Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

Truncating Shortest Path Search for Efficient Map-Matching

Takashi Imamichi
IBM Research — Brazil
Av. Pasteur 138/146, Botafogo,
Rio de Janeiro, 22290-240, Brazil
tima@br.ibm.com

Abstract

We study the problem of map-matching, or find-
ing the route on a road network from a trace of
noisy and sparse observed points, particularly when
a huge number of points are given. The algo-
rithms based on Hidden Markov Models (HMMs)
are known to achieve high accuracy for noisy and
sparse data but suffer from high computational cost.
We find that the bottleneck of the HMM-based
map-matching is in the shortest path search for
calculating transition probabilities. We propose a
technique to truncate the shortest path search before
finding all the shortest paths in the HMM-based
map-matching without losing accuracy. We run the
one-to-many shortest path search on the reversed
network and terminate the search based on the log
likelihood of the Viterbi algorithm. Computational
experiments show that the proposed approaches can
reduce the computational cost by a factor of at least
54.

1 Introduction

The Global Positioning System (GPS) is heavily used in de-
vices such as cell phones and car navigation systems, and a
huge amount of GPS traces, or sequences of GPS points, are
being recorded every day. For example, OpenStreetMap pro-
vides public GPS traces', and some city governments such
as Dublin? and Rio de Janeiro® provide GPS traces of buses
to public. Moreover, as Internet of Things emerges, more
devices are to come with GPS sensors and be connected to
the Internet. This gives us the opportunities to leverage the
knowledge that can be extracted from such a huge amount of
GPS traces. For example, one might analyze the traffic con-
ditions such as congestion from the GPS traces.

However, the GPS traces often involve noise and are sparse
(interval between consecutive points are long and irregular),
and it is nontrivial even to extract such basic information as
the route that the GPS device has traversed. This task of de-
termining the route corresponding to a given GPS trace on a

"http://www.openstreetmap.org/traces
2http://www.dublinked.ie/
*http://data.rio/

Takayuki Osogami and Rudy Raymond
IBM Research — Tokyo
19-21 Nihonbashi Hakozaki-cho,
Chuo-ku, Tokyo, 103-8510, Japan
{osogami,rudyhar} @jp.ibm.com

Figure 1: GPS traces in Rio de Janeiro, Brazil (red lines seg-
ments); (©) OpenStreetMap contributors.

road network is known as map-matching and has been studied
extensively in the literature. Figure 1 shows examples of GPS
traces from OpenStreetMap in Rio de Janeiro, Brazil. Here,
we can see that the lines connecting the GPS traces (red line
segments) are not always on the road in the map. The left
panel in Figure 2 illustrates the discrepancy between a road
network (black line segments) and a GPS trace (red points),
where blue dashed line segments connect consecutive points
in the GPS trace. The right panel in Figure 2 illustrates the
sequence of road segments (green line segments) that actually
corresponds to the GPS trace in the left. Observe that, con-
necting road segments closest to the GPS points, we would
obtain an unrealistic winding route, which is drastically dif-
ferent from the actual route shown in the right panel.
Recently, some popular algorithms for map-matching are
based on Hidden Markov Models (HMMs) [Newson and
Krumm, 2009; Osogami and Raymond, 2013]. Here, a hid-
den state corresponds to (a point on) a road segment, and an
observed variable corresponds to a GPS point. Map-matching
with HMMs is known to achieve high accuracy and be robust
against the noise and sparsity in the GPS traces. Unfortu-
nately, these algorithms are computationally expensive and
not suitable for dealing with a large amount of GPS traces.
We observe, from preliminary experiments, that the bottle-
neck of existing algorithms for map-matching with HMMs is
in the calculation of transition probabilities. Specifically, the

589

Figure 2: Left: A road network (black) and a GPS trace (red).
Right: The corresponding route (green).

transition probability from a hidden state to another is calcu-
lated based on the length of the shortest path between the two
states on a road network. Notice that the length of a path in
the model can take into account various measures such as the
number of turns and the expected travel time in addition to the
length of traversed roads. If we consider k£ hidden states for
each GPS point, the existing algorithms invoke shortest path
search for k? times at every step of the Viterbi algorithm. Our
goal is to speed up the map-matching with HMMs in order to
enable highly accurate map-matching with HMMs for a huge
amount of GPS traces. To this end, we have two contribu-
tions.

