), k=1,.,N, VteH (10)

Proposition 1. Consider a multi-agent system of N agents

x(F)
Zk 1 X0

such that xqy : at time t 0. Further, sup-

pose that each agent acts independently such that x,gi)l

Mt(wt)xgk)7 k

N, where M(m) is a column

'We later introduce heterogeneous agents where agents can have
different transition and reward functions.
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stochastic Markov matrix and it is defined by the same pol-
icy m for all agents. Then x4, = Mx,, t = 0,1,2, ...,
and

.6t _
(ngnooﬁ—xt)_l, Vi e H (11)

where ¢, is the vector of number of agents in each state at t.
Proof. Next, consider x;(¢) which is the probability of find-
ing any agent in state ¢ at time {. Consider a new Random
Variable (RV), Z\™ (i), such that Z (i) = 1 if agent k is
in ¢ at t (i.e., 1f X(k)
E[Z,()] =
and Z ( ), k

= 1), and zero otherwise. Clearly,
('), where E is the expectation operator
., N, form i.i.d. RVs. Then it follows
that ct() ()—&—---—i—ZtN( ). Note thatxt()
[Zk \ Z ()/N] and since Z(k:)(')7 k ., N are

iid. RVs and E[|Z(k)( )|] < oo, we can use the strong LLN
theorem, [Chung, 2001, Theorem 5.4.2], to conclude that:

?rll

. Ct (l) - . o
P <A}g)r(1)o N xt(2)> =1, (12)
which then gives the desired result. O

This result shows that when all agents evolve indepen-
dently according to an identical MC transition matrix, the en-
semble of agent positions has a distribution that approaches
x; with probability one as N increases, which makes con-
straints on X, constrain agent density asymptotically. Hence
results for a single agent in [El Chamie et al., 2016] can be ap-
plied to a multi-agent system. We refer solving a multi-agent
SC-MDP policy as a policy synthesis problem.

3.4 Multi-Agent Policy Synthesis Algorithms
First, we define the following two sets:

Definition 1. Let ¥ = {x€R": 0<x<d, 1"™x=1} and
C(X)= QXC(X) with

x)={mreR"P:711=1, >0, M(m)x<d}

where M () is defined as in (1). We refer to X as the safe
density set, and to C(X) as the safe policy set for X.

Note that C(x) is a convex set of policies because M () is
linear in 7, and C(X) is also convex since it is the intersection
of convex sets. The convexity of these sets allows them to be
characterized by linear constraints.

As discussed before, DP is not directly applicable to SC-
MDP: neither forward induction nor backward induction will
work because either the value of U; or x; is undetermined at
t-th iteration. To resolve this dilemma, we develop heuristics
that either provide an estimate of U, to be used for forward
induction or an estimate of x; to be used for backward in-
duction: Algorithm 1 uses forward induction by estimating
U, with the corresponding value function V; of unconstrained
MDP. It is based on the assumption that xq is known. Algo-
rithm 2 [El Chamie ef al., 2016] uses backward induction by
considering worst case x; from safe density set X that min-
imizes x] U; but remains in safe density set X'. It does not
require knowing x itself, but assumes xg € X. In this way,



it only seeks policies in C(X’). Algorithm 3 improves Al-
gorithm 2 via a projection technique, which finds the closest
policy to the optimal policy of unconstrained MDP among the
safe policies obtained from Algorithm 2. We use the Frobe-
nius norm as a distance measure, but other norms produce
similar results. Algorithm 4 improves over Algorithm 2 when
Xq is given via both forward induction and backward induc-
tion by providing estimates to U; and x; in succession. All
these algorithms are based on LP and can be implemented
using any standard LP solvers. A comparison of these algo-
rithms is shown in Table 1.

Algorithm | xg given | xo € X | Policy Property
SCF v - T € C(Xt)
SCWC - v m € C(X)
SCPRO - v m € C(X)
SCBF v v m € C(X)

Table 1: Algorithm assumptions and policy properties.

