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Abstract

Genetic algorithms are stochastic search heuris-
tics which are popular for their broad applicabil-
ity, especially in combinatorial search problems.
The search mechanism relies on an abstraction
of genetic evolution and selection as seen in na-
ture. This paper introduces a topological structure
for the search space which is consistent with ex-
isting theory and practice for genetic algorithms,
namely forma analysis. A notion of convexity is de-
fined within this context and connections between
this definition and forma analysis are established.
This framework provides an alternative perspective
on the exploitation/exploration dilemma as well as
population convergence, which relates directly to
the genetic operators employed to drive the evo-
lution process. It also provides a different inter-
pretation of design constraints associated with ge-
netic algorithm implementations. The intention is
to provide a new analytical perspective for genetic
algorithms, and to establish a connection with exact
search methods through the concept of convexity.

1 Introduction

Genetic algorithms (GAs) are search techniques which fall in
the broader class of evolutionary algorithms (EAs). Within
EAs a population of candidate solutions for a problem is
evolved through iterative production and selection. Selection
bias is used to ensure that with high probability the quality
of the overall population improves in each generation (round
of selection). The quality of a solution is referred to as its
fitness. GAs are specific for their use of techniques which
mimic genetic mechanisms observed in nature, such as gene
crossover and mutation, to produce new candidates.

A GA is thus the recursive application of so-called genetic
operators to an evolving population P € Py (X), where
X is the space of all solutions and Pj;(X) denotes all
multisets which can be constructed from elements in X. A
genetic operator may be seen as a random function either
mapping from Py (X) to Py (X), or from a finite product,
Xk, k €N, to the solution space X'. In other words, if K is a
genetic operator from X'* to X then for any x1,...,x; € X,
K(z1,...,xy) is a random variable on X. Similarly K (A)
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may be a random variable on Py (X) for all A€ Py (X).
Common examples of genetic operators taking values in X
include recombination, which produces a random x € X, and
takes as argument (usually) two members y,z € X, known
as the parents of x, and mutation, which takes a single
argument from X and returns a random element of A which
tends to be similar. On the other hand, selection operators
take arguments in Pp;(X) and return a random subset of
the argument. Selection operators are used to determine
which individuals are used for recombination, as well as
to determine which individuals survive in the subsequent
generation.

The term “Genetic Algorithm” was coined by John Holland
in his seminal work [Holland, 1975], where the potential of
GAs was described through schema analysis and the concept
of implicit parallelism. Here each candidate solution is
encoded as a binary string of fixed length. The positions on
such a string are analogies for the gene locations along a
genome.

A schema is a template for such representations. Specif-
ically it is a subset of the space of gene representations for
which certain positions in the string (gene locations) have
specified values. For example, if solutions are encoded using
strings of length 7, then a schema in which the first position
has value a, and the fourth and fifth positions take values b
and c respectively may be represented by

aOObecOO (D

where [0’s may assume any value. The schema theorem
then states that schemata with simple structure which have
above average fitness will tend to proliferate [Holland,
1975]. Simple structure in this case means that few positions
have specified value, and also the distance between the
first and last specified position is small. With a relative
abundance of high quality schemata present in a population,
the search inherently operates on the schemata and not the
individual positions, and hence there is an implicit reduction
in the dimension of the problem [Goldberg, 1989]. Implicit
parallelism in the context of GAs refers to the fact that
the number of schemata effectively being processed is, in
general, far greater than the number of individual candidate
solutions. For practically sized problems [Holland, 1980]
and [Goldberg, 1985] have shown that O(n?) schemata are



present for n random binary strings.