First, we propose a technique to reduce the computational
time needed for the shortest path search in HMM-based map-
matching. Our technique is to run one-to-many shortest path
search on a reversed network, where the direction of every
directed arc is reversed, and truncate this shortest path search
early without exploring all the shortest paths. We will see that
this truncation produces no loss of accuracy.

Our second contributions are in numerical experiments,
which show that the proposed approach can drastically re-
duce computational time without losing accuracy. Specifi-
cally, our proposed approach reduces the computational time
by a factor of at least 5.4 for 24 GPS traces (1.18 mil-
lion GPS points) in the T-drive data set [Yuan et al., 2010;
2011].

1.1 Related Work

Existing methods of map-matching can be grouped into four
categories [Quddus et al., 2007; Zheng, 2015]: geometrical,
topological, probabilistic, and advanced methods that incor-
porate the advantages from multiple categories, for exam-
ple, an HMM-based approach [Lamb and Thiébaux, 1999;
Hummel, 2006; Newson and Krumm, 2009; Osogami and
Raymond, 2013]. The geometrical approach focuses only
on the shapes of the routes. The topological approach con-
siders the topological aspects such as the connectivity of the
road network. The probabilistic approach defines the confi-
dence region around the GPS points and looks for the best
possible route. An HMM-based approach takes advantage
of a probabilistic model of measurement error, similar to
Kalman filters [Kim et al., 2000] and Particle filters [Pink
and Hummel, 2008]. It thus has the advantages of proba-
bilistic methods, which have been successfully applied for
recovering lanes of roads [Sehestedt et al., 2007] and for lo-
calizing autonomous vehicles [Thrun ef al., 2001]. Unlike

590

purely probabilistic methods, an HMM-based approach also
takes into account the topological information of the road net-
work to achieve high accuracy, similar to topological meth-
ods [Brakatsoulas et al., 2005]. HMM-based approaches can
also run in real-time [Goh et al., 2012] with guaranteed accu-
racy using an online decoding algorithm [Wang and Zimmer-
mann, 2014], unlike geometrical methods [White et al., 2000;
Yanagisawa, 2010], which often suffer from large computa-
tional cost.

Our work builds upon the recent work on an HMM-based
method [Osogami and Raymond, 2013], which extends the
method by Newson and Krumm [2009] by taking into account
drivers’ preferences about routes. Although the running time
of the HMM-based methods is usually not an issue for a sin-
gle GPS trace, it becomes unacceptable for many GPS traces.
The bottleneck is in the computational cost for calculating the
shortest paths between many hidden states.

Despite the long history of research on the shortest path
problem, only the standard algorithm of one-to-one short-
est path has been used in the existing HMM-based map-
matching. We use one-to-many shortest path search and
investigate when we can truncate the search particularly in
the context of HMM-based map-matching. One might fur-
ther improve the efficiency of HMM-based map-matching by
exploiting sophisticated techniques of shortest path search,
including Floyd-Warshall [Floyd, 1962; Warshall, 1962]
for multi-source and multi-destination as well as advanced
heuristics such as A* [Hart ez al., 1968].

Another approach to accelerate shortest path search is pre-
processing [Goldberg and Harrelson, 2005; Geisberger ef al.,
2008; Sturtevant er al., 2009]. Preprocessing produces the
auxiliary data to accelerate the shortest path search. Many
of preprocessing approaches rely on a particular fixed metric
of the shortest path, or can only deal with small changes to
the metric. Those preprocessing approaches need to recal-
culate the auxiliary data whenever we change the metric. To
avoid recalculation, one can apply an advanced preprocessing
approach by Delling et al. [2015] that essentially produces
auxiliary data supporting multiple metrics. This preprocess
partitions the road network into connected cells, generates
an overlay graph connecting the cells, and runs shortest path
search on the overlay graph.

However, we do not adopt the preprocessing approaches in
our map-matching because of the following reasons. Firstly,
we use the weighted sum of the travel distance and the turn
cost, where the weight can vary drastically for each GPS
trace, depending on who traveled along that trace. Secondly,
consecutive GPS points on a trajectory of map matching that
we consider are likely to be located closely because their in-
tervals are usually short (up to several hundreds seconds). In
this case, because the source and destination points are often
close, the preprocessing by Delling et al. [2015] is likely to
perform a shortest path search in the same cell, or at most
between a pair of neighboring cells. Thus, the shortest path
search with preprocessing is essentially the same as a short-
est path search on the original road network. Our proposed
method exploits techniques for fast shortest path computa-
tions in the HMM context similar to that of Felzenszwalb et
al. [2004]. Our approach can also accelerate HMMs for high-

volume data processing beyond map matching applications,
as long as the transition probabilities are determined by some
distance metrics on a directed graph whose nodes represent
hidden states.

