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Abstract

To date, algorithms for real-world problems are
most commonly designed following a manual, ad-
hoc, trial & error approach, making algorithm de-
sign a tedious, time-consuming and costly process.
Recently, Programming by Optimization (PbO) has
been proposed as an alternative design paradigm
in which algorithmic choices are left open by de-
sign and algorithm configuration methods (e.g.
ParamILS) are used to automatically generate the
best algorithm for a specific use-case. We argue
that, while powerful, contemporary configurators
limit themselves by abstracting information that
can otherwise be exploited to speed up the opti-
mization process as well as improve the quality of
the resulting design. In this work, we propose an al-
ternative white box approach, reformulating the al-
gorithm design problem as a Markov Decision Pro-
cess, capturing the intrinsic relationships between
design decisions and their respective contribution
to overall algorithm performance. Subsequently,
we discuss and illustrate the benefits of this formu-
lation experimentally.

1 Introduction

There are many ways to solve a given problem. Therefore,
when faced with a problem, we must choose an algorithm
to solve it (the algorithm selection problem [Rice, 1976]).
In general, the best algorithm depends on the context in
which it is used (e.g. problem instance, execution environ-
ment, etc.). Furthermore, these methods often have many pa-
rameters/components that require appropriate tuning and con-
figuration to achieve satisfactory performance (the algorithm
configuration problem [Hutter ez al., 2009]). To date, algo-
rithms for many real-world problems are most commonly de-
signed using a manual, ad-hoc, trial & error approach, mak-
ing algorithm design a tedious, time-consuming and costly
process, often leading to mediocre results.

Recently, Programming by Optimization (PbO) [Hoos,
2012] has been proposed as an alternative design paradigm
in which difficult choices are deliberately left open at design
time, resulting in a rich and potentially large design space,
rather than a single algorithm. Subsequently, optimization
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methods are applied to automatically generate the best al-
gorithm instance for a specific use-case. PbO distinguishes
itself from Genetic Programming [Koza, 1992] in that it at-
tempts to maximally utilize expert knowledge to prune the de-
sign space, which typically only consists of algorithms solv-
ing the problem considered correctly. To date, optimizers of
choice for PbO are algorithm configuration methods. Algo-
rithm configurators search a space of configurations to find
one that optimizes the performance of an algorithm over a
given set of training instances (inputs). Configurators such as
ParamILS [Hutter ef al., 2009], iRace [Lépez-Ibanez et al.,
2011] and GGA [Ansétegui et al., 2009] are able to config-
ure hundreds of parameters and represent the state-of-the-art.
These methods require very little expert knowledge to use
them, however, they are limited by the fact that they return
a single configuration to be used on any input encountered in
practice. As such, they don’t solve the algorithm selection
problem, making them susceptible to overfitting and no-free-
lunch theorems [Wolpert and Macready, 1997]. Therefore,
context-aware configurators have been proposed that solve
both algorithm configuration and selection problems simul-
taneously by learning a configuration selection portfolio (e.g.
Hydra [Xu et al., 2010] and ISAC [Kadioglu et al., 2010]).

In this paper, we address another weakness of contempo-
rary algorithm configurators w.r.t. solving the Algorithm De-
sign Problem (ADP): They consider algorithm performance
as a black box, where a cost function maps a configuration
and input to a real cost-value. They do not exploit the fact
that this mapping is a consequence of algorithm execution,
i.e. design decisions affect the execution path for an input in a
particular way, which in turn relates to execution cost. To this
purpose, we propose an alternative white box approach to the
ADP. In Section 2 we reformulate the ADP as a Markov De-
cision Problem, capturing the intrinsic relationships between
design decisions and their contribution to overall algorithm
performance, including an explicit notion of context. Subse-
quently, we discuss possible solution approaches in Section 3.
In Section 4 we discuss how white box information could be
used to speed up the meta-optimization process and improve
the quality of the resulting design. In Section 5 we describe a
concrete implementation of a white box optimizer as a Proof
of Concept, and use it to illustrate some of these benefits ex-
perimentally in Section 6. Finally, we discuss related research
in Section 7 and conclude in Section 8.



