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Abstract
This paper explores techniques for fast solving the
maximum weight clique problem (MWCP) in very
large scale real-world graphs. Because of the size
of such graphs and the intractability of MWCP,
previously developed algorithms may not be appli-
cable. Although recent heuristic algorithms make
progress in solving MWCP in massive graphs, they
still need considerable time to get a good solu-
tion. In this work, we propose a new method for
MWCP which interleaves between clique construc-
tion and graph reduction. We also propose three
novel ideas to make it efficient, and develop an al-
gorithm called FastWClq. Experiments on massive
graphs from various applications show that, Fast-
WClq finds better solutions than state of the art al-
gorithms while the run time is much less. Further,
FastWClq proves the optimal solution for about
half of the graphs in an averaged time less than one
second.

1 Introduction
The proliferation of massive data sets brings with it a se-
ries of special computational challenges. Many data sets
can be modeled as graphs, and the research of massive real-
world graphs grew enormously in last decade. A clique of
a graph is a subset of the vertices that are all pairwise ad-
jacent. Clique is an important graph-theoretic concept, and
is often used to represent dense clusters. The maximum
clique problem (MCP) is a long-standing problem in graph
theory, for which the task is to find a clique with the max-
imum number of vertices in the given graph. An important
generalization of MCP is the maximum weight clique prob-
lem (MWCP), in which each vertex is associated with a pos-
itive integer, and the goal is to find a clique with the largest
weight. MWCP has valuable applications in many fields [Bal-
lard and Brown, 1982; Balasundaram and Butenko, 2006;
Gomez Ravetti and Moscato, 2008].

The decision version of MCP (and thus MWCP) is one of
Karp’s prominent 21 NP-complete problems [Karp, 1972],
and is complete for the class W[1], the parameterized analog
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of NP [Fellows and Downey, 1998]. Moreover, MCP (and
thus MWCP) is not approximable within n1�✏ for any ✏ > 0
unless NP=P [Zuckerman, 2007]. Nevertheless, these nega-
tive theoretical results have been established for “worst case”,
which does not often happen in practice. We still have hope
of solving MWCP problems which arise in specific problem
domains.

1.1 Related Work
Given their theoretical importance and practical relevance,
considerable effort has been devoted to the development of
various methods for MCP and MWCP, mainly including ex-
act algorithms and heuristic algorithms. Exact algorithms can
prove the optimality of their solutions, but they may fail to
solve large graphs within reasonable time. On the other hand,
various heuristic algorithms have been devised with the pur-
pose of providing sub-optimal solutions within an acceptable
time.

Almost all existing exact algorithms for MCP are branch-
and-bound (BnB) algorithms, and they differ from each other
mainly by their techniques to determine the upper bounds and
their branching strategies. A large family of BnB algorithms
use coloring to compute upper bounds [Tomita and Seki,
2003; Tomita and Kameda, 2007; Konc and Janezic, 2007;
Tomita et al., 2010; Segundo et al., 2013]. Another paradigm
encodes MCP into MaxSAT and then applies MaxSAT rea-
soning to improve the upper bound [Li and Quan, 2010;
Li et al., 2013]. There are also numerous works on heuris-
tic algorithms for MCP, most of which are local search al-
gorithms [Singh and Gupta, 2006b; Pullan and Hoos, 2006;
Pullan, 2006; Guturu and Dantu, 2008; Benlic and Hao,
2013].

MWCP is more complicated than MCP and some powerful
techniques for MCP are not applicable or ineffective for solv-
ing MWCP due to the vertex weights. This partly explains
the fact that there are relatively fewer algorithms for MWCP.
Some exact algorithms for MWCP come from and generalize
previous BnB methods designed for MCP [Östergård, 1999;
Kumlander, 2004]. The MaxSAT-based method is also gen-
eralized to MWCP, resulting in a state of the art exact MWCP
algorithm named MaxWClq [Fang et al., 2014]. More ef-
forts are devoted to heuristic algorithms for MWCP. Mas-
saro et al. propose a complementary pivoting algorithm based
on the corresponding linear complementarity problem [Mas-
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saro et al., 2002]. Busygin presents a heuristic method using
a nonlinear programming formulation for MWCP [Busygin,
2006]. A hybrid evolutionary approach is offered in [Singh
and Gupta, 2006a]. The Phased Local Search (PLS) algo-
rithm is extended to MWCP [Pullan, 2008]. In [Wu et al.,
2012], a local search algorithm called MN/NT integrates a
combined neighborhood and a dedicated tabu mechanism,
and shows better performance than previous heuristic algo-
rithms. A recent local search algorithm based on the config-
uration checking strategy [Cai et al., 2011] called LSCC fur-
ther improves MN/NT on a wide range of benchmarks [Wang
et al., 2016].