The specificity of schema analysis, arising from the
fact that solutions must be encoded as linearly arranged
strings of a fixed length, has been argued as too limiting and
generalisations of the associated theory have been developed
by, for example [Vose, 1991], [Radcliffe, 1992], and [Greene,
2000]. Most relevant, and central to the motivation for
this paper, is that of [Radcliffe, 1992], and the concept
of forma analysis. Forma analysis provides a basis for
the representation of candidate solutions in terms of their
equivalence class memberships arising from an arbitrary col-
lection of equivalence relations. The representation through
equivalance relations provides a convenient and meaningful
connection with topology through uniformities. In finite
dimensional GAs it is shown that the associated topology is
pseudo-metrisable, and provided the choice of equivalence
relations is sufficient to describe each solution uniquely the
corresponding distance function is a metric. A generalisation
of convexity is defined within this topological framework,
and connections with forma analysis are established. This
notion of convexity is then extended to genetic operators in
a way which is consistent with the design constraints given
by [Radcliffe, 1994] in the context of forma analysis, and is
shown to have connections with exploitation and population
convergence.

The success and versatility of GAs has led to a number
of explorations into their theoretical properties, including
their algebraic structure [Radcliffe, 1994], the spectral prop-
erties of genetic operators [Schmitt, 2001], the geometric
relationships between genetic operators and the fitness
landscape [Moraglio, 2007], and the long run behaviour of
GAs through fixed points of dynamical systems [Vose, 1999]
and their limiting distributions as Markov chains [Nix and
Vose, 1992], [Suzuki, 19951, [Schmitt, 2001] and [Schmitt,
2004]. To our knowledge this is the first paper to formally
investigate the topological structure of genetic algorithms.

The remainder of this paper is as follows. In Section 2
forma analysis is discussed in greater detail. ~Concepts
relevant in the remaining paper are also introduced. Section 3
describes the proposed topological framework and provides
the main results of this paper. In Section 4 some concluding
remarks are given.

2 Forma Analysis

It has been argued [Radcliffe, 1992] that unless the represen-
tation of solutions has relevance within the actual solution
space, GAs can’t do better than random search, and that the
emergence of powerful schemata is incidental. That is, un-
less similarities in the representations described by schemata
imply similarity within the solution space as well, the distri-
bution of fitness across schemata is random and collections of
highly fit individuals within schemata occur by chance.

A direct and principled address of this concern is given in
the context of forma analysis [Radcliffe, 1992]. Here the rep-
resentation is directly related to subsets of the solution space
within which solutions have similar characteristics, which can
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be defined in terms of equivalence relations. These equiva-
lence relations can also be used to encode information about
the fitness function used to evaluate solutions. The represen-
tation of a solution is therefore given by the collection of
equivalence classes to which it belongs, under an arbitrary
collection of equivalence relations over the solution space.
These equivalence classes are referred to as formae, and a
rigorous presentation of the algebraic structure of formae has
been developed [Radcliffe, 1994].

This representation is sufficiently general to capture ar-
guably any problem space, but provides added benefits in
terms of interpretability. It also ensures the relevance of the
relationship between solutions arising in the same equiva-
lence classes, where in the case of schema analysis these re-
lationships may be fairly arbitrary [Radcliffe, 1992].

Note that a representation via equivalence classes is a gen-
eralisation of schema analysis, since schemata can be formu-
lated through equivalence relations. If we return to strings of
length 7 then a variable template written as

EOOEECD )

where W’s represent specified (but variable) positions and
[’s are as before unspecified positions, then (2) represents an
equivalence relation under which two solutions are equivalent
iff they are equal in the first, fourth and fifth positions. The
schema given in (1) is therefore an equivalence class arising
from this relation.

Henceforth equivalence relations will be written as ~,
and if two solutions x and y are equivalent under ~, we write
x~y. The equivalence class of a solution  under ~ will
be written [z].. Combinations of equivalence relations can
combine to form smaller and smaller equivalence classes, as
described in the following lemma, which can be found in any
standard text on algebra.

Lemma 2.1 Let ~1 and ~4 be two equivalence relations on
a set X. Then their intersection ~1 a=~1 Ny, defined as

T2y = T~y and x~2y,

is an equivalence relation on X and the induced equivalence
classes satisfy [x]~, , = [z]~, N []~,-

This leads us to consider the collection of equivalence rela-
tions which result from intersecting different combinations
of relations.