2 The Algorithm Design Problem (ADP)

2.1 Black Box Formulation

Let A be the set of design choices, « a function map-
ping each design choice to a set of alternative decisions and
C = {c|e(dc) € k(dc),Vde € A} the set of possible config-
urations. The traditional Black Box Algorithm Design Prob-
lem can be formulated as follows: Given a probability distri-
bution D over the set of possible inputs X and an algorithm
evaluation function f : X x C' — R, find a configuration c*
satisfying ¢* = argmax_ E,p f(x, '), i.e. maximizing the
expected evaluation function value w.r.t. D.

2.2 White Box Formulation

In this section, we propose an alternative (white box) formu-
lation, exposing the internal structure of f. Here, we con-
sider algorithm design as a sequential decision process. In-
formally, we start executing an algorithm with open design
choices. As long as the next instruction does not depend
on the decision made for any of these, we simply continue
execution. When it does, a choice point is reached, and a
design decision must be made in order to continue execu-
tion. This process continues until termination. In what fol-
lows, we formalize this process. We first extend the Tur-
ing Machine (TM) [Turing, 1936] to include open design
choices, their respective domains, and a notion of the desir-
ability of an execution. Starting from the definition of a TM
asa7-tuple (@, T, B, X, 4, qo, F') given in [Hopcroft, 1979, p.
319], we define an Algorithm Design Process as a 10-tuple:
TMadp = <Q7F7B7 Z7A7K’a 6/apa QO7F>:

@ is a finite, non-empty set of states.

T" is a finite, non-empty set of tape alphabet symbols.

B is the blank symbol.

Y CT'\ {B} is the set of input symbols.

A is the set of choice points or design choices.

% is the domain function A — 2@*xIx{right,left}

0" is the open transition function
(Q\F) xT — (Q x T x {right, left}) U A.

p is the reward function (Q \ F') x I' — R. Representing the
contribution of a transition to overall performance (f).

go € Q is the start state.
F C @ is the set of final states.

Let azbf3 be an Instantaneous Description (ID) of TM g4y,
with current state or choice point z, tape content b3, head
pointing at b. Here, o and 3 denote a prefix and suffix of zero,
one or more tape symbols. Let az/3 I id’ represent a single
move of TM 4qp. If 2z € A, an agent selects the next move
a € k(z) the TM will perform (denoted by ), otherwise
TM 44y, is simulated as an ordinary TM. Finally, id I id’ in-
dicates that simulating T'M ,4;, from id for zero, one or more
moves results in id’ for some choices of the agent.

Note that T'M 44, can be seen as a Non-deterministic TM
having rewards associated with its transitions. The objec-
tive of an agent in the ADP is to determine these non-
deterministic transitions as to maximize the reward it accu-
mulates: Y., p(g:, b;) where ¢; and b; are the i*" of the n
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states and tape symbols read by T'M ,qp, before halting. In

what follows we assume any simulation of T'M 4, will even-

tually halt (independent of the agent’s decisions).

We now rephrase T'M 4, as a deterministic Markov Decision

Process (MDP) [Bellman, 1957]: MDP 4, = (S, A, T, R):

S ={azf|3z e X :qrF azB,z€ {gp}UA)}U{r}is
the set of states, where 7 is the terminal state.

A = ,cg As is the set of actions, where A,.5 = r(2) if
z € A, Ay = {anoop} otherwise.

T : S x Ay — S is the transition function. Let next(id) be
the ID resulting from simulating 7'M ,4,, starting from
id until it halts or a choice point is reached.
T(qo, anoop) = §'. Let azf = next(qgox).
If 2 € F: s’ = 7, otherwise s’ = azf3.
T(s,a) =s'. LetsI* id’ and azf = next(id").
If 2 € F: s’ = 7, otherwise s’ = azf3.
T(7, Gnoop) = T-
R : S x A; — R is the reward function.

R(s,a) = >, p(q;,b;) where ¢; and b; are the i*" of
the n states and tape symbols read by T'M 4, while
performing the simulation for T'(s, a).