Traditional algorithms usually become futile on massive
graphs, due to their high space complexity and time com-
plexity. For example, most traditional algorithms utilize adja-
cency matrix to facilitate fast computation of some operations
such as the query of whether two vertices are adjacent. But
the space requirement of this data structure is prohibitive for
massive graphs. Also, most commonly used strategies do not
have sufficiently low time complexity, which severely limits
their ability to handle massive graphs.

Recently, there have been some dedicated algorithms for
solving MCP in massive graphs. These MCP algorithms
[Rossi et al., 2014; Verma et al., 2015] heavily depend on
the concept of k-Core [Seidman, 1983], which is defined as
a subgraph where all vertices have degree at least k, and can
be computed in O(m) (m is the number of edges) using bin
sorting [Batagelj and Zaversnik, 2003]. However, we are
not aware of any work using the k-Core concept to develop
MWCP algorithms. Moreover, an analogous concept in ver-
tex weighted graphs requires prohibitive space (O(w · m),
where w is the average weight of vertices) for bin sorting,
and does not allow fast computation. As for MWCP, a recent
progress in solving massive graphs is made in local search al-
gorithms, by using a probabilistic heuristic called Best from
Multiple Selection (BMS) [Cai, 2015]. BMS was first ap-
plied to minimum vertex cover problem [Cai, 2015], and then
to MWCP, resulting in two efficient local search algorithms
for MWCP called MN/TS+BMS and LSCC+BMS [Wang et
al., 2016]. Seen from the literatures, LSCC+BMS is currently
the best algorithm for solving MWCP in massive graphs.

1.2 Contributions and Paper Organization
Although recent works made progress in solving MWCP in
massive graphs, the improvements are limited to local search
and the performance is still not satisfactory. In many applica-
tions the time limit is very short, or the time resource is very
valuable. This calls for more practical algorithms for solving
MWCP in real-world massive graphs.

In this work, we propose an efficient method for solving
MWCP in massive graphs, which interleaves between clique
construction and graph reduction. In a graph reduction pro-
cedure, we reduce the size of the graph by removing some
vertices that are impossible to be in any clique of the opti-
mal weight. Most real-world massive graphs are power law
graphs [Eubank et al., 2004; Lu and Chung, 2006], and can
be reduced considerably by using a clique of certain qual-
ity in hand as a lower bound. On the other hand, a smaller
graph presents smaller search space and the algorithm may

find better cliques more easily, which can then be used to
further reduce the graph. As far as we know, this is the
first algorithm that interleaves between construction and re-
duction, although some previous MCP algorithms reduce the
graph before calling an exact algorithm [Rossi et al., 2014;
Verma et al., 2015].

Moreover, we propose three ideas to make the method ef-
fective and efficient. The fist one is a function for estimat-
ing the benefit of adding a vertex, which considers both the
weight of the vertex and the weight of its effective neighbor-
hood w.r.t the current clique. We also propose a dynamic
BMS heuristic, which is used in choosing the adding ver-
tex. Lastly but very importantly, we propose a fast and effec-
tive graph reduction algorithm, which relies on two reduction
rules, including a novel branching-based reduction rule.

Based on these ideas, we develop an algorithm called Fast-
WClq. Experiments on a wide range of real-world massive
graphs show that, FastWClq finds better solutions than state
of the art algorithms (including LSCC+BMS and MaxWClq)
for most of the graphs with less run time. More encourag-
ingly, FastWClq finds at least same-quality, sometimes better-
quality solutions than its competitors even when the time
limit for the competitors are 10 times and 36 times that for
FastWClq. Further, FastWClq finds and proves the optimal
solution for about half of the graphs in one second on aver-
age.

In the next section, we introduce some necessary back-
ground knowledge. Then, we describe our method in Sec-
tion 3, including the FastWClq algorithm and its important
components. Experimental evaluations of our algorithm Fast-
WClq are presented in Section 4. Finally, we give some con-
cluding remarks and outline the future work.