2 Map-matching Algorithm

We first introduce the HMM for map-matching briefly and
then explain the details of the novel technique to reduce
the computational time for calculating transition probabili-
ties. We suppose that a set of GPS traces is given as input.
The points in each GPS trace are ordered according to the
time they are observed, but the exact time is not necessarily
recorded. Our goal is to output a set of sequences of road
segments corresponding to the GPS traces.

2.1 Map-matching with a Hidden Markov Model

An HMM consists of the observable variables, the hidden
states, the initial state probability, the emission probability,
and the transition probability. For map-matching, an observ-
able variable is the GPS point, i.e., the longitude and lati-
tude. In the following, we describe the other components of
the HMM for map-matching, except the initial probability,
which is given analogously to the emission probability. The
approach described in this section closely follows Osogami
and Raymond [2013].

A hidden state corresponds to a road segment of a road net-
work. Here, we define the location of a hidden state by the
midpoint of the corresponding road segment where we as-
sume that road segments are straight line segments. We adopt
a simpler form of a hidden state than the model of Osogami
and Raymond [2013], where an arbitrary point on a road seg-
ment can become a hidden state. A GPS point, z; at time ¢,
is associated with k hidden states, where k is a parameter to
be fixed. The k hidden states correspond to the k nearest road
segments to 2.

The emission probability of a GPS point follows from a
model of measurement error with the GPS. Let 2 be the loca-
tion of the GPS point and s be the location of the hidden state,
namely the midpoint of the road segment corresponding to the
hidden state, and o be the standard deviation of the measure-
ment error. Then the emission probability follows the normal
distribution whose probability density function is given by

1 Is — =
—— exp (-1 1
oo %P < 552) (D
where || - | denotes a distance measure such as the great circle

distance or the Euclidean distance.

The transition probability from a hidden state s to another
s’ is given by the probability density function of an expo-
nential distribution. Let d*(s, s’) be the minimum value of a
weighted travel cost from s to s’, namely, the shortest path
from s to s’. Following Osogami and Raymond [2013], we
use the weighted sum of the length of traversed road segments
and the cost of turns for d* (s, s’). To calculate the travel cost,
we construct a network G = (V, E) whose nodes V' corre-
spond to road segments, and edges E connect adjacent road
segments. Each edge is weighted by the corresponding travel
cost, as is defined in the following. Let v and v’ be adjacent

road segments (v’ follows v) and d,, and d, be the length of
the road segments. The cost u of turn is defined as follows.

0 if || < /4,
S 1 if /4 <10, < 37/4,
YU 2 i 3n/4 < |0y <,
10 if [0y | =,

where 6, . is the angle between the road segments v and v'.
We add an edge e € E connecting v and v’ on the network G
and define the cost ¢, of e by

dv + dv’
Ce = T

where wym 1s a parameter. Note that (2) contains costs with
multiple metrics. Osogami and Raymond [2013] used Inverse
Reinforcement Learning [Ziebart et al., 2008] to estimate the
weight wy,m. The optimal path that minimizes the weighted
cost between a source node and a destination node can be
found by applying a shortest path algorithm such as the Dijk-
stra algorithm [Dijkstra, 1959].

The transition probability from s to s’ is given, with a pa-

rameter 3, by
Loy (~L)lo =01, .

where ||s — s'|| denotes the distance between the midpoints of
the road segments that correspond to the hidden states s and
s’. Note that the following transition probability is used by
Osogami and Raymond [2013]:

1 d* I _ o
S ELEUE R

+ Wrarn U, v’y (2)

B B

We omit the absolute value, because the shortest path distance
d*(s,s') is longer than the distance ||s — s'|| in most cases,
and our condition for truncating shortest path search, to be
explained later, is suitable for the form (3).