R(T, Gnoop) =0

In state a2 3 the agent is faced with design choice z. We will
refer to the combination of tape content («/3) and head posi-
tion as the context in which this design choice is to be made.
A solution to an MDP is a policy 7 : S — A, corresponding
to an execution context dependent configuration. For a given
policy, an MDP reduces to a Markov Chain and the formula-
tion for T'M 4, can be reduced to that of an ordinary Turing
Machine, i.e. the algorithm corresponding to this configura-
tion. The white box ADP as such reduces to finding a policy
" satisfying

7 (s) = argmax R(s,a) + Vi« (T(s,a)) (1)
acA

Vi(s) = R(s,7(s)) + Va(T(s,7(s))) Ve(r)=0

V7 is called the value function and gives the total reward that
will be received following a given policy 7 from state s. In
particular Vy(qoz) = f(z,7),Vz € X. Since m* optimizes
V for any state, it obtains optimal performance on every input
and therefore any distribution D.

Remark that MDP,4, is deterministic. Algorithms are
never truly non-deterministic. Rather, stochasticity is a con-
sequence of pseudo-random numbers computed deterministi-
cally from a given seed value, which is part of the input. Al-
ternatively, assuming the seed value is drawn from a station-
ary distribution, we can reformulate transitions in MDP .4,
to be stochastic: replacing T'(s, a) by P(s, a, s’), yielding the
probability that taking action a in state s leads to state s’.

3 Solving the Algorithm Design Problem

Assuming S is finite, equation 1 (and its stochastic variant)
can be solved using dynamic programming. Commonly used
methods include Value and Policy iteration [Bellman, 1957,
Howard, 1960], and their extensions. Note that these ap-
proaches require P and R to be known explicitly. However,



in our formulation, P and R are consequences of execution
(TM simulation). In some cases, P and R can be derived
from the source code. Otherwise, we can estimate PP and
R based on repeated simulation and compute 7* afterwards
using dynamic programming. Alternatively, model-free Re-
inforcement Learning (RL) techniques can be used to learn
7* online, directly from the rewards and transitions observed
during simulation [Sutton and Barto, 1998].

A complicating factor in solving real-world white box
ADPs in practice is the fact that the context space (i.e. all pos-
sible memory states of the program) can be extremely large.
Fortunately, the best decision will typically depend on only a
subset of all context information. Furthermore, it is possible
to exploit an arbitrary subset of observable/relevant features
[Kaelbling er al., 1998]. In addition, we can focus on rele-
vant states, i.e. those that actually occur in practice (e.g. using
prioritized sweeping, on-policy RL). Finally, solving MDPs
with large state-action spaces has been an active research area
for several decades [Wiering and van Otterlo, 2012], resulting
in various techniques (e.g. incorporating function approxima-
tion). Exploring these in context of the implementation of a
concrete solver is subject of future research.

4 Benefits of a White Box Approach

In this section we discuss potential benefits of following a
white box approach to the ADP. First we briefly clarify the
relationship between the white box ADP formulated in Sec-
tion 2.2 and the traditional black-box ADP described in Sec-
tion 2.1. These are not equivalent, rather the latter can be
seen as a formulation of the former as a problem that can
be solved using existing configurators. This formulation ab-
stracts information that is naturally available in a PbO setting
and restricts candidate designs to the set of static configura-
tions. In Section 4.1 we describe how simulation-based so-
lution techniques can exploit white box information to solve
a given ADP faster. In Section 4.2 we discuss the benefit of
considering adaptive designs as candidates in the ADP.

4.1 Speed up Meta-optimization

Black box evaluation of a configuration results in a single
value (f), obtained after execution. White box evaluation on
the other hand gives us a list of tuples (s;, a;, r;), in chrono-
logical order, over the duration of the run, i.e. the state (choice
point, context) s; encountered, the action (decision) a; taken,
and the corresponding reward r; received. Note that f can be
deduced from this data (f = > r;).

Black box evaluation of a configuration on one input does
not provide any information about the performance of other
configurations, or performance on other inputs. Since runs
using different configurations and inputs might have large
parts of their execution in common, i.e. encounter similar
states, white box information can be generalized across de-
signs and inputs, improving data efficiency. This fact can be
exploited to perform more informed sampling and reduce the
estimation error in a stochastic setting, i.e. speed up the opti-
mization process. E.g. Design decisions only affect execution
after they are made, i.e. only rewards received after making a
certain decision can be attributed it. As a consequence, data