2 Preliminaries

Let G=(V ,E) be an undirected graph where V ={v1, v2, . . . ,
v
n

} is the set of vertices and E is the set of edges in G. We
use V (G) and E(G) to denote the vertex set and the edge
set of graph G. A vertex weighted undirected graph is an
undirected graph G = (V,E) combined with a weighting
function w so that each vertex v 2 V is associated with a
positive integer number w(v) as its weight. We use a triple
to denote a vertex weighted graph, i.e., G = (V,E,w). For a
subset S ✓ V , we let G[S] denote the subgraph induced by
S, which is formed from S and all of the edges connecting
pairs of vertices in S. The weight of S is w(S)=

P
v2S

w(v).
The neighborhood of a vertex v is N (v)={u 2 V |{u, v} 2
E}, and we denote N [v] = N(v) [ {v}. The degree of v is
d(v) = |N(v)|.

A graph G=(V ,E) is complete if its vertices are pairwise
adjacent, i.e. 8u, v 2 V, {u, v} 2 E. A clique C is a subset
of V such that the induced graph G[C] is complete. The max-
imum clique problem (MCP) is to find a clique of maximum
cardinality in a graph, and the maximum weight clique prob-
lem (MWCP) is to find a clique of the maximum weight in a
vertex weighted graph. A clique C is called a maximal clique
in G if there exists no clique C 0 in G such that C 0 � C.
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3 A Novel Method for MWCP
In this section, we propose an algorithm for solving MWCP
called FastWClq, which interleaves between clique construc-
tion and graph reduction. We first describe the algorithm, and
then introduce the important components of the algorithm.

The pseudo code of FastWClq is shown in Algorithm 1. On
a top level, the algorithm works as follows. After some ini-
tializations, the algorithm executes a main loop until a limited
time is reached, or an exact solution is found and proved. In
each iteration of the loop, a clique is constructed by extending
from an empty set (lines 3-15). To avoid ineffective construc-
tion procedures, we use pruning techniques to stop construc-
tion procedures that are known not to form a better clique
than the best found clique. After the construction, if a better
clique is obtained, the best found clique C⇤ is updated, and
then the graph is reduced (if possible) by iteratively applying
reduction rules. Additionally, if the graph becomes empty af-
ter reduction, then the best found solution C⇤ is proved to be
optimal (as will be discussed in Section 3.2).

Now we describe the clique construction procedure. Let
us first introduce some notation and definitions. We use C to
denote the current clique under construction, and StartSet
is the set containing vertices candidate as a starting vertex to
construct a clique. CandSet = {v|v 2 N(u) for 8u 2 C},
i.e., each vertex in CandSet is adjacent to all vertices in C;
this set consists of candidate vertices eligible to extend the
current clique. The effective neighborhood of vertex v is
defined as N(v) \ CandSet. The concept is very important,
as w(N(v) \ CandSet) is used in both pruning a procedure
and evaluating the quality of candidate vertices.

In a clique construction procedure, the algorithm first pops
a random vertex from StartSet to serve as the starting ver-
tex from which a clique will be extended, if StartSet is
not empty (line 6). If StartSet becomes empty, which
means all vertices have been used as the starting vertex,
then another round of clique constructions begins by reset-
ting StartSet to G(V ), and we adjust our strategy parameter
(lines 3-5). After the starting vertex u is chosen, the clique
is initialized with the vertex, and CandSet is initialized as
N(u) (lines 7-8). Then, the clique is extended iteratively by
each time adding a vertex v 2 CandSet (lines 9-15), until
CandSet becomes empty. Also, we use a cost-effective up-
per bound to prune the procedure (lines 11-12). Obviously,
w(C) + w(v) + w(N(v) \ CandSet) is an upper bound on
weight of any clique extended from C by adding v and more
vertices.

Although tighter upper bounds can be obtained by using
more advanced techniques such as coloring, these bounds re-
quire much more time for computation. Our aim in this paper
is to compute a high-quality solution in short time, so we do
not use these techniques.

3.1 Choosing the Adding Vertex
An important component in FastWClq is the function
ChooseAddV ertex (Algorithm 2), which selects a vertex
from CandSet to extend the current clique. To this end, we
propose a novel function to estimate the benefit of vertices,
and a dynamic BMS heuristic to choose the adding vertex.