Definition Let £ be a collection of equivalence relations on
a set X'. Then the generated set of £, G(£), is defined as the
collection of finite intersections of members of £. That is,

G(&):={Nier~i|I C&, I finite}.

The following definitions arise from [Radcliffe, 1994] and are
important in the theory presented in Section 3.

Definition A collection of equivalence relations £ covers X
iff for any z,y € X with x #£y;d~€ & s.t. xLy.

Coverage can be understood as a separation of points in X
by the members of £. Separation of points is fundamental to
the structure of topological spaces, and the notion of coverage
above is used to establish a metrisable topology on the search
space in the following section.



Definition A collection of equivalence relations £ on X is
orthogonal if any collection of equivalence classes induced
by different members of £ has nonempty intersection.

Orthogonality ensures that the mapping from representation
to solution is fully defined, but is also crucial in the formu-
lation of convexity which we propose. Convexity requires
that the underlying space has no “gaps”, i.e., that generalisa-
tions of the line segments between points in the representation
space are not broken by missingness in the solution space.

[Radcliffe, 1994] also provides useful characterisations of
recombination operators; genetic operators which recombine
the genes of a small collection of (usually two) members of
X. While the results of the following section may be gener-
alised, we will limit attention to recombinations of two indi-
viduals’ genes.

Definition Let £ be a collection of equivalence relations on
X. A recombination operator, K, mapping from X x X" to
X, transmits genes if for any pair z,y € X and ~€ &, one has
Support(K (z,y)) C [z]~ U[y]~.

A child solution arising from K is therefore related to at least
one of its parents by each element of £.

Definition Let £ be a collection of equivalence relations on
X. A recombination operator, &', mapping from X x X to X,
respects genes if for any ~€ G(€) and any y € [z].. one has
Support(K (z,y)) C[z]~.

Any shared information in the parent solutions, which is ex-
pressible in terms of the formae, will remain in all of their
children arising from K.

Definition Let £ be a collection of equivalence relations on
X. A recombination operator, K, mapping from X x X to
X, assorts genes if for any ~1,~9€G(€) and x,y € X’ with
[]~) N[Y]~, #0, itis possible to produce (possibly over mul-
tiple generations) z € [z, N[y]~, using only z,y and their
descendents resulting from applications of K.

The assorting property of K means that any combination of
genes in a pair of solutions can arise in their descendants.
Alternatively, the entirety of their dynastic potential, defined
below, can be explored using only the operator K.

Definition Let £ be a collection of equivalence relations on
X and let L€ Py (X). The dynastic potential of L, denoted
T'(L), is defined as all members of X which are related to a
member of L by each ~€ £. Formally,

N(L):={yeX|V~eEFzeLst y~a}.

In the following section these properties of recombination
operators will be discussed theoretically in the context of
convexity, establishing connections between these definitions
and the concepts of exploitative search and population con-
vergence. Conditions are also described which permit the
designation of I'(L) as the potential child solutions arising
from L, their potential “dynasty”.

3 The Topology of Genetic Algorithms

This section introduces a topological structure for the solution
space of GAs. The equivalence relation formulation adopted
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in forma analysis provides a convenient and meaningful link
with topology through uniform structures.

A uniformity V is a filter on the product X x X, i.e., a
non-empty collection of subsets of X x X which does not
contain the empty set and is stable under finite intersection
and supersets, which satisfies the following. Each entourage
V €V contains the diagonal of X, {(z,2)|lz€eX}CV. For
each VeV there is a U€V s.t. the square of U, U-U:=
{(z,y)|3z € X with (z,2),(z,y) €U}, is contained in V. Fi-
nally, if V €V, then the inverse of V, V=1 :={(z,y)|(y,z) €
V},isin V.