556

can be shared across configurations for as far as they make
the same decision in the states encountered thus far. Also,
often only a subset of choice points is encountered during a
run, i.e. multiple configurations correspond to the same exe-
cution path. In Section 5.2 we describe PURS, an agent using
this information to sample uniformly at random w.r.t. exe-
cution paths, rather than configurations. Remark that some
black-box optimizers allow the user to specify dependencies
between design choices. However, this is only possible if
these are input independent and demands considerable expert
knowledge. Also, methods attempting to profit from relations
between design decisions do exist (e.g. SMAC [Hutter ef al.,
2011]). However, they do so by analyzing the cost function
as a black-box, rather than by exploiting its internal structure.
Finally, black-box optimization typically requires many
evaluations, which is problematic when these are expensive.
Since white box information becomes available at runtime
and states often repeat themselves within a single run, online
learning (e.g. RL) can be used to evaluate multiple configu-
rations over the course of a single execution. Which is for
example useful to optimize parameters of a web-server.

4.2 Better/Adaptive Designs

Candidate solutions of the traditional black box ADP are con-
figurations (A — A). In our white box formulation, solutions
take the form of execution context dependent configurations
(Context x A — A). As a consequence, the white box ADP
subsumes the algorithm selection problem. Rather than learn-
ing a configuration that is best on average, we learn the best
configuration for each context (7*). Since 7* is independent
of the input distribution D, we can re-use white box informa-
tion in settings where D might differ/change and can readily
use any new experience to improve our policy (e.g. continu-
ous improvement) without the risk of biasing our design.

Remark that a white box approach is not required to solve
both algorithm configuration and selection problems simulta-
neously. Recently, black box solvers have been proposed (e.g.
Hydra, ISAC) learning which configuration to use for a given
input (X x A — A). However, the white box approach by
nature considers the dynamic variant of the problem: “What
configuration to use in a given execution context”. As such,
we’re able to change our design decision dynamically, i.e. dif-
ferent decisions can be made in different execution contexts,
even though the input is the same. In addition, black-box
methods require a given set of (statically computed) problem
features predictive for the performance of any particular con-
figuration. The white box approach on the other hand, can
use dynamic features of the resulting execution states. E.g.
consider an algorithm taking the seed for a random generator
as input (e.g. benchmark 2, Section 6.2). While computing
relevant static features from a seed value is clearly trouble-
some, determining features of the resulting execution states
is often trivial (e.g. the current iteration 7).

Finally, since the white box ADP considers the superset
of adaptive designs, it is potentially more difficult than its
black box counter-part, depending on the extent we can ex-
ploit white box information to solve it. However, one could
restrict the policy space and still exploit white box informa-
tion to solve the resulting ADP more quickly.



5 A Context-oblivious White Box Optimizer

As explained in Section 3, implementing a (practical) gen-
eral solver for the context-aware setting is challenging and
subject of future research. In this section, we formulate and
describe a solver for a “context-oblivious” variant of the ADP
to demonstrate that our approach is practical nonetheless. In
Section 6, we use this optimizer to illustrate some of the ben-
efits of white box evaluation experimentally.

5.1 The Context-oblivious ADP (COADP)

In the COADP, decisions are made without using execution
context information. In what follows, we show that the
COADP can also be formulated as an MDP. Here, we fur-
ther restrict our set of policies to those consistently making
the same decision for a design choice during execution. Let
C' = {d|d(z) € (k(z) U{A}),Vz € A} be the set of par-
tial configurations. A design choice z is said to be open in
c if ¢(z) = 6. Let next'(id,c’) be the ID resulting from
simulating TM .4, starting from id, choosing ¢'(z),Vz, un-
til it halts or a design choice open in ¢’ is reached. For-
mally, next’(id,c) = next(id) = azf if ¢(z) = 6 and
next!(id, ¢') = next'(id’, ') with azB ' id’ otherwise.

MDP coqap = (5°°, A, T, R), where
S ={(zz,d) | azf = next'(qox, ') }U{ss|z € X}U{7}.
T : S x Ay — S is the transition function.
T°(8z, Anoop) = §'. Let azf = next(qgoz).
If z € F: ¢ = 7, otherwise s’ = (zz,¢) with
d(dc) =0,Vdc € A.
T°((zx,c),a) = s'. Let azff = next'(qox,c’) and
azB 1 id and o'Z'B = next'(id’, ") with
d'(z) =aand ¢’(dc) = (dc),Vdc € A\ {z}.
If 2/ € F: s’ = 7, otherwise s’ = (z'z,").