Benefit Estimation Function

Algorithm 1: FastWClq (G, cutoff)
Input: vertex weighted graph G = (V,E,w), the cutoff time
Output: A clique of G
StartSet = V (G), C⇤ := ;, k := k0;1
while elapsed time < cutoff do2

if StartSet = ; then3
StartSet = V (G);4
AdjustBMSnumber(k);5

u := pop a random vertex from StartSet;6
C := {u};7
CandSet := N(u);8
while CandSet 6= ; do9

v := ChooseAddV ertex(CandSet, k);10
if w(C) + w(v) + w(N(v) \ CandSet)  w(C⇤)11
then Break;
C := C [ {v};12
CandSet := CandSet \ {v};13
CandSet := CandSet \N(v);14

if w(C) > w(C⇤) then15
C⇤ := C;16
G := ReduceGraph(G,C⇤);17
StartSet = V (G);18
if G becomes empty then19

return C⇤; //exact solution20

return C⇤;21

We define the benefit of adding a vertex v as benefit(v) =
w(C

f

)� w(C), where C
f

is the final maximal clique grown
from C [ {v}. Note that we do not define benefit(v) as
w(C

f

) � w(C [ {v}), because at this moment we do not
know whether or not v will be selected to extend C.

An ideal strategy is to pick the vertex with the best benefit
at each iteration to extend C. However, we cannot know the
true benefit value of a vertex until we finish the construction
procedure. In order to compare candidate vertices at the cur-
rent iteration, we propose a function to estimate the benefit of
adding a vertex. The function is based on two considerations:

1) If a candidate vertex v is added into the clique C, the
weight of C is increased by w(v), which is a trivial lower
bound of benefit(v).

2) Suppose a candidate vertex v is selected to be added into
the clique C. The best possible weighted clique grown from
C [ {v} is C [ {v} [ (N(v) \ CandSet), for which the
weight is w(C) + w(v) + w(N(v) \ CandSet). Thus, an
upper bound of benefit(v) is w(v) + w(N(v) \ CandSet).

We consider an estimation function should take into ac-
count both the lower bound and upper bound of benefit(v).
A simple and intuitive function which embodies this principle
is to take the average over these two bounds.

b̂(v) =
w(v) + w(v) + w(N(v) \ CandSet)

2
= w(v) + w(N(v) \ CandSet)/2

Dynamic BMS Heuristic
We choose the adding vertex based on their b̂ values ac-

cording to a dynamic BMS (Best from Multiple Selection)
heuristic. The original BMS heuristic is a probabilistic strat-
egy which returns the best element from multiple samples. It
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has been theoretically shown that BMS can approximate the
best-picking strategy very well in O(1) time [Cai, 2015]. An-
other advantage of the BMS heuristic is that, we can control
the greediness of the algorithm by adjusting the parameter k.
However, this has not been exploited previously, and previ-
ous algorithms with BMS adopt a static BMS heuristic, that
is, the number of samplings k stays the same.

Algorithm 2: ChooseAddV ertex(CandSet, k)

if |CandSet| < k then1
return a vertex v 2 CandSet with the greatest b̂ value;2

v⇤ := a random vertex in CandSet;3
for iteration := 1 to k � 1 do4

v := a random vertex in CandSet;5

if b̂(v) > b̂(v⇤) then v⇤ := v;6

return v⇤;7

In general, a greater k value indicates a greater greediness
and more computation time. Based on this observation, we
propose a dynamic BMS heuristic. In our algorithm, we start
from a small k value (k0), so that the algorithm works fast.
Whenever StartSet becomes empty, which means we do not
find a better clique with this k value, we adjust k by increas-
ing it as k := 2k, to make the algorithm construct cliques in a
greedier way. Also, when k exceeds a predefined maximum
value k

max

, it is reset to k := ++k0. This is implemented in
the function AdjustBMSnumber (line 5 in Algorithm 1).

3.2 Graph Reduction
By applying sound reduction rules (which usually depend on
a clique in hand), a graph can be reduced to a smaller graph
while keeping the optimal solution. This is desirable as al-
gorithms can solve the original instance by solving a smaller
and easier instance. In this subsection, we introduce a graph
reduction algorithm, which relies on two reduction rules, in-
cluding a novel branching-based reduction rule.
Definition 1 Given a vertex weighted graph G = (V,E,w),
for a vertex v 2 V (G), an upper bound on the weight of any
clique containing v is an integer, denoted as UB(v), such that
UB(v) � max{w(C)|C is a clique of G, v 2 C}.

Now, we consider the following reduction rule.
Rule: Given a vertex weighted graph G = (V,E,w) and

a clique C0 in G, 8v 2 V (G), if there is an upper bound
UB(v) such that UB(v)  w(C0), then delete v and its in-
cident edges from G.