3.5 Heterogeneous Agents

The single class multi-agent model can be extended to a het-
erogeneous multi-agent system where agents can be catego-
rized into [ different classes. Agents’ transition model, reward
function, and optimal policies remain homogeneous within
the same class but heterogeneous in different classes. An ex-
ample of heterogeneity in DTA is when different size of ve-
hicles contribute differently in traffic congestion. Note that
all these heterogeneities can be addressed by simply extend-
ing the state space S. However, safety constraints (6) are
usually imposed on the common environment shared by all
agents and not on the extended state space S. We can handle
this heterogeneity using a linear operator L € R™*" where
ml = n that maps the agent state space S to an environment
state space where safety upper bounds are imposed. Then (6)
can be generalized to:

Lx; <d, VteH 13)
The algorithms can still be implemented by a slightly modi-
fied LP with constraints (13) as they are still linear in x;.

Algorithm 1 SC-Forward Induction (SCF)
1: LetVp =vp, fort=T—-1,--- ,1,Vs € S,

Vi(s) = R(s, (8, 8) Vi
o) = max | R(50) 4130 Vin ()
2: Given xq, for t = 0,---,7 — 1, compute policy and

distribution at next time step

ﬁ't = argmax (Mt(ﬂt)xt)T‘/;g+1
m€C(x¢)

Xi41 = Mt('ﬁ't)xt
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Algorithm 2 SC-Worst Case (SCWC)

1: SetUp =rtp.
2: Fort=T—1,---,0, given U;11, compute the policy

ﬁ't = argmax min x7 (f‘f (7Tt) + ’}/MtT (Wt)Ut+1) y
T EC(X) xeX
(14)
and
Ut = f't(frt) + ’)/MtT(ﬁ't)Ut_._l.

Usually 7, obtained from step 2 is not unique, let Cy(X')
denote the corresponding set of policies.

Algorithm 3 SC-Projection (SCPRO)

1: Run Algorithm 2 to get C(X),,Vt € H \ {T}
2: LetVp =rp,fort =T —1,---,0, compute the optimal
policy for unconstrained MDP: Vs € S

ay (s) = argmax
acA

T(S7 CL) + Y Z T(L(S/a 8)‘/15—&-1(5)
letVs € S, 7y (s,a;(s)) =1, and 0 elsewhere, and
Vi = 14(m) + v M (7)) Vi
3: Fort=T —1,---,0, compute the policy

7y = argmin || 7, — 7] || (15)

me€C(X),

Algorithm 4 SC-Backward-Forward Induction (SCBF)
1:

Run Algorithm 2 to get an initial
{7787 - 777%—1}

Let7t; =70 Vte H\{T}

Forward Induction:

Given xg, fort =0,--- ;T — 1, compute x;,1 based on

Xt and 7ATt

safe policy

Xt+1 = Mt(ﬁ't)xt
Backward Induction:
Let Upr rp, fort =T —1,---,0, re-compute the
policy based on U4 1 and x,

ﬁ't = argmax XI (I_'t(’ﬂ't) + ’}/MtT(']Tt)Ut+1)

T €C(X)
and
Ut = f‘t(ﬁt) + "}/Mt.r(’ﬁ't)Ut_i_l
5: Repeat steps 3 and 4 until {7, - - - , F7_1} converges.
4 Experiments and Results

4.1 Resource Collection

We first evaluate the algorithms using a simple 11-state MDP,
as shown in Fig. 1. 100 agents are placed at home state ini-
tially. The other ten states each provides different amount
of reward at every time step, with different capacity upper
bound. If more agents than the upper bound capacity enter



a state, the extra ones will not receive reward. The agents
can stay or move from any state to any other state. An action
succeeds with probability .75, and failure causes the agent to
stay. Let C(s;) denote the capacity upper bound of state s;.
Its density upper bound is d; = min{C(s;)/N,1}. We set
v = 0.99.

Max 100 20 10 10 20 5 5 20 10 0 0
Figure 1: Multi-agent resource collection task.

Results We evaluate the safety and optimality perfor-
mance. Safety is measured by the total number of times that
an agent violates capacity upper bound. Optimality is mea-
sured by the total reward accumulated. The results are shown
in Fig. 2. Comparison algorithms are centralized, random,
safe, and greedy. The centralized algorithm starts from the
state with the highest reward and allocates maximum number
of agents that state allows, then moves to the state with sec-
ond highest reward, etc. The random agents choose an action
uniformly at random. The greedy agents choose a state with
probability proportional to the state’s reward. The safe agents
choose a state with probability proportional to the state’s den-
sity upper bound.