T°°(T, Anoop) = T-

Note that the resulting state transition graph is directed
acyclic (with exception of the terminal state).

Remark that MDP .4, actually corresponds to a set of in-
dependent MDPs, one for each input. As a consequence,
this formulation doesn’t allow us to generalize observations
across inputs directly.

5.2 The Solver

We have implemented our optimizer as a standalone Java Li-
brary.! It solves the stochastic variant of the context-oblivious
ADP (MDP .4q4p) offline. It doesn’t come close to exploiting
the full potential laid out in Section 4. Rather, it serves as a
Proof of Concept, demonstrating that it is relatively easy to
implement and use a basic white box optimizer in practice.

Problem Specification

The programmer statically declares the design choices (A)
and their respective domains (x). Users can define any do-
main they desire by implementing DesignChoice<T>.
The generic type T allows the compiler to guarantee type

"https://github.com/Steven-Adriaensen/White-box-ADP
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safety. The library itself already provides some construc-
tors for common domains (e.g. IntegerInRange, imple-
menting DesignChoice<Integer>). Currently, the op-
timizer only supports discrete domains. When a decision is
required for a design choice (choice point in §’), a call to
T getDecision (DesignChoice<T>) will return the
decision for that choice. The feedback (Double) method
is used to reward/penalize (p) the agent during execution, in-
dicating the desirability of the current execution path. E.g. if
f corresponds to “execution time”, the feedback signal (R)
corresponds to “the time elapsed between 2 choice points”.
For some f, assigning credit to parts of the execution might
be difficult, in which case potential-based reward-shaping
[Ng et al., 1999] can be used (without affecting 7).

Solution Approach

Our optimizer iteratively evaluates a given algorithm (with
open design choices) on a given input (with variable seed).
When an open design choice is encountered at runtime, it will
query a given agent for a decision. Currently the following
agents are supported:

e URS: Selects an alternative uniformly at random.

o PURS: Selects an alternative that was not yet selected
uniformly at random, if any. Otherwise, an alternative
a is selected proportional to the expected number of ex-
ecution branches N(s,a) = Y, P(s,a,s’)N(s") with
N(s)=>,N(s,a)and N(f) = 1.

e GR: Pure greedy, selects the alternative estimated to
maximize the expected future reward.

When testing, we wish to use an agent that follows an optimal
policy (i.e. GR). However, during the training phase the agent
should explore alternative design decisions (e.g. (P)URS), i.e.
guide the search.

During these evaluations, the following information about
state transitions is recorded:

e n(s,a,s’): The number of times taking decision a in
state s led to state s’

e 7(s,a,s’): The average reward received after taking de-
cision «a in state s, before ending up in the next state s’.

To reduce space requirements, these were only stored for the
s, a, s’ encountered and assumed to be 0 otherwise. This in-
formation is used to approximate P°° and R of MDP .o44p:

n(s,a,s)
S nls.a, ")
Finally, the optimizer assumes the best design, at any time,
to be the policy 7* solving Ml\)/Pcoadp = (8¢, A, P R).
Here MDP ;qqp is solved using a bottom-up dynamic pro-
gramming approach and ties are broken randomly. The idea

is that multiple evaluations will allow us to accurately approx-
imate the actual MDP and therefore its optimal policy.

P(s,a,5') = R(s,a,s") =r(s,a,s)

Note that MDP ,.qp is a consistent estimator for
MDP 444y as long as each policy 7 has a positive chance of
being explored. Our optimizer is therefore Probabilistically
Approximately Correct [Valiant, 1984] as long as the agent
used has this guarantee (e.g. (P)URS).



6 Experimental Illustrations

In this section, we illustrate some of the benefits of white box
evaluation. To this purpose, we compare the performance of
the implementation described in Section 5 to that of a similar
black box implementation on two micro-benchmarks. These
implementations differ in that the white box optimizer (WB)
maintains transition data (n,r) and returns 7*, while the black
box optimizer (BB) maintains a ¢ — f(c) mapping and re-
turns ¢* = arg max,, f(c).