V generates a topology on X in which the basic neigh-
bourhoods of a point z € X" are given by {V (z) }v ¢y where,
V(z):={ye X|(z,y) €V}. A basis for a uniformity is sim-
ply a filter base on X x X’ for which the generated filter is a
uniformity. The following lemma can be found in any exten-
sive text on general topology.

Lemma 3.1 Let £ be a non-empty collection of equivalence
relations on a set X. Then Bg :={V.|~€G(E)}, where

Vo :{(xvy”xNy}’
is a basis for a uniformity on X, say Vg.

We now introduce some of the properties of this topology,
in relation to GAs and forma analysis. Firstly, it can be
shown that in most practical cases the resulting topology is
metrisable. In addition, in the case of representation by bi-
nary strings, the metric is equivalent to the hamming distance
function.

Lemma 3.2 Let the conditions of Lemma 3.1 hold. If £ is
finite then the topology generated by Ve is pseudo-metrisable.

Proof Consider the function

d(xz,y) ={~e&lz iy},

where |-| is the cardinality operator. It is easy to verify that
d is a pseudo-metric. To see that the topologies are equiv-
alent, consider that a point x € X has a smallest pseudo-
metric neighbourhood described by {y€ X|x~yV~e€E} =
{yeX|d(xz,y)=0}. Similarly = has a smallest uniform
neighbourhood described by Vn__.~(z), which is plainly
the same set. Thus every pseudo-metric neighbourhood con-
tains a uniform neighbourhood, and vice versa, and hence the
topologies are equivalent. |

Corollary 3.3 Let the conditions of Lemma 3.1 hold. If £ is
finite and covers X then Vg is metrisable.

Proof Let d be defined as in the proof of Lemma 3.2. Since
& covers X we have Vr,y e X, x #£y,I~€& s.t. xLy and so

d(z,y) ={~e&lz Ay} >0.

Therefore d is a metric. [ |

We can thus endow the space with a topology that conve-
niently coincides with the theory of forma analysis, and the
basic neighbourhoods of a point are merely the formae to
which it belongs.

In order to establish connections with exact search methods
through convexity it is necessary to define convexity within



the current context. Convexity in exact search and optimisa-
tion is ostensibly an algebraic property, yet in essence it is
a geometric concept. It should therefore be defined witihin
topological spaces, and specifically those wherein structure
obeys rigidity, namely metrisable topologies.

An existing definition of convexity in general metric spaces
already exists [Blumenthal, 1953], yet this definition is not
consistent with the algebraic formulation used in search and
optimisation. Here a set C' is convex in a metric space (X, d)
iff whenever x,y € C with x#y there exists z € C distinct
from both x and y satisfying d(z,y)=d(z,2)+d(z,y). To
see that this is not consistent with the algebraic definition of
convexity it is sufficient to consider the rational numbers, Q,
in the space (R, d,,), where d,, is the Euclidean metric.

A preferable definition for the current investigation is as
follows.

Definition Let (X', d) be a metric space. A set C C X is con-
vex with respect to d iff whenever x,y€C and dz€ X s.t.
d(z,y)=d(z,z)+d(z,y), then ze C.

We will refer to the condition d(z,y)=d(x,2)+d(z,y) as
“z is d-between x and y”. It is straightforward to check
that this definition is consistent with the algebraic notion of
convexity.

With this definition we can show that the dynastic po-
tential of a set is equivalent to its convex hull, which is
useful for understanding population convergence within the
proposed framework. For brevity in the remaining paper we
will occasionally not make an explicit distinction between
a multiset and the set containing its unique elements. For
example, we may state that I'(L)=L, where T'(L) by
definition is a set and hence this statement is not strictly
true whenever L contains repeated elements. What is meant
by this equality is T'(L)C L and LCT(L) for the natural
interpretation of inclusion for multisets.

Lemma 3.4 Let the conditions of Lemma 3.1 hold. If € is fi-
nite and orthogonal and covers X then the dynastic potential
of a set L€ Pp(X) is equal to its convex hull with respect to
the forma based topology.