The above rule indeed represents a family of reduction
rules, and in order to obtain an applicable concrete rule, we
need to specify the upper bound function and the input clique.
We use the notation Rule(UB,C0) to denote a concrete rule
where UB is the upper bound function and C0 is the input
clique.
Proposition 1 Let G be a vertex weighted graph, G0 the re-
sulting graph by applying Rule(UB,C0) on G, and let w⇤

be the weight of the maximum weight clique of graph G,
and C⇤

G

0 the maximum weight clique of G0. Then, w⇤ =
max{w(C0), w(C⇤

G

0)}.

Proof: If w(C0) = w⇤, then the proposition obviously holds.
Now we consider the case w(C0) < w⇤. For graph G and a
vertex v 2 V (G), let C⇤(v) be the clique s.t. v 2 C⇤(v) and
w(C⇤(v)) � w(C) for any clique C containing v. By Defini-
tion 1, we have w(C⇤(v))  UB(v). On the other hand, any
vertex deleted by Rule(UB,C0) satisfies UB(v)  w(C0),
and thus w(C⇤(v))  UB(v)  w(C0) < w⇤, meaning that
v cannot be contained in any clique with weight w⇤. Thus,
any vertex that is in a clique with weight w⇤ remains in G0,
so w⇤ = w(C⇤

G

0). ⇤
The above proposition shows that any rule in family Rule

is sound w.r.t. keeping the optimal solution of the instance.
Additionally, the proposition leads to the following corollary.
Corollary 1 Let G0 be the resulting graph by applying
Rule(UB,C0) on vertex weighted graph G, if V (G0) = ;,
then C0 is the maximum weight clique of G.

Given a clique in hand (by construction as shown in Algo-
rithm 1), in order to apply reduction rules, the focus is how to
compute an upper bound. Since any clique grown from ver-
tex v can only contain vertices in N(v), a trivial upper bound
function is

UB0(v) = w(N [v])

To get a tighter bound for vertex v, we consider its neigh-
boring vertex with the maximum weight (denoted as n⇤). The
idea is that, for any clique C containing v, it either contains
n⇤ or it does not. For either case, we can have a tighter upper
bound than UB0(v), and finally we get the larger (worse) one
as the upper bound. We divide the cases on n⇤ in order to
balance the bounds of the two cases. Formally, we propose a
branching-based upper bound as follows:

UB1(v)

=max{w(N [v])� w(n⇤), w(v) + w(n⇤) + w(N(v) \N(n⇤))}

Note that we use adjacency list instead of adjacency matrix
for the purpose of saving space. So, checking whether a ver-
tex y 2 N(v) is in N(n⇤), i.e., whether y and n⇤ are neigh-
bors, requires O(min{d(y), d(n⇤)}) time, which indicates a
square time complexity for computing N(v)\N(n⇤) by each
time checking whether a vertex in N(v) is in N(n⇤). In this
work, rather than use the above implementation, we use a lin-
ear implementation to compute N(v)\N(n⇤) (two scans on
the smaller set and one on the larger one), by using indicators.

The graph reduction algorithm is depicted in Algorithm 3.
Both upper bounds are used. UB0 requires little overhead,
while UB1 requires more computation time but is tighter.
Therefore, when considering a vertex, we first use the UB0

based reduction rule, and if this cannot delete the vertex then
we apply the rule based on UB1

1.
Our reduction algorithm works in an iterative fashion, with

a queue called RmQueue which contains vertices to be
deleted. In the beginning, the algorithm enqueues all vertices
satisfying at least one of the reduction rules into RmQueue.
Then, a loop is carried out until RmQueue becomes empty.
Each iteration of the loop pops a vertex u from RmQueue,
and deletes u and all its incident edges from G. After a vertex

1In practice, a trick to accelerate the procedure (slightly) for
large-sized graphs is to first use UB0 to reduce the graph to a certain
size, after which UB1 will be used.
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u is deleted, we check its remained neighborhood N
r

(u) (the
set containing all neighbors of u that have not been removed
from the graph yet), and add all vertices in N

r

(u) that satisfy
at least one of the reduction rules into RmQueue.