Both optimizers perform Uniform Random Sampling.
URS was chosen to keep things simple and illustrate the con-
tribution of using white box information by itself. On some
problems other features of state-of-the-art configurators (e.g.
local search) might render white box benefits to some extent
redundant. In general, white box evaluation is orthogonal to
these more advanced sampling schemes and can be used to
inform them (c.f. PURS for URS). Our experiments are by
no means intended as a comparison of/to the state-of-the-art
(WB nor BB are). The benchmarks have been selected to il-
lustrate the benefits of our white box approach. We make no
claims about their representativeness for real-world problems.

Figures 2 and 4 show the performance of the algorithm re-
turned by each optimizer, after = algorithm evaluations,? av-
eraged over 100 independent meta-optimization runs. Here
we distinguish between the actual performance (full line) and
the performance as estimated by the optimizer (dashed line).

6.1 Benchmark 1: Speed up Meta-optimization

Design Choices:

<Integer> dc[i] {0,1} for 1<i<20

i=1;

while i £20 and getDecision(dc[i])
feedback (random gaussian(1l,2));
i i+ 1;

end while

1 do

Figure 1: Code for Benchmark 1

Figure 1 shows the code for benchmark 1. In this benchmark,
we are to make up to 20 design decisions between 0 and 1, in
a fixed order. As long as we choose 1, we receive a reward
drawn from N (1, 2), otherwise execution terminates. While
there are 220 different configurations, there are only 21 dif-
ferent execution paths, and 7*(s) = 1, Vs.

Figure 2 compares our WB optimizer using the URS and
PURS agents to the BB optimizer (BB-URS). We observe that
each method overestimates the performance of its incumbent
design. This schism is known as overconfidence (oc) [Bi-
rattari and Dorigo, 2004] and is caused by the fact that the
maximum sample average is a biased estimator. Due to oc,
an optimizer cannot distinguish bad from good designs, caus-
ing unreliable performance. BB-URS clearly exhibits most oc
and performs the worst. It is only after about 1M evaluations
that oc drops as configurations are re-evaluated. The WB op-
timizers have a much lower estimation error, as they are able

2 An evaluation is a single run with a variable seed as only input.
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Figure 2: Results for Benchmark 1

to generalize across configurations. By reusing information
obtained during the evaluation of similar policies, they im-
prove their estimate of the performance of the best policy so
far. Both URS methods take a long time, given there are only
21 execution paths. This is because, even though policies are
sampled uniformly at random, execution paths are not. E.g.
there is only a single configuration corresponding to the best
execution path, but 219 to the worst. On average, WB-URS
finds the optimal solution after = 1M evaluations, which is
the best we could hope for. However, using white box evalu-
ation, we obtain information about how design decisions in-
fluence future choice points, i.e. alternative execution paths,
which we can use to inform the sampling. WB-PURS at-
tempts to draw samples uniformly w.r.t. execution paths, and
as there are only 21 different ones, it quickly finds the best
(£100 evaluations). To put this in perspective, ParamILS?
required + 10K evaluations on this benchmark.

6.2 Benchmark 2: Better/Adaptive Designs

Design Choices:
<Integer> dc[i]

{(1,2,3,4,5} for 1<i<5

order shuffle([1,2,3,4,5]);
for 1<i<5 do
if getDecision(dc[order[i]])= 1 then
feedback (1) ;
end if
end for

<

Figure 3: Code for Benchmark 2

Figure 3 shows the code for benchmark 2. In this benchmark
we are to make 5 design decisions between 1, 2, 3, 4 and 5,
in a random order. If we choose alternative i the i*" design
choice (iteration), we receive a reward of 1. Here, the best
decision depends on the number of design decisions made
before, which is only known at runtime.

3The focused variant, using the default parameter settings.
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Figure 4: Results for Benchmark 2

Figure 4 shows that WB-URS finds the optimal dynamic
policy, which accumulates a reward of 5. This might surprise,
since our optimizer is context oblivious. However, S¢° does
include minimal runtime information (partial configuration
¢ € ("), which is sufficient to act optimally in this bench-
mark. BB-URS only considers static configurations, which
are all as good, accumulating an expected reward of 1. Note
that BB-URS also suffers from oc on this benchmark.