Proof Plainly L CT'(L). To show that I'(L) is convex, con-
sider z,y €I'(L) and suppose 3z€ X s.t. d(z,y)=d(z,z)+
d(z,y). Suppose now that z¢I'(L), then I~ & s.t. z4
wVYweL. But z,yel(L)=Jw,,wy€L s.t. x~w, and
y~w,y, thus zotz and zxty and so {~e&|za}n{~e
E|z 4y} #D. Now observe that

(x~zNy~z=a~Y)
= {~ellr~zin{~elly~z}C{~e€|x~y}
=>{~ellzrytci{~ellziaiu{~ellzry}
But since the two sets on the right hand side have non empty

intersection, and £ is finite, the size of the left hand side must
be strictly less than the sum of those on the right, i.e.

d(z,y) <d(z,z)+d(z,y)

a contradiction. Therefore we must have z €I'(L).
Now, consider some convex set C' with L C C. Take z €
T'(L). Suppose |€| =n and impose some arbitrary ordering of
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its elements so that £E={~;|i=1,...,n}. Since z€T'(L) we
have Vie {1,...,n}; 3x; € L s.t. z~; x;. For integer k <n let
Er:={~;i=1,...,k}. By induction on these indexed subsets
of £ we will show that Vk Je, € C s.t. V~E &y, ¢~ 2.

For k=1 take ¢y =x; as defined above and the result
holds. Suppose the inductive hypothesis holds for some
Ek,1<k<n. We have ci,x11€C. Take ciy1 to be any
member of the equivalence class formed by the intersection
of equivalence classes of cj, with repsect to ~q, ..., ~g, ~g 12
y..y~y and of xpiq with respect to ~1, which is non-
empty since £ is orthogonal. It should be plain to see that
d(cg,psr1)=d(cg,cpr1) +d(ckr1,2k+1) and so cxr1 €C
and cg41 ~ 2 V~€ &,y as required.

We have thus shown by induction that Ic€C s.t. ¢~z
V~e& and since £ covers X' we must have c=2z. We thus
have that T'(L) C C and hence is the smallest convex set con-
taining L. |

We can further describe the geometry of convex sets through
their extreme points. An extreme point of a convex set, C, is
any x € C s.t. C'\ {z} is convex. Notice that when looking at
extreme points it is more interesting to consider subsets of X,
and not multisets.

Lemma 3.5 Let the conditions of Lemma 3.4 hold. Let C'C

X be convex. Then x€C' is an extreme point of C iff Vy €
C\{z}I~e& s.t. z~yV~'e&\{~}

Proof First suppose z is an extreme point of C. Sup-
pose though that 3y € C'\ {z}, ~1,~2€E, ~1F£~q, with 2 4y
y and x 7o y. Since £ is orthogonal Jwy,we € X s.t. wy ~1 Y,
wy~x V~eEN\{~1} and wy~ay, wa~z V~eE\ {~e}.
By design w; and wq are d-between x and y and there-
fore wy,we€C since C' is convex. However, we have
{~€&lwr Awa}={~1,~2}, and therefore d(wy,ws)=2=
d(wy,x)+d(x,ws), and hence z is d-between w; and ws.
Therefore C'\ {«} cannot be convex, a contradiction. There-
fore Vye C\{z} I~e& st x~'yV~'eE\{~}.

Suppose in the converse that Vy € C'\ {z} I~ & s.t. x~/
y V~'eE\{~}. If it were that C'\ {x} were not convex,
then Jy,z€ C s.t. x is d-between y and z. Then J~1,~s€
E,~1#~9 With x4,y and x 49 z. Notice that by assump-
tion we have z~y V~e&\{~1} and z~z V~e &\ {~2}.
Again, since € is orthogonal, Jwe X s.t. w~y V~e &\ {~2
} and w~qy 2. Sow is d-between y and z by design, and hence
we ), since C is convex. But w4y x and w4y x, a contra-
diction of the assumption. Therefore C'\ {z} is convex. W

Convexity in genetic algorithms can also be used to describe
exploitative search, as well as to investigate population con-
vergence, as discussed in the sequel. To establish these con-
nections, the definition of convexity is first extended to ge-
netic operators.