Having all HMM elements, we compute the most likely
sequence of hidden states by the Viterbi algorithm [Viterbi,
1967]. Let z1,...,z2, be the sequence of GPS points and
Sy = {s¢1,..., 8¢k} be the set of hidden states at time ¢,
where k is the parameter denoting the number of the hidden
states. The Viterbi algorithm recursively computes the maxi-
mum log likelihood LL*(s) for each hidden state, s:

s — =

LL (s14) = = 55— (4)
LL*(s;,) = LL* (5514
(st,1) @%Xk{ (st-1,5)
A (se—1,558t0) — |[St—1,5 — St,i||}
B
||3tz‘—27t||2
B 7 Ay 5

2.2 Truncating Shortest Path Search

We observe, from preliminary experiments, that the bot-
tleneck of the existing algorithms for map-matching with

highways
°
Sq S5
o\ 9
Ztp - P N ® Z
Zy 95 7
®s
Sy 3

Figure 3: A time consuming case of shortest path search. Red
dots are GPS points and blue dots are hidden states. The hid-
den states are on two disconnected highways.

HMMs is in the calculation of transition probabilities whose
values depend on d*(s, s’), the shortest paths between two
consecutive hidden states (road segments). Computation of
these shortest paths is time consuming for long and irregu-
lar interval of hidden states. The existing algorithms invoke
shortest path search for k2 times, one for each pair of hidden
states, at every step of the Viterbi algorithm.

Instead of many runs of one-to-one shortest path search, we
consolidate k2 runs of one-to-one shortest path search from
all s € S;_1 toall s € S; into k runs of one-to-many short-
est path search from all s’ € S; to all s € S;_1 on a reversed
network, where the travel cost from a node s’ to another s is
the travel cost from s to s’ on the original network. The du-
plicated one-to-one traversal is avoided by the one-to-many
traversal, and the number of the shortest path searches at ev-
ery step in Viterbi algorithm is reduced from O(k?) to O(k).
We call it baseline algorithm and compare it with our tech-
nique. Note the reversed network is necessary for our tech-
nique.

We propose a technique to truncate the one-to-many short-
est path search in map-matching without loss of accuracy of
the Viterbi algorithm. Consider a case where there is a pair
of a source node and a destination node that are not reach-
able or very far. The shortest path search takes long time in
such a case, because it traverses all the nodes on the road
network. Note that the transition probability (3) for a long
distant pair of nodes is so small that we can safely truncate
its shortest path search. For example, see Figure 3, where
there are two highways, (s1, 2, S3) and (sg4, s5), and three
GPS points, (zt—2, 2:—1, 2¢). The first highway lies above the
second one, but they are not connected on the map under con-
sideration. Let s; be a hidden state of z;_o, and so, s4, S5 be
the hidden states of z;_1. In the computation of the transition
probability, the shortest path search would attempt to com-
pute d*(s1, s4) and d*(s1, s5) by traversing all nodes on the
road network, even though the s and s5 are not (directly)
reachable from s;, and the corresponding transition probabil-
ities are negligible.

In order to truncate such redundant shortest path search,
we carefully study the log likelihood (5) of the Viterbi algo-
rithm. At one stage of (5), the Viterbi algorithm has found
LL*(s¢—1,;) for all j and seeks to find LL*(s; ;) for an ¢. To
do so, we compute the shortest path from each of s;_; ; for
1 < j < k to s¢;. This many-to-one shortest paths can be

592

computed by finding one-to-many shortest paths on the re-
versed network.

We then show how to exactly, i.e., without losing accuracy,
truncate the search for one-to-many shortest paths. This exact
truncation is made possible by exploiting the property of the
Viterbi algorithm on the reversed network. Let

Gi,i(s) = BLL*(s) + ||s — s¢.ql] 6)
for s € S;_1. Plugging (6) into (5), we obtain
. 1 .
LL*(s,:) =3 gfgk{Gt,i(st—l,j) —d*(st-1,5,5t,i) }
llst,i — Zt||2
557 (7N

We have already computed LL*(s,_1 ;) for every j in the
t — 1-st iteration of the Viterbi algorithm. In the beginning
of the ¢-th iteration of the Viterbi algorithm, we compute and
store the value of Gy ;(s;—1 ;) for all j. In (7), a j cannot
become the maximizer if there exists an ¢ such that

Gt,i(stfl.,j) - d*(stfl,jv St,i)
< Gy i(St—1,0) — d*(S¢—1,0,5t4)-

Thus, we can stop searching for the shortest path from s, ;
to s;_1,; on the reversed network if the following inequality
holds for an ¢ that has been searched in previous steps:

d*(st—1,5,5t,i) > Gri(5t-1,5)
— Gt’i(stfl,é) + d*(stfl,b St,i)~ (8)