7 Related Research

This section lists prior-art on algorithm design, that can be
viewed as following a white box approach. Rather than being
complete, we attempt to characterize their nature and clarify
how our work differs from theirs.

We consider designing algorithms in general (T'M ,qp).
Prior-art considers specific subclasses of algorithms (e.g. Di-
vide & Conquer-algorithms [Lagoudakis and Littman, 2000],
Evolutionary Algorithms [Eiben et al., 1999; Karafotias
et al., 2014], Meta-heuristics [Burke et al., 2003], Con-
straint Satisfaction Programs [Epstein er al., 2002] etc).
We reformulate this problem as an MDP. While some (e.g.
[Lagoudakis and Littman, 2000; Karafotias et al., 2014]) in-
formally suggest this could be done, they eventually formu-
late and solve a problem that is not Markovian. The Markov-
property is what enables us to generalize across runs, inputs
and configurations in a theoretically sound manner. Also,
note that the MDP formulation in [Lagoudakis and Littman,
2000] is far more black-box than ours (states represent inde-
pendent sub-problems, actions correspond to algorithms).

Finally, there exists a vast body of research attempting to
make/adapt design decisions at runtime. Well-known exam-
ples are reactive-search [Battiti er al., 2008] and selection
hyper-heuristics [Burke et al., 2003]. Online adaptivity is in-
deed a key advantage of the white box approach, enabling
better designs (see Section 4.2). However, to the best of our
knowledge, prior-art does this outside of a proper theoretical
framework, relying mostly on heuristics. Learning, if used
at all, is done online, without generalization across runs and
introduces a trade-off between exploration and exploitation.
Benefits as such are often minimal and exploitation of learned
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knowledge requires very long/repetitive runs (e.g. an RL ap-
proach performs barely better than random in [Karafotias et
al., 2014]). Furthermore, the RL problem these methods (of-
ten implicitly) solve, has a non-stationary environment, thus
requiring us to learn faster than the environment changes. A
proper theoretical framework is exactly what we propose in
this paper. Note that in our formulation, online-learning is
no prerequisite for online adaptivity, i.e. we can learn “what
works when” offline and utilize this knowledge online.

8 Conclusion

In summary, this paper focuses on formulating the Algo-
rithm Design Problem (ADP) in a general and formal man-
ner (T'M ,4p), describing/illustrating its potential benefits,
without bias towards a particular solution approach, some-
thing prior-art, without exception, fails to do. The ADP as
formulated in this work subsumes the algorithm selection,
parametrization and dynamic adaptation problems, and as
such might be foundational to enabling a more unified ap-
proach to automated algorithm design in the future. The
MDP 4, formulation is of particular interest, as it allows us
to leverage the gamut of MDP solution approaches (e.g. RL)
that have been proposed over the past six decades to do so.

While exploiting the full potential of the white box ap-
proach is a challenging endeavor and was beyond the scope
of this paper, we believe that the envisioned benefits should
make this a research track worth exploring. Furthermore,
to convince the reader our approach is practical nonethe-
less, we have presented a concrete white box optimizer and
used it to illustrate how white box information can be uti-
lized to speed up the optimization process as well as improve
the quality of the resulting design, on two illustrative micro-
benchmarks. Subject of future research is a white box op-
timizer, outperforming state-of-the-art algorithm configura-
tors on real-world ADPs. Worst-case, if each configuration
uniquely affects the execution on every input, we can do no
better. Our objective is therefore to never do worse. Also sub-
ject of future research is a practical approach to profit from
the (partial) observability of context during the design pro-
cess. Finally, we wish to explore the potential of using this
framework to analyze and compare heuristics (human-defined
policies) commonly used to make design choices at runtime
and how these can be used to inform the optimization process.

In the future, automated algorithm design will play an in-
creasingly prominent role. Recently, multiple sources [Ansel
et al., 2009; Hoos, 2012; Adriaensen et al., 2014] have inde-
pendently advocated a PbO-like methodology to design algo-
rithms. Simultaneously, many fields have in recent years suf-
fered from an uncontrolled introduction of algorithmic varia-
tion. We expect that maturation of these fields will lead to a
more controlled, modular, component-driven approach (e.g.
Metaheuristic Optimization [Swan ef al., 2015]). The ques-
tion of which components to combine to solve a given prob-
lem will surely be one computers must help answering.
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