2000} Centralized
++ SCBF e
+4 SCF St

SCPRO et ot

15001 4 4 Greedy “

11 SCWC
t++ Random

1000/ H Safe

t-t Random
4 Greedy
44 SCF

-+ scBF

i . } SCPRO
phprt et |1 scwc

bt safe

} Centralizedl!

|
W
HJ
v it
I ' .H””HHHV
ot .H‘”,uﬂ trtt
TSI LRSS S RRY
R R R RN RN RS RN

30 0 5

10 20 25 10 20

15 15
Time Step Time Step

Figure 2: Algorithm performance. Left: accumulated reward.
Right: violation count. Error bars: 95% CI for 100 trials.

Overall, in terms of reward, SCBF and SCF perform
closely to centralized algorithm. SCPRO and SCWC algo-
rithms are conservative and results in collecting less reward,
but they still perform better than or comparable to greedy,
random, and safe algorithms. In terms of violation, all SC al-
gorithms have significantly less violations comparing to ran-
dom and greedy algorithms. SCWC algorithm resulted in
the fewest violation count. Additional experiments were per-
formed on other randomly generated density vectors and the
conclusions are similar.

This experiment demonstrates one motivation of SC algo-
rithms: it is not always trivial to achieve optimality while
maintaining safety in distributed systems. SC algorithms bal-
ance optimality and safety better than the baseline distributed
algorithms, and have close performance to the optimal cen-
tralized algorithm.

4.2 Dynamic Traffic Assignment

We apply our algorithm to a dynamic traffic assign-
ment (DTA) problem in a multi-intersection environment
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[Hausknecht et al., 2011] as shown in Fig. 3. The task is
to direct agents (vehicles) to roads and intersections that have
low usage to reduce congestion, while ensuring that all agents
arrive at their destinations. For simplicity, all roads are two-
way, and U-turns are allowed in all states. One-way roads
and traffic rules can be introduced by changing the transi-
tion function of the MDP. The roads have different carrying
capacities. Violating the capacity upper bound results in con-
gestion modeled by the fundamental diagram [Greenshields
et al., 1935]. The diagram maps the current traffic level to
the average speed. This effect is simulated by the transition
function in the MDP. Agents have two sizes: a large agent
occupies a1 = 3 units of capacity, and a small one occupies
a9 = 1 unit.

Figure 3: Left: the original dynamic traffic assignment simu-
lator with multiple intersections. Right: discretized version;
black numbers indicate state capacity upper bound; red num-
bers indicate the current number of agents.

We discretized the state space as in Fig. 3, and imple-
mented a discretized version of the Automatic Intersection
Manager simulator [Dresner and Stone, 2008]. Note that a
two-way road block is a single state, rather than two states
for each direction, since [Hausknecht et al., 2011] introduces
dynamic lane reversal hence a block’s carrying capacity can
be shared for both directions. Let N denote the total number
of agents. The problem MDP with v = 0.99 is defined as:

e S: a state is a tuple (position,destination,type).
position indicates the current position. type indicates
whether an agent is large or small. destination is in-
cluded to better define the reward function.

A: {North, South, East, West, Stay}.

T: we use the transition function to simulate the speed
change according to the fundamental diagram. The
slower the speed, the higher the probability that an agent
will stay when trying to move from state s to s':

0 s’ is offroad
1 s’ = s (Stay)
/ _
P(s'ls,a) = {4 ca(s) < Cls)
_et(s)=C(s)
e °® ci(s) > C(s)

‘R: an agent receives a reward of +1 at the state in which
its position equals to destination. As mentioned be-
fore, this definition is to allow agents with different ob-
jectives to share a single MDP and reward function.

L=[ail agl ], where I € R"*" is the iden-
tity matrix, o; € R is the size for i-th type of agents.
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Figure 4: DTA results. Left (small map): ratio of total agent capacity arrived over 50 time steps (6000 capacity). Middle (small
map): total agent capacity vs. capacity arrived within 50 time steps. Right (large map): ratio of total agent capacity arrived
over 300 steps (48000 capacity). Error bars: 95 % CI for 50 trials.