The procedure for the exact truncation to compute (7)
is as follows. It invokes shortest path search from s;; to
Si—1 = {st—1.: | 1 < i < k} on the reversed network by
the Dijkstra algorithm. Starting from the source node sy ;,
the algorithm extends the search gradually and determines
the shortest path distance. Let W be a subset of all nodes
V' whose shortest path distances from s; ; have been deter-
mined and, let ' = S;_; N W. Every time the algorithm
determines the shortest path distance to a new node u, which
is not necessarily in S;_1, it updates W and F' and checks the
following inequality (9) to see if we can truncate the shortest
path search:

d*(u, sy;) > max{G(s) | s € Si—1 \ F}

—max{G¢(s) —d"(s,s1) | s € F}. (9)

The inequality (8) holds if inequality (9) holds because the
undetermined nodes S;_; \ F' are further than u. Note that
¢ = argmax{Gyi(s) — d*(s,st;) | s € F}in (8). If the
inequality (9) holds, the procedure truncates the Dijkstra al-
gorithm and computes (7) using ¢ as the maximizer.

3 Experimental Results

We conduct two types of experiments. The first is to evalu-
ate the quality of the results of our map-matching, while the
second is to compare the computational time against the base-
line algorithm. We implemented our algorithm in Python as a
single threaded program and run it on PyPy runtime version
2.6.1 on a PC with 3.3 GHz Intel Xeon E5-2643 CPU.

3.1 Comparison of Accuracy

We apply our map-matching algorithm to a benchmark set
that is used and made publicly available by Newson and
Krumm [2009]. It contains GPS points for a route of approx-
imately 80 km in Seattle and the ground truth of the traversed
route, or simply, the frue route. We compare the accuracy of
the outcomes by our algorithm against that by Osogami and
Raymond [2013]*. We change the sampling interval of GPS
trace data from 30 seconds to 600 seconds. Throughout we
fix ¢ = 10.0 meters and 5 = 0.1 meters in (1) and (3) and
we use k = 5 hidden states at every time step in accordance
with Osogami and Raymond [2013].

In order to measure the accuracy of results, we use the
route mismatched fraction (error) introduced by Newson and
Krumm [2009]. Roughly speaking, the error of a route is
defined by the ratio of the total length of the erroneously
added or subtracted road segments and the length of the cor-
rect route. We also calculate the precision and recall of the
resulting route. Let R be a set of road segments of a re-
sulting route and 7" be a set of road segments of the true
route. The precision and recall of the route are defined by
|[RNT|/|R|,|[RNT|/|T|, respectively.

We divide the data set into 12 data sets in accordance with
Osogami and Raymond [2013] and use the wy,m inferred by
Osogami and Raymond [2013], which ranges from 117.1 to
2,257. We plot the average values of the metrics of the error,
precision and recall in Figure 4 among the 12 experiments,
where the horizontal axis denotes the sampling interval. The
lines labeled with ‘Ours’ and ‘OR’ represent the average val-
ues of the corresponding metrics by our algorithm and Os-
ogami and Raymond [2013], respectively.

Overall, the accuracy of our algorithm is comparable to that
of Osogami and Raymond [2013]. This first experiment con-
firms the soundness of the implementation of our algorithm.
Recall that the only essential difference between our algo-
rithm and that of Osogami and Raymond [2013] is in the way
transition probabilities (or shortest paths) are calculated, and
our truncation of shortest path search does not lose accuracy.

We also apply our map-matching without the truncation of
shortest path search and observe that the outputs with and
without the truncation are equivalent. It demonstrates that the
truncation does not lose accuracy of the Viterbi algorithm as
we discussed in Section 2.2 .

3.2 Comparison of Speed

We now apply our algorithm and the baseline algorithm to
a big data set to compare their computational time. Recall
that the baseline performs one-to-many shortest path search,
without truncation, to calculate the transition probabilities.
We use the first 24 GPS traces from the 7-drive data set
[Yuan et al., 2010; 2011], which contains a large amount of
GPS trace data in Beijing but not the true routes. In our ex-
periment, we remove the GPS points with the following prop-
erties. First, we delete the GPS points with the exact same
coordinates as the previous time step. Second, we eliminate

*We also performed the comparison against the results of New-
son and Krumm [2009] and obtained the results similar to those re-
ported in Osogami and Raymond [2013].