Algorithm 3: ReduceGraph (G, C0)
Input: vertex weighted graph G = (V,E,w), a clique C0

Output: A simplified graph of G
foreach v 2 V (G) do1

if UB0(v)  w(C0) —— UB1(v)  w(C0) then2
RmQueue := RmQueue [ {v};3

while RmQueue 6= ; do4
u := pop a vertex from RmQueue;5
delete u and its incident edges from G;6
foreach v 2 Nr(u) do7

if UB0(v)  w(C0) —— UB1(v)  w(C0) then8
RmQueue := RmQueue [ {v};9

return G;10

According to Corollary 1, if the ReduceGraph algorithm
returns an empty graph, that means the found clique is an
optimal weighted clique of the input graph. However, there
are cases that FastWClq finds an optimal weighted clique but
ReduceGraph cannot reduce the graph to empty, because the
reduction rules are incomplete.

4 Experimental Evaluation
We carry out experiments to evaluate FastWClq on a broad
range of real-world massive graphs. We compare Fast-
WClq against the currently best heuristic MWCP algorithm
LSCC+BMS [Wang et al., 2016], and the currently best exact
algorithm MaxWClq [Fang et al., 2014].

4.1 Experimental Preliminaries
The benchmarks in our experiments were originally from the
Network Data Repository online [Rossi and Ahmed, 2015],2
including biological networks, collaboration networks, face-
book networks, interaction networks, infrastructure networks,
amazon recommend networks, retweet networks, scientific
computation networks, social networks, technological net-
works, and web link networks. The original benchmarks are
unweighted, and we transformed them into a vertex weighted
version: For the ith vertex v

i

, w(v
i

)=(i mod 200)+1.There
are totally 102 graphs. Many of these real-world graphs
have millions of vertices and dozens of millions of edges.
These benchmarks have been used in evaluating MWCP al-
gorithms [Wang et al., 2016], as well as algorithms for Maxi-
mum Clique [Rossi et al., 2014], Coloring [Rossi and Ahmed,
2014] and Minimum Vertex Cover problems [Cai, 2015].

FastWClq is implemented in C++. Parameters k0 and
k
max

for dynamic BMS heuristic are set to 4 and 64 (=26).
LSCC+BMS and MaxWClq were implemented in C++ by
their authors. All algorithms are complied with g++ version
4.7 with -O3 option.

2http://www.graphrepository.com/networks.php

The experiments are carried out on a workstation under
Ubuntu Linux 14.04, using 2 cores of Intel i7-4710MQ CPU
@ 2.50 GHz and 32 GByte RAM. We run FastWClq and
LSCC+BMS 10 times on each graph. The cutoff time (”ct”)
for FastWClq is 100 seconds per run. For LSCC+BMS, we
test it under two cutoff time, 100 and 1000 seconds. This is to
justify that the solutions found by FastWClq are sufficiently
good even compared with those found by LSCC+BMS under
10 more time limit. For the exact algorithm MaxWClq, we
run it once on each graph with a cutoff time of one hour.

For each graph, we report the best clique weight (”Best”)
found by each algorithm, and the average clique weight over
all runs (”Avg”) if a 100 percent success rate is not reached. If
an algorithm fails to provide a solution for an instance, then
the corresponding column is marked as ”N/A”. If an algo-
rithm proves the optimal solution, the corresponding column
is marked with a ”*”. Due to the limited space, we do not
report the run time for each graph; instead, we report the av-
eraged run time for each graph family (Table 3).

4.2 Experimental Results
Part 1: We first compare the algorithms in terms of solu-
tion quality. The results are presented in Tables 1 and 2.
To make the comparison between FastWClq and other algo-
rithms more clear, for a comparing algorithm, if the solution
quality is worse than that found by FastWClq, then we mark
it with ”#”, and if it is better we mark it with ”"”.

There are 12 graphs that have less than 1000 vertices,
where all the algorithms find the optimal solution within a few
seconds, and thus they are not reported.For the remaining 90
instances, FastWClq always finds a better or equal-quality so-
lution compared to its competitors, with only one exception.
FastWClq performs better on 47 instances than LSCC+BMS
under the same cutoff time (100s), and performs better on
27 instances when the cutoff time for LSCC+BMS extends
to 1000s. The exact solver MaxWClq fails on most of these
graphs, yet it proves the optimal solution for 29 instances (in-
cluding the 12 small instances), all of which have less than 12
thousand vertices. FastWClq proves the optimal solution for
46 instances, including 7 instances with millions of vertices,
and the largest one that has 24 million vertices (inf-road-usa).
The local search algorithm LSCC+BMS is essentially unable
to prove the optimality of the solution.