Note that given an exploitative recombination operator, it is
fairly straightforward to obtain an associated explorative op-
erator as follows. If K is an arbitrary genetic operator map-
ping X x X to X, then we may define an explorative opera-
tor K¢ by K¢(z,y)=K(K(z,y),X), where X is a random
variable on X'. The degree of exploration can be controlled
through the variability of the random variable X .



The converse of defining exploitative operators using only
explorative ones, is not so straightforward. We therefore fo-
cus only on exploitation in the remainder, which we introduce
through convex operators.

Definition A genetic operator K mapping X x X' to X is
convex iff whenever C'C X is convex we have

x1, T € C'= Support(K (z1,z2)) CC.

We may also define this property for genetic operators map-
ping from Pp(X) to Py (X) in the obvious way; A€
Py (C) = Support(K(A)) C Pr(C), where Py (C) is now
the collection of multisets arising from elements in C'.

We may also think of recombination operators as being in
some sense affine. In general we think of a function being
affine if it restricted to some subspace of the space of solu-
tions. A similar consideration can be made for recombination
operators.

Definition A genetic operator K mapping X x X' to X is
called affine at x in the direction of y€ X if 3~c& with

T({z,y}) #{z,y} st
P(K (2,2)~x)=0VYz€y]~.

Affine operators may be locally restricted to a subspace, e.g.
[y]~ in the above definition. In addition, such operators may
be viewed in the context of gene dominance, where in the
above definition z is dominated by [y]~.. Although the defi-
nition of affine does not provide a direct analogue for affine
functions, it admits a natural definition of strict convexity.

Definition A genetic operator K mapping X' x X to & is
strictly convex iff K is convex and nowhere affine.

Such an operator is therefore convex, and cannot become
stuck within some subspace of X'. While it is clear that strict
convexity is a desirable property for recombination operators,
it is not sufficient for effective search of the overall GA. We
therefore also define a stronger condition as follows.

Definition A genetic operator K mapping X' x X to & is
strongly non-affine if Vr,yc X the following holds. For
all zel({z,y}) s.t. d(z,z)=1,3w € Support( K (x,y)) s.t.
z € Support(K (z,w)).

Definition A genetic operator K mapping X x X' to X is
strongly convex iff K is convex and strongly non-affine.

The definition of strong convexity does not lend itself im-
mediately to operators mapping Pps(X) to Py (X). In this
context we define a genetic operator K to be strongly convex
if it is convex and whenever A={x1,...,x} € Py (X), for
k>1, we have min{P(z;, ¢ K(A)),P(x, € K(A))} >0 Vie
{1,....k}.

These definitions of convexity, strict convexity and strong
convexity have direct interpretations in the context of the de-
sirable properties for recombination discussed by [Radcliffe,
1992], which are discussed below.

Lemma 3.6 Let & be a collection of equivalence relations on
X and let K be a recombination operator from X x X to X.
Then K transmits genes iff it is convex.
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Proof Suppose that K transmits genes. Observe that if for
x,y,2 € X we have V~e & either z~y or z~z, then

{~e&lzptxin{~e&lzty}=0.
Moreover, in the converse of the proof of Lemma 3.4
(x~y=x~2zNY~2)
={~ellr~y}C{~ellz~z}n{~elly~=z}

={~ellzpziu{~ellzdytC{~ellrty}
In all we have that the union of two sets which have empty
intersection is contained in another set, and thus the sum of
thier sizes must be less than or equal that of the size of the
other. In other words

d(x,z)+d(z,y) <d(z,y)
but since d is a pseudo metric, we must have
d(z,z) +d(z,y) =d(z,y).