593

Table 1: Comparison of the total computation time for 24
GPS traces in the T-drive data set. Note that the baseline al-
gorithm exceeded the time limit 10,000 seconds for 4 GPS
traces with k£ = 10.

Algorithm Time (seconds)
k=5 k=10
baseline 50915.2 131316.2
ours 9356.6 20281.5
baseline + LRU 9744.2 18833.5
ours + LRU 2480.8 3727.4

the GPS points which are located too far (more than 100 km)
from ones at the previous time step. Third, we delete the GPS
points whose estimated speed from ones at the previous time
step is too fast (more than 200 km/h). The total number of
GPS points in the resulting data is approximately 1.18 mil-
lion. We extract the road network data of Beijing from Open-
StreetMap, which contains approximately 301,000 nodes and
461,000 edges.

We apply our algorithm and the baseline algorithm to the
data set and compare the computation time. Note that we
do not compare the precision as in the previous subsection,
because the data set does not include the ground truth data.
We fix ¢ = 10.0 meters, S = 0.1 meters and wy,;, = 1000.0
in (1), (3) and (2), respectively.

Table 1 shows the total computational time of the baseline
algorithm and our algorithm with k¥ = 5 and 10. We set the
time limit for each GPS trace by 10,000 seconds. There are
4 GPS traces (among 24 traces) in which the baseline with
k = 10 exceeded the time limit. Our algorithm finished the
computation within the time limit for all 24 GPS traces in the
two cases. We observe that our algorithm is 5.4 times faster
than the baseline with k = 5 and at least 6.4 times faster with
k = 10. See Figure 5 for the computation time for each GPS
trace. Our algorithm runs faster than the baseline by a factor
of 1.8 to 20.5 (or even faster), depending on the trace and k.

The advantages of the proposed algorithm over the baseline
can increase with a larger value of k. While & = 5 appears to
be sufficient for the data set of Newson and Krumm [2009],
a larger k can improve the accuracy for other data sets. Our
algorithm indeed finds different routes with a larger k for the
T-drive data set, although the changes in the accuracy cannot
be evaluated without true routes.

We additionally test an approach to reuse the intermediate
data structure of the shortest path search such as the shortest
path tree and the priority queue of nodes. Because we deal
with geospatial temporal GPS data sets, we expect the locality
property to hold: namely, recently accessed hidden states and
its neighbors are likely to be accessed soon. Therefore, stor-
ing the intermediate data structure in a Least Recently Used
(LRU) cache, which is fast and easy to implement, we can
avoid duplicate traversal in the shortest path search. “base-
line + LRU” and “ours + LRU” denote the computation time
of the baseline algorithm with an LRU cache and our algo-
rithm with an LRU cache, respectively. We observe that the
LRU cache accelerated our algorithm and the baseline algo-
rithm by a factor of 3.7 and 5.2, respectively, with £k = 5.
Our algorithm with the cache runs 3.9 times faster than the

100

* =+ Ours

* = Ours
+—4 OR

90

80

70

60

* =+ Ours
+—4 OR

0.1

100 200 300 400 500 600 100 200

(a) Route mismatched fraction

300

(b) Precision (%)

50

400 500 600 100 200

(c) Recall (%)

300 400 500 600

Figure 4: Comparison of the accuracy, where z-axis indicates the sampling intervals of the GPS data and y-axis indicates the

route mismatched fraction, precision, and recall.

2 10000 ————— (@k=5

§ 2000 H ours

& || B baseline

g 6000

£ 4000

£

£ 2000

=

g 0 .-_IJJJJJ

° BIBED SR
VO OL--MO
I O M 0

2 >10000

§ 8000 Il ours

& || B baseline

g 6000}

£

£ 4000}

2

£ 2000}

£

8 0 O DO+ O
© DWW 0O O
WO OL-r=-m
00 O DHM

Figure 5: Computation time of the T-drive data set for each
GPS trace: (a) k = 5, (b) k = 10. If a bar reaches the top, the
map-matching exceeded the time limit 10,000 seconds.

baseline algorithm with the cache with k = 5.