Part 2: We now compare run time of the algorithms, which
is summarized in Table 3. For each family, we calculate av-
erage run time over all runs for each instance, and report the
average value of these average run time. If an algorithm fails
to find a solution in all runs (marked with ”N/A”), its run time
is considered to be the cutoff time on that instance.

FastWClq is usually orders of magnitude faster than the
other two algorithms. Indeed, if we run LSCC+BMS with
longer time to get the same quality solution by FastWClq (if
possible), the run time of LSCC+BMS would be much longer.
Moreover, FastWClq proves the optimal solution for 46 in-
stances with the averaged time of 0.902 second, and exactly
solves the largest instance with 24 million vertices (inf-road-
usa) in 5.67 seconds. To summarize, FastWClq finds optimal
or sub-optimal solutions for theses graphs within a few sec-
onds on average, and solves many graphs in one second.
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Table 1: Comparison of solution quality (I)
Graph FastWClq LSCC+BMS LSCC+BMS MaxWClq

ct=100s ct=100s ct=1000s ct=3600s
Best (Avg) Best (Avg) Best (Avg) Best

bio-dmela 805 805 805 805*
Bio-yeast 629* 629 629 629*
ca-AstroPh 5338* 5338 5338 5338
ca-citeseer 8838* 8838(8502.5) # 8838 N/A #
ca-coauthors-dblp 37884* 37884(26987.9) # 37884(37003.5) # N/A #
ca-CondMat 2887* 2887 2887 N/A #
ca-CSphd 489* N/A # N/A # 489*
ca-dblp-2010 7575* 7456(7031.4) # 7575(7491.7) # N/A #
ca-dblp-2012 14108* 14108(9305.4) # 14108 N/A #
ca-Erdos992 958* 958 958 958*
ca-GrQc 4279* 4279 4279 4279*
ca-HepPh 24533* 24533 24533 24533*
ca-hollywood-2009 222720* 222720(122957.6) # 222720 N/A #
ca-MathSciNet 2792* 2611(2257) # 2611(2556.2) # N/A #
socfb-A-anon 2872 2602(1902.5) # 2728(2429.7) # N/A #
socfb-B-anon 2662 2058(1789.4) # 2513(2035.2) # N/A #
socfb-Berkeley13 4906 4906(4839.6) # 4906 N/A #
socfb-CMU 4141 4141 4141 4141*
socfb-Duke14 3694 3694 3694 3694*
socfb-Indiana 5412 5412(5274.8) # 5412 N/A #
socfb-MIT 3658 3658 3658 3658*
socfb-OR 3523 3523(3459.8) # 3523 N/A #
socfb-Penn94 4738 4738(4668.6) # 4738 N/A #
socfb-Stanford3 5769 5769 5769 5769*
socfb-Texas84 5546 5546(5545.2) # 5546 N/A #
socfb-uci-uni 1045 N/A # N/A # N/A #
socfb-UCLA 5595 5595 5595 N/A #
socfb-UConn 5733 5733 5733 N/A #
socfb-UCSB37 5669 5669 5669 4621 #
socfb-UF 6043 6043 6043 N/A #
socfb-UIllinois 5730 5730(5685.6) # 5730 N/A #
socfb-Wisconsin87 4239 4239 4239 N/A #
inf-power 888* 888 888 N/A #
inf-roadNet-CA 752* 668(604.5) # 668(640.5) # N/A #
inf-roadNet-PA 669 599(598.2) # 599 # N/A #
inf-road-usa 766* N/A # N/A # N/A #
ia-email-EU 1350 1350 1350 N/A #
ia-email-univ 1473* 1473 1473 1473
ia-enron-large 2490 2490 2490 N/A #
ia-fb-messages 791 791 791 791*
ia-reality 374* 374 374 374*
ia-wiki-Talk 1884 1884 1884 N/A #
rec-amazon 942* 942 942 N/A #
rt-retweet-crawl 1367 1367(1349.8) # 1367 N/A #

5 Conclusions and Future Work
This paper presented a novel method for Maximum Weight
Clique problem (MWCP), which aims to solve massive
graphs within short time. The method interleaves between
clique construction and graph reduction. Three ideas were
proposed to improve the algorithm, including a benefit esti-
mation function, a dynamic BMS heuristic, and a graph re-
duction algorithm. The resulting algorithm is called Fast-
WClq. Experiments on real-world massive graphs show that,
FastWClq finds better solutions than state of the art algo-
rithms while the run time is much less, even when the time
limit for the competitor is much more. Also, FastWClq
proves the optimal solution for about half of the tested graphs
in one second, including graphs with millions of vertices.