Thus gene transmissive operators generate children which are
d-between their parents, and thus the children must lie in any
convex set containing them.

In the converse, suppose that K is convex and
take z,y€X. Then Support(K(x,y)) CI'({z,y}), since
I'({z,y}) is convex. For each ~c& we therefore have
Support(K (z,y)) C[z]~U[y]~, and hence K transmits
genes. ]

Lemma 3.7 Let € be a collection of equivalence relations on
X and let K be a recombination operator mapping X X X to
X. If K transmits and assorts genes then it is strictly convex.

Proof We have seen that gene transmission implies convex-
ity, which leaves us with showing that the addition of assort-
ment gives us strict convexity. Suppose that K is a convex op-
erator but is not strictly convex, i.e., it is affine at some z € X.
Then Jye X, ~e & with T ({z,y}) #{z,y} s.t. P(K(z,2)~
x)=0Vz€[y]~. Notice that I'({z,y}) # {z,y} =T ~1,~2€
€ with 241 y and z 42 y. Now, since P(K (z,y) ~x)=0 we
must have z£y. Thus 3~'€& with ~'#~ and x4y and
x &' y. Now, by definition we have [z] N[y]~ NT({z,y}) #
(3, and this intersection contains neither x nor y. Because K
is affine at = with respect to y and ~ we know that no future
generations arising from x,y and their descendants can be re-
lated to x by ~, since x is dominated by [y]~, and thus no
member of the above intersection can occur. However assort-
ment guarantees such an individual can occur. Therefore if K
is anywhere affine, it cannot assort, and the result follows. H

Lemma 3.8 Let £ be a finite, orthogonal and cover X and
let K be a recombination operator mapping X X X to X. If
K is strongly non-affine then it assorts genes.

Proof Take z,y€ X and ~1,~2€G(E) s.t. [z]~, N[y]~, #0.
Let £, C € be such that (N..cg, ~)=~1. Assign an arbitrary

ordering of the elements of £, ={~1, ..., le””‘}. Since £ is
orthogonal Jw; € X s.t. wy~Ltz and w~y V~e&E\{~L}.
Therefore w; €T'({x,y}) and d(y,w1) <1. If d(y,w1)=0
then since £ covers X we know wi=y. Otherwise, since
K is strongly non-affine 3z; € Support(K (z,y)) s.t. w; €
Support(K (y,z1)). Therefore w; can be made using only



x,y and their descendants. Now suppose that for 1 <k < |&,|
there exists a wy, € X' satisfying wy, ~% x for i=1,....k and
w~y V~eE\{~L,...,~F} which can be made using only
x,y and their descendants. Similar to above Jwy4; € X s.t.
Wi~z Vi=1,... k and wy 1 ~y V~EE\{~L, ... ~ht1
}. Then w41 €T ({wg,y}) and d(wg, wr4+1) <1. As before
we can conclude that w41 can be made using only z,y and
their descendants. By induction we can find a wy € [x]~,, us-
ing only x,y and their descendants. Similarly we can con-
struct a ws € [y]~, which remains in [z].,. Notice that any
overlap in the relations, ~, contributing to both ~; and ~»o,
must satisfy x ~y, and so these do not present a problem for
the above argument. |

Note that we do not have all recombination operators that
assort genes being strongly non-affine. This is because the
definition of assortment allows an arbitrary delay until a
specific combination of genes can arise, while in the case
of strongly non-affine operators an upper bound on the time
by which any combination can be produced can easily be
derived.

We can use these results to discuss exploitation and con-
vergence in the context of the proposed framework. Convex
genetic operators can be seen as exploitative in the sense that
they exploit the genetic information present within the popu-
lation, given by its dynastic potential.

Lemma 3.9 Let &£ be a finite collection of equivalence rela-
tions which is orthogonal and covers X. If all genetic opera-
tors are convex then the collection of descendants of a multi-
set L€ Py (X) is contained within their dynastic potential.