Finally, we compare the outputs of “baseline + LRU” and
“ours” with £ = 5 and 10 in Figure 5 and observe that they
are equivalent for all traces. The difference between the algo-
rithms is the LRU and the truncation of shortest path search,
and it is clear that the LRU does not affect outputs of map-
matching. Thus, the observation confirms that the trunca-
tion does not lose accuracy of the Viterbi algorithm. Note
that we use “baseline + LRU” instead of “baseline” because
“baseline” exceeded the time limit 10,000 seconds for trace
ID 2237, 3105, 3557, and 6275 with k = 10.

594

4 Conclusion

We propose a new technique to speed up HMM-based map-
matching algorithms. Our technique computes the transition
probabilities in the HMM by applying one-to-many shortest
path search on the reversed network and truncate the short-
est path search early without exploring all the shortest paths
by taking into account the log likelihood of the Viterbi algo-
rithm. It was shown effective to significantly reduce the com-
putational time without loss of accuracy. We observe that the
proposed method runs 5.4 times faster than the baseline algo-
rithm through the computational experiments with £ = 5 and
even faster with larger k.

We used the proposed method in the framework of Os-
ogami and Raymond [2013], but the proposed method can
also be applied to a larger set of HMM-based map-matching
algorithms. For example, Osogami and Raymond [2013] de-
fine the cost of the path only from the length of the traversed
road segments and the number of turns, but one could also
take into account other distance measures such as the travel
time, type of turns (as some drivers might prefer less number
of left turns than right ones), distance to major landmarks,
and so on. This is important in modeling the real-world driv-
ing, especially in the context of imitation learning, where the
utility function of the drivers to be recovered often depends
on many features or distance measures. In future work, we
plan to evaluate the proposed model with such rich features
against large data sets that come with the ground truth data,
such as, bus trajectories that are usually fixed.

Acknowledgments
A part of this research was supported by CREST, JST.

References

[Brakatsoulas ef al., 2005] S. Brakatsoulas, D. Pfoser,
R. Salas, and C. Wenk. On map-matching vehicle tracking
data. In Proc. of 31st Int. Conf. Very Large Data Bases,
pages 853-864, 2005.

[Delling et al., 2015] D. Delling, A. V. Goldberg, T. Pajor,
and R. F. Werneck. Customizable route planning in road
networks. Transportation Science, to appear, 2015.

[Dijkstra, 1959] E. W. Dijkstra. A note on two prob-
lems in connexion with graphs. Numerische Mathematik,
1(1):269-271, 1959.

[Felzenszwalb et al., 2004] P. F. Felzenszwalb, D. P. Hutten-
locher, and J. M. Kleinberg. Fast algorithms for large-
state-space HMMs with applications to Web usage analy-
sis. In Advances in Neural Information Processing Systems
16, pages 409-416. MIT Press, 2004.

[Floyd, 1962] R. W. Floyd. Algorithm 97: Shortest path.
Commun. ACM, 5(6):345, 1962.

[Geisberger et al., 2008] R. Geisberger, P. Sanders,
D. Schultes, and D. Delling. Contraction hierar-
chies: Faster and simpler hierarchical routing in road

networks. In Experimental Algorithms, volume 5038 of
LNCS, chapter 24, pages 319-333. Springer, 2008.

[Goh et al., 2012] C.Y. Goh, J. Dauwels, N. Mitrovic, M. T.
Asif, A. Oran, and P. Jaillet. Online map-matching based
on hidden Markov model for real-time traffic sensing ap-
plications. In Proc. of 15th Int. IEEE Conf. Intelligent
Transportation Systems, pages 776781, 2012.

[Goldberg and Harrelson, 2005] A. V. Goldberg and C. Har-
relson. Computing the shortest path: A* search meets
graph theory. In Proc. of the 16th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA-05, pages 156—
165, 2005.

[Hart et al., 1968] P. E. Hart, N. J. Nilsson, and B. Raphael.
A formal basis for the heuristic determination of minimum
cost paths. IEEE Trans. Systems Science and Cybernetics,
4(2):100-107, 1968.

[Hummel, 2006] B. Hummel. Map matching for vehicle
guidance. In Dynamic and Mobile GIS: Investigating
Changes in Space and Time, pages 175-186. CRC Press,
2006.

[Kim et al., 2000] W. Kim, G.-I. Jee, and J. Lee. Efficient
use of digital road map in various positioning for ITS. In
Proc. of 2010 IEEE/ION Position Location and Navigation
Symposium, pages 170-176, 2000.