At the beginning of the simulation, all agents broadcast their
locations and destinations, hence each agent can define its
SC-MDP problem and calculate the policy.

Results We compare SC algorithms with a shortest path
(STP) and a Time-based A* (TB-A*) algorithm [Hausknecht
et al., 2011]. An STP agent chooses the shortest path (break
tie randomly), without considering other agents. The TB-A*
agent estimates its expected shortest-time path given the traf-
fic of every state (hence transition probability). TB-A* re-
quires observation and path re-planning at every time step.

We test two maps. The first one has 6 roads and 9 inter-
sections (Fig. 3). The capacity upper bound for each block
is 500. We simulate one traffic flow: agents travel from the
upper left corner to the lower right corner. Half of the agents
are large agents and the other half are small. The planning
horizon for SC algorithms is 50 time steps.

The results are shown in Fig. 4. The leftmost figure shows
percentage of total capacities arrived over time steps. 1500
large and 1500 small agents (6000 total capacity) are placed
at the starting state. All SCF agents quickly arrive at their
destination, while SCBF, SCPRO agents arrive slower but
still faster than STP and TB-A*. In runtime simulations, we
observe that SC agents wait nicely in line to move through
bottlenecks, without a centralized controller nor explicit co-
ordination.

In the middle figure, we show the capacity arrived in 50
time steps while varying the total capacity. When the total ca-
pacity is low (< 7500), all algorithms except SCWC can en-
sure all agents arrive at their destination within 50 time steps.
When total capacity is increased, STP and TB-A* suffer from
congestion and only few agents arrived. SCF and SCBF both
perform well. SCF has larger variance, because SCF agents
move faster but are more likely to cause congestion due to
their more aggressive randomized policy.

The second map is larger with 8 roads and 16 intersections.
We simulate four traffic flows: a quarter of the agents start at
each corner and travel to the diagonal corner. Road capacities
are sampled from [800, 1200]. Results are shown by the right-
most plot in Fig. 4. The performance of SCPRO degrades to
be the same as SCWC. Although SCBF and SCF still per-
form better than STP and TB-A*, the SCF policy is risky and
leads to congestion, since it always pushes maximum number
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of agents towards their destinations. This is problematic with
multiple traffic flows. The problem is alleviated by lowering
the actual density upper bound in Algorithm 1, namely mul-
tiplying the actual bound by a 3 factor. The resulting policy
is less likely to cause congestion, as indicated by the top red
curve. When varying total capacity, the result is similar to the
one of the small map: SCF and SCBF significantly outper-
form STP and TB-A* when total capacity grows large.

5 Conclusion and Future Work

We extend the previous SC-MDP framework [El Chamie et
al., 2016] to a distributed heterogeneous multi-agent system,
where one aims to bound the agent density over a finite hori-
zon. We develop three novel algorithms (SCPRO, SCBF, and
SCF) that improve the performance of the original algorithm
(SCWC). SCF and SCBF produce the best results in terms
of safety and optimality, since additional information (initial
distribution of agents) is available. However, since the guar-
antee is probabilistic, one might consider to be conservative
(more safe), i.e., use SCBF or lower the 3 factor in SCF.

An alternative approach for multi-agent density control
could be multi-agent reinforcement learning [Hu ef al., 1998].
One can modify the reward function to achieve global objec-
tives, such as taxation or toll [Bnaya et al., 2013; Xiao ef al.,
2014]. By assigning penalty to the congested states, vehicles
can recalculate their policy using the updated reward func-
tion. However, it is non-trivial to determine the magnitude
of the penalty, especially with rewards for reaching the des-
tination. SC-MDP framework’s advantage is that it defines
a constrained optimization problem, hence clearly separating
the constraints from the optimization objective.

An extension of our algorithm is to enforce a lower bound
on agent density as well, i.e., d < Lx; < d. Notice this
can also be written in the form of (13) with proper choice of
L. These extensions may be applied to multi-agent problems
such as surveillance.

Although the algorithms assume an open-loop policy after
the first episode, they can also observe the actual agent dis-
tribution x; at every episode or every several episodes. The
agents can treat x; as a new X and recalculate their policies.
This requires global observation but not explicit coordination.
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