A significant direction is to apply this “Construction and
Reduction” method and the ideas to other graph problems.
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Table 2: Comparison of solution quality (II)
Graph FastWClq LSCC+BMS LSCC+BMS MaxWClq

ct=100s ct=100s ct=1000s ct=3600s
Best (Avg) Best (Avg) Best (Avg) Best

sc-ldoor 4081 4060(3806.8) # 4074(3999.8) # N/A #
sc-msdoor 4088 4074(3947.2) # 4088(4059.3) # N/A #
sc-nasasrb 4548 4548(4540.8) # 4548 N/A #
sc-pkustk11 5298 5298(4860.1) # 5298(5215.2) # N/A #
sc-pkustk13 6306* 5877(5759.7) # 6306(5958) # N/A #
sc-pwtk 4620 4596(4518) # 4620(4610.4) # N/A #
sc-shipsec1 3540 3540(3073.7) # 3540(3336.7) # N/A #
sc-shipsec5 4524* 4500(3997.2) # 4524(4504.8) # N/A #
soc-BlogCatalog 4803 4803 4803 N/A #
soc-brightkite 3672 3650(3643.7) # 3672(3663.2) # N/A #
soc-buzznet 2981 2981(2980) # 2981 N/A #
soc-delicious 1547 1547(1511.8) # 1547(1545.6) # N/A #
soc-digg 5303 4675(4645.7) # 5303(4800.6) # N/A #
soc-douban 1682* 1682 1682 N/A #
soc-epinions 1657 1657 1657 N/A #
soc-flickr 7083 7083(6161) # 7083 N/A #
soc-flixster 3805 3805(3036.9) # 3805 N/A #
soc-FourSquare 3064 3064(2991.9) # 3064(3061.4) # N/A #
soc-gowalla 2335 2335(2193.5) # 2335(2291.8) # N/A #
soc-lastfm 1773 1773(1753.6) # 1773 N/A #
soc-livejournal 21368* 3589(2046.9) # 15599(4640.6) # N/A #
soc-LiveMocha 1784(1775) 1784 " 1784 " N/A #
soc-orkut 5452 N/A # N/A # N/A #
soc-pokec 3191 2341(1788.1) # 2341(2214.8) # N/A #
soc-slashdot 2811 2811 2811 N/A #
soc-twitter-follows 808 808 808 N/A #
soc-youtube 1961 1961 1961 N/A #
soc-youtube-snap 1787 1787(1711.4) # 1787 N/A #
tech-as-caida2007 1869 1869 1869 N/A #
tech-as-skitter 5703 5611(4033.1) # 5703(5540.9) # N/A #
tech-internet-as 1692 1692 1692 N/A #
tech-p2p-gnutella 703* 703 703 N/A #
tech-RL-caida 1861 1861 1861 N/A #
tech-routers-rf 1460* 1460 1460 1460*
tech-WHOIS 6154 6154 6154 6154*
web-arabic-2005 10558* 10558 10558 N/A #
web-BerkStan 3249* 3249 3249 3249
web-edu 2077* 2077 2077 2077*
web-google 1749* 1749 1749 1749*
web-indochina-2004 6997* 6997 6997 6997
web-it-2004 45477* 45477(44373.5) # 45477 N/A #
web-sk-2005 11925* 11925(9501.4) # 11925 N/A #
web-spam 2503 2503 2503 2503*
web-uk-2005 54850* 54850 54850 N/A #
web-webbase-2001 3574* 3574(3339.4) # 3574 3574
web-wikipedia2009 3891 3455(1370) # 3455(2405.3) # N/A #

Table 3: Comparison of averaged run time on graph families
Graph FastWClq LSCC+BMS LSCC+BMS MaxWClq

ct=100s ct=100s ct=1000s ct=3600s
Biology 0.001 0.024 0.024 1.118
Collaboration 4.543 32.237 318.852 1804.262
Facebook 6.338 30.838 198.568 2801.899
Infrastructure 1.573 40.932 377.693 N/A
Interaction 0.135 0.616 0.616 1200.642
Recommend 0.017 3.165 3.165 N/A
Retweet 0.027 12.133 21.852 1200.014
Science 0.437 47.751 406.918 N/A
Social Network 18.281 29.216 243.498 3130.438
Technique 1.763 8.898 74.298 2572.473
Web Link 0.241 17.512 116.081 1504.651
All 3.032 21.211 160.142 2274.136
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