[Lamb and Thiébaux, 1999] P. Lamb and S. Thiébaux.
Avoiding explicit map-matching in vehicle location. In
Proc. of 6th ITS World Congress on Intelligent Transport
Systems, 1999.

[Newson and Krumm, 2009] P. Newson and J. Krumm. Hid-
den Markov map matching through noise and sparseness.
In Proc. of 17th ACM SIGSPATIAL Int. Conf. Adv. in Geo-
graphic Information Systems, pages 336343, 2009.

[Osogami and Raymond, 2013] T. Osogami and R. Ray-
mond. Map matching with inverse reinforcement learn-
ing. In Proc. of 23rd Int. Joint Conf. Artificial Intelligence,
IJCAI-13, pages 2547-2553, 2013.

[Pink and Hummel, 2008] O. Pink and B. Hummel. A statis-
tical approach to map matching using road network geom-
etry, topology and vehicular motion constraints. In Proc.
of 11th Int. IEEE Conf. Intelligent Transportation Systems,
pages 862-867, 2008.

595

[Quddus et al., 2007] M. A. Quddus, W. Y. Ochieng, and
R. B. Noland. Current map-matching algorithms for trans-
port applications: State-of-the art and future research di-

rections. Transportation Research Part C: Emerging Tech-
nologies, 15:312-328, 2007.

[Sehestedt ez al., 2007] S. Sehestedt, S. Kodagoda, A. Alem-
pijevic, and G. Dissanayake. Efficient lane detection and
tracking in urban environments. In Proc. of 3rd European
Conf. Mobile Robots, 2007.

[Sturtevant et al., 2009] N. R. Sturtevant, A. Felner, M. Bar-
rer, J. Schaeffer, and N. Burch. Memory-based heuristics
for explicit state spaces. In Proc. of 21st Int. Joint Conf.
Artificial Intelligence, IJCAI-09, pages 609-614, 2009.

[Thrun et al., 20011 S. Thrun, D. Fox, W. Burgard, and
F. Dellaert. Robust Monte Carlo localization for mobile
robots. Artif. Intell., 128(1-2):99-141, 2001.

[Viterbi, 1967] A.J. Viterbi. Error bounds for convolutional
codes and an asymptotically optimum decoding algorithm.
IEEE Trans. Information Theory, 13(2):260-269, 1967.

[Wang and Zimmermann, 2014] G. Wang and R. Zimmer-
mann. Eddy: An error-bounded delay-bounded real-time
map matching algorithm using HMM and online Viterbi
decoder. In Proc. of 22nd ACM SIGSPATIAL Int. Conf.
on Adv. in Geographic Information Systems, pages 33-42,
2014.

[Warshall, 1962] S. Warshall. A theorem on boolean matri-
ces. J.ACM, 9(1):11-12, 1962.

[White et al., 2000] C.E. White, D. Bernstein, and A. L. Ko-
rnhauser. Some map matching algorithms for personal
navigation assistants. Transportation Research Part C:
Emerging Technologies, 8(1-6):91-108, 2000.

[Yanagisawa, 2010] H. Yanagisawa. An offline map match-
ing via integer programming. In Proc. of 20st Int. Conf.
Pattern Recognition, pages 4206-4209, 2010.

[Yuan et al., 2010] J. Yuan, Y. Zheng, C. Zhang, W. Xie,
X. Xie, G. Sun, and Y. Huang. T-drive: Driving directions
based on taxi trajectories. In Proc. of 18th SIGSPATIAL
Int. Conf. Adv. in Geographic Information Systems, pages
99-108, 2010.

[Yuan et al., 2011] J. Yuan, Y. Zheng, X. Xie, and G. Sun.
Driving with knowledge from the physical world. In Proc.
of 17th ACM SIGKDD Int. Conf. Knowledge Discovery
and Data Mining, KDD ’11, pages 316-324, 2011.

[Zheng, 2015] Y. Zheng. Trajectory data mining: An
overview. ACM Trans. Intelligent Systems and Technol-
0gy, 6(3):Article No. 29, 2015.

[Ziebart et al., 2008] B. D. Ziebart, A. Maas, J. A. Bagnell,
and A. K. Dey. Maximum entropy inverse reinforcement
learning. In Proc. of the 23rd AAAI Conf. on Artificial
Intelligence, AAAI-08, pages 1433-1438, 2008.