Proof The result follows immediately from the fact that L C
(L), and I'(L) is convex. |

Strongly convex operators also have the property of being
able to access all elements of I'(L), for any starting popu-
lation L, through their gene assorting property. It is also this
ability which leads to population convergence. Population
convergence is an important consideration in GA methodol-
ogy. Early convergence does not allow an adequate search
of the associated problem domain, yet ultimately the strong
gene combinations which have been discovered need to be
exploited. Strongly convex operators may be seen as conver-
gent operators, as follows.

Lemma 3.10 Let £ be a finite collection of equivalence re-
lations which is orthogonal and covers X. Let L; be the
population present in a genetic algorithm at generation i and
assume that {|L;|}ien is bounded. If a fixed and finite col-
lection of strongly convex genetic operators are employed in
each generation then with probability 1,

lim Diam(L,,)=0,
n—oo
where  Diam(A) =max{d(z,y)|z,y€ A}, A€ Py (X).
Moreover the expected time to convergence is finite.

Proof In the interest of space only an outline is provided
here. Let C; be the child solutions in generation i. By
convexity of the operators we know C; CT(L;)=L;11C
I'(L;) =-Diam(L; 1) <Diam(L;) with probability 1.
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Since a fixed collection of operators is employed we
know |C;| is bounded and hence |L;UC;| is bounded.
Moreover, strong convexity of recombination operators and
boundedness of |L;| ensures that P(Diam(C;) < Diam(L;))
is bounded away from zero uniformly in 7 for which
Diam(L;)>0. The number of pairs z,y€L;UC; s.t.
d(x,y)= Diam(L;) is therefore bounded and the proba-
bility that all such pairs come from L; (and none from
C;) is bounded away from zero uniformly in ¢ for which
Diam(L;) > 0.

Suppose the number of pairs defining the diameter
of the population is bounded above by M. Then
since selection is strongly convex we have P(Diam(L;) <
Diam(L; pr)) >0 whenever Diam(L;) > 0. By the finiteness
of £ and the boundedness of |L;| we know P(Diam(L;) <
Diam(L;1 7)) > €, uniformly in ¢ for which Diam(L;) >0,
for some ¢>0. Since the diameter is integer valued, the re-
sult follows. ]

Note that elitist selection, which is guaranteed to keep the
fittest individual in the population, is not strongly convex.
However, the above proof can easily be modified to allow
elitism since it relies on pairs of individuals being separated
by selection, rather than specific singletons being removed.

A practical corollary of the above, is that if the same con-
ditions hold, except that only at least one operator taking val-
ues in X is strongly convex, then if the remaining operators
taking values in X are applied in each generation with prob-
abilities converging to zero, the diameter of the population
converges to zero in probability. The result follows along
similar lines, but relies on the fact that the number of gen-
erations between applications of the operators which are not
strongly convex increases without bound with probability 1.
Therefore between each such application, convergence as in
Lemma 3.10 occurs. Moreover, the proportion of the genera-
tions between these applications which is required for conver-
gence tends to zero with probability 1. Therefore, the propor-
tion of generations in which the population is not converged
tends to zero with probability 1.

4 Conclusions

Genetic algorithms are highly versatile search heuristics with
broad applicablility in a number of difficult problems and
problem types. The effectiveness of GAs has resulted in a
number studies into their theoretical properties. The current
work introduces a new theoretical perspective on GAs which
is consistent with forma analysis. This new approach utilises
the equivalence relation basis of forma analysis to generate
a topology on the search space via uniformities. The topol-
ogy is metrisable by a distance function which coincides with
the hamming distance in the canonical binary GA described
by [Holland, 1975].

The new framework is extremely general, yet provides in
addition to the basic topology, a notion of convexity for the
discrete context of GAs. Through convexity the concepts of
exploitation and population convergence can be investigated.

We hope that this new perspective will permit the transfer
of some existing theory from convex analysis to improve the
theory and methodology of GAs in the future